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General introduction 

 

General introduction 
In recent years, significant efforts have been made in the field of the development of thin 

films of transparent conductive oxides (TCOs) [1]. They are remarkable materials in many 

fields. The existence of their dual property, electrical conductivity and optical transparency [2]. 

TCOs films like SnO2, ZnO and In2O3 have attracted the attention of many research workers 

due to their wide range of applications, such as solar cells and flat panel displays [3].  

Tin dioxide (SnO2) is one of the most widely used transparent conductive oxides (TCOs) 

in technology. In fact, over the last few decades it has experienced growing scientific and 

industrial interest in the form of thin layers due to its remarkable physical properties , tin dioxide 

is an n-type semiconductor and it has a wide band gap with high transparency and electrical 

conductivity [4], the films are chemically inert, mechanically hard, and can resist high 

temperature. It mainly occurs in the mineral cassiterite, and crystallizes with a tetragonal 

structure [3]. 

SnO2 films can be prepared by different techniques, these techniques can be divided into 

two groups according to the nature of the sedimentation process. Physical methods include 

physical vapor deposition vacuum thermal evaporation technique, laser beam evaporation, 

Molecular Beam Epitaxy, and Electron beam evaporation [5]. Chemical methods include 

chemical vapor deposition, Sol-gel process, chemical bath deposition method, 

electrodeposition, and spray pyrolysis technique [6]. 

Spray pyrolysis is a processing technique to prepare dense and porous oxide films, ceramic 

coatings, and powders [7]. Unlike many other deposition techniques, spray pyrolysis represents 

a very simple and relatively cost-effective method that it does not require high quality substrates 

or chemicals [8].  

The purpose of this work is the elaboration of thin films onto glass substrates heated at 

350°C, by ultrasonic spray pyrolysis technique, from precursor in alcoholic solution of tin 

chloride (II) dihydrate (SnCl2∙2H2O), and the study of the effect of the solution concentration 

and solvent concentration on the properties of SnO2 thin films. The deposit was made at the 

level of laboratory of material and structure of electromechanically systems and their reliability 
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(LMSSEF) of Larbi Ben M’Hidi University in Om El Bouaghi. These films are characterized 

by UV-Visible-NIR double beam spectrophotometer and four-point probe technique to 

determine their optical and electrical properties, respectively. Our work is organized into three 

chapters as follows:  

o The first chapter was devoted to the notions of thin films, the techniques of their 

elaboration, transparent conductive oxides, the essential properties of tin dioxide 

and the field of its applications. 

o The second chapter is devoted to how to prepare thin films by adding to the various 

experimental techniques to distinguish our coating layers. 

o The third chapter is devoted to discussing the experimental results obtained from 

the study of thin films. 
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Chapter I: Generalities about tin dioxide thin films 
 
I.1. Overview on thin film 

I.1.1 Thin Film 

Thin film technology is the basic of astounding development in solid state electronics [3], 

they are material layers with thicknesses ranging from one atomic layer up to several 

micrometers. They are ubiquitous in the modern world and can be found in such diverse 

applications as mirrors, cutting tools eyeglasses, microelectronics, window glass, and solar cells 

[9].  

I.1.2. Classification of thin films deposition techniques 

Thin film materials are the key elements of continued technological advances made in the 

fields of optoelectronic, photonic, and magnetic devices. The processing of materials into thin 

films allows easy integration into various types of devices. The properties of material 

significantly differ when analyzed in the form of thin films. The vast varieties of thin film 

materials use in their deposition processing and fabrication techniques methods which are 

possible [3]. 

 

 

Figure I.1. Classification of thin film deposition technique [10]. 

 

The thin film materials are obtained by different ways of deposition[3], deposition methods 

are roughly divided in two categories, chemical vapor deposition (CVD) and physical vapor 
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deposition (PVD), although hybrid processes are not unheard of. PVD and CVD processes are 

differentiated by how material transport and film deposition is facilitate [9]. Figure I.1 shows 

the schematic of classification of thin film deposition technique. 

I.1.2.1. Physical deposition techniques 

PVD technology simply consists of evaporation or sublimation of the material to be 

deposited. The crucible of the latter is heated in a vacuum crucible at high temperature [2]. 

I.1.2.1.1. Evaporation techniques 

In this method, the interconversion between the solid and vapor phase takes place in a 

vacuum environment. There are several evaporation methods available for thin-film deposition 

[10]. 

A. Vacuum thermal evaporation technique 

Vacuum evaporation technique is one of the oldest and extensively used method for 

semiconducting thin film deposition at industrial scale. It is a simplest technique for synthesis 

of amorphous film especially chalcogenide films such as CdSSe, MnS, Ge-Te-Ga, and used to 

protect textiles from metal nanoparticles deposition [10, 11]. The vacuum helps to settle vapors 

of coating particles on the substrate where it convert back into the solid phase. The evaporation 

is carried out by electron beam heating or electrical heating. 

The technique of thermal evaporation is strongly dependent on two parameters: thermally 

vaporized material and applying a potential difference to the substrate under medium or higher 

vacuum level ranging from 10-5 to 10-9 mbar [12]. Figure I.2. Shows the schematic diagram of 

vacuum thermal evaporation technique. 

 

 

 

 

 

 

 

 

Figure I.2. Schematic of vacuum thermal evaporation technique. 
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B. Laser beam evaporation (Pulsed laser deposition) 

For physical depositions, PLD requires lenses to focus the laser beam, in order to focus 

large energy density to ablate the target source and the vaporized materials eventually sublimate 

on the substrates. PLD is a clean and simple method to obtain a wide range of structures, 

compositions, and properties [13]. 

During the thin-film deposition process, the laser beam is used to ablate the material for 

depositing the thin films inside a vacuum chamber as shown in Figure I.3 [12]. When the laser 

beam strikes the target material, it produces the plume, which could deposit on the various 

substrates. The created plume may contain neural- and ground-state atoms and ionized species. 

Different kinds of laser sources are being used to ablate the target. The most common sources 

are KrF (248 nm), XeCl (308 nm), and Nd-YAG laser (1064 nm) [14]. 

In the case of metal oxide thin films, oxygen is used to deposit the oxides metals. The 

coating of thin films through PLD follows three modes: Frank–van der Merwe, Volmer–Weber, 

and Stranski– Krastanov. PLD has some advantages over other physical deposition. Among 

them is the availability of less space for the board and the availability of software design [15]. 

 

Figure I.3. Schematic of pulsed-laser deposition [9]. 

 

C. Molecular Beam Epitaxy 

Molecular Beam Epitaxy (MBE) is an epitaxial process by which growth of materials takes 

place under ultra-high vacuum (UHV) conditions on a heated crystalline substrate by the 

interaction of adsorbed species supplied by atomic or molecular beams. The layers or deposits 



  

6 

Chapter I                        Generalities about SnO2 thin films 

have: (1) the same crystalline structure of the substrate or a structure with a similar symmetry 

and (2) a lattice parameter differing from that of the substrate by no more than ∼10%. The 

beams generally have thermal energy and are produced by evaporation or sublimation of 

suitable materials contained in ultra-pure crucibles [16]. 

 MBE have been considered the sophisticated technique in obtaining high-purity films 

because of its complexity in the process and expensive equipment is needed to achieve the 

purpose [17]. 

 

Figure I.4. Schematic of a typical system for molecular beam epitaxy (MBE). 

 

E. Electron beam evaporation 

 

Figure I.5. Schematic diagram of electron beam evaporation [18]. 
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This type of evaporation is another method of physical deposition where the intensive beam 

of electrons is generated from a filament and steered through both electric and magnetic fields 

to hit the target and vaporize it under vacuum environment, as shown in Figure I.5. Thin films 

prepared by electron beam evaporation are good quality and purity [18]. 

I.1.2.1.2. Sputtering 

Sputtering is another physical vapor deposition process occurs in a vacuum chamber. A 

large piece of the material to deposited, known as a target, is bombarded with high energy argon 

ions from a glow discharge. When the argon ions strike the target, they knock off target atoms 

and molecules, which are then conveyed through the vacuum to the substrate, where they 

condense and form a thin film. Sputtering is most commonly used for depositing metal films, 

but, like evaporation, can also deposit insulating films with some slight process and equipment 

variations [9]. There are many other types of sputtering are: Magnetron Sputtering, Reactive 

Sputtering, and Ion Beam Sputtering [10]. 

It has several advantages, high-melting point materials can be easily formed by sputtering. 

The deposited films have composition similar to the composition of the starting materials [15]. 

The general sputtering method can be used to prepare a variety of materials such as metals, 

semiconductors, insulators, etc., and has the advantages of simple equipment, easy control, 

large coating area, and strong adhesion [19]. The diagram of the sputtering system is shown in 

Figure I.6. 

 

Figure I.6. Sputtering system diagram. 
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I.1.2.2. Chemical deposition methods 

Chemical deposition involves a reaction wherein the product self-assembles and coats the 

substrate. It can be further divided into chemical vapor deposition, and chemical solution 

deposition [20]. 

I.1.2.2.1. Chemical Vapor Deposition (CVD) 

Chemical Vapor Deposition (CVD) is a process in which the substrate is exposed to one or 

more volatile precursors, which react and/or decompose on the substrate surface to produce the 

desired thin film deposit [21]. CVD has been used historically for the fabrication of thin films 

composed of inorganic materials [22]. It includes many methods, the most important of which 

is:  

A. Plasma Enhanced Chemical Vapor Deposition (PECVD) 

PECVD is a plasma-enhanced CVD process where deposition is achieved by introducing 

reactant gases between a grounded electrode. The capacitive coupling between the electrodes 

excites the reactant gases into plasma, which induces a chemical reaction and results in the 

reaction product being, deposited on the substrate. The gear, which is placed on the grounded 

electrode, is typically heated to 300°C. 

 PECVD is used to deposit thin films of various materials on substrates at lower temperature 

than that of standard CVD technique [23]. The Figure I.7 below shows the method.  

 

Figure I.7. PECVD system diagram. 
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There is a method that based on low pressure (LPCVD: Low Pressure Chemical Vapor 

Deposition) which ranges from 0.1 to 10 torr. Reactor configurations that have been used for 

LPCVD thin film processes include resistance heated tubular hot-wall reactors, vertical flow 

batch reactors and single-wafer reactors [24]. The figure I.8 shows the schematic of PECVD. 

 

Figure I.8.Schematic description of LPCVD system. 

 

I.1.2.2.2 Chemical solution deposition (CSD) 

Chemical solution deposition (CSD) is an overarching term used to describe any technique 

whereby a chemical precursor solution is used to create a film [25]. The CSD is a very versatile 

method as it provides excellent stoichiometry control and coverage of large surface areas. The 

application procedures used for CSD are quite similar to what is used in the semiconductor 

industry for application of photoresist, which is a proven high throughput process [26]. 

It contains many methods, including the following: 

A. Sol–Gel process 

Sol-gel process is used for production of solid materials from small molecules. Oxides of 

silicon and titanium are the most popular materials for this process. The process involves 

conversion of monomers into a colloidal solution (sol) that acts as the precursor for an 

integrated network (or gel) of either discrete particles or network polymers [27]. There are two 

processes for the production of the films: 

A.1. Dip coating 

In this method (Figure I.9.a), the substrate is normally withdrawn vertically from a desired 

coating solution, which causes a complex process involving gravitational draining with 
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concurrent drying and continued condensation reactions. Environmental conditions 

(temperature, humidity, airflow) are very important parameters as much as pH of the solution, 

substrate surface, and withdrawn speed. They all affect film parameters the resulting [28]. 

A.2. Spin Coating 

 Spin coating process consists of putting the drops of liquid precursor on the surface of a 

spinning substrate (Figure I.9.b). The film formed on the substrate results from two balancing 

forces: 

 The centrifugal force (due to spinning) which drives the viscous sol radially outwards and 

viscous force (due to friction) which acts radially inwards. Spin coating is the cheapest film 

production method in silicon technology. However, thinner films (<100 nm) are hard to make 

and can waste 98% of the process materials [29].  

 

Figure I.9. Sol-gel process diagram (a): Spin-coating, (b): Dip-coating. 

 

B. Chemical bath deposition process 

The chemical bath deposition (CBD) method uses a controlled chemical reaction to deposit 

a thin film. In the typical experimental approach, the substrates are immersed in solution 

containing the chalcogenide source, metal ion, and complexing agent [30]. 

The preparation and characterization of thin films by chemical bath deposition have been 

reporting by many researchers [30]. The FigureI.9 shows the CBD method. 
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Figure I.10.Chemical bath deposition technique. 

 

C. Electrodeposition 

Electrodeposition is a non-vacuum electrochemical technique preferable for thin film 

deposition owing to its ability to deposit multicomponent alloys at low temperature. In this 

method deposition of thin metallic films is done onto the substrate by the reduction of cations 

without any unwanted reactions [31]. The FigureI.9 shows the thin films electrodeposition 

process. 

 

Figure I.11.Electrodeposition process to deposit thin films. 

 

D. Spray pyrolysis technique 

The thin films will be produced in this study by this technique. Due to its advantages, ease 

of use, and the advantages of the obtained thin films. 
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Spray pyrolysis is a technique that requires a precursor solution, a heated substrate, and 

atomizer. In this process, the solution is atomized into small drops and transferred to the heated 

substrate due to gas that generates thin films. The atomic cloud aerosol generates larger droplets 

due to the ultrasonic spraying method that determines the smaller droplets. That influences the 

surface morphology of the material. Spray pyrolysis is very efficient, cost effective, and utilizes 

simple equipment. The thin films produced have large surface area of substrate coverage and 

potential and homogeneity of mass synthesis [32]. The Figure I.12 shows the spray pyrolysis 

technique. 

 

Figure I.12. Principle of spray process [33]. 

 

I.2. Transparent Conductive Oxides 

Based on Electromagnetic Theory (Maxwell’s equations), which could not permit a 

material to be both electrically conducting and optically transparent simultaneously. Optically 

transparent materials tend to be electrical insulators by virtue of their large band gaps. However, 

Transparent Conductive Oxides (TCOs) is a group of materials with unique optoelectrical 

properties [3]. 

TCOs are interesting materials for several applications, such as photovoltaic cells, 

optoelectronics, and catalytic applications. SnO2 as TCO is available materiel and easy to 

deposit as thin films using several techniques such as sol-gel and pulsed laser deposition [34].  

The TCO semiconductors suitable for transparent electrodes should have a band gap energy 

approximately above 3.1 eV (i.e., degenerate n-type or p-type semiconductors) [35, 36]. TCO 

are materials that exhibit a low electrical resistivity of the order of 10-4 (Ω.cm), and high carrier 
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concentration in the range (0.1-1.0)x1021 cm-3 while being transparent in the visible part of the 

electromagnetic spectrum, typically having an average visible transmittance of 80% [3]. 

I.2.1.Applications of TCOs materials 

For their luminescence properties introduction TCO films have been widely used as a 

transparent conducting thin film materials for application in various fields such as solar cells, 

flat panel displays, smart windows, touch screens, optoelectronic devices, heat mirrors, liquid 

crystal displays (LCDs), organic light emitting diodes (OLEDs) and gas sensors[12]. 

 

Figure I.13. Some applications of TCOs [9]. 

 

I.2.2. Metal Oxides 

Metal oxides are one of the most important where they widely characterized solid catalysts. 

Metal oxides are considered as heterogeneous catalysts and are applied for acid–base and redox 

reactions. Certain groups of metals, particularly transition metals, have attracted much attention 

because of their outer electron configuration [37]. They are chemical compounds formed into 

metals, specifically cations and oxygen. These compounds require a minimum of two elements, 

as compounds do, and always contain at least one oxygen, though there can be more than one. 

These formations tend to be solid, basic and denser than their non-metallic oxide counterparts. 

Metal oxides typically contain an anion of oxygen in the oxidation state of -2 [38]. 
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They are applied widely in various reactions, which include oxidation, dehydration, 

dehydrogenation, and isomerization. The oxides of transition metals such as Nb2O5, WO3, and 

TiO2 are widely used as heterogeneous acid nanocatalysts. The mesopores of these transition 

metal -oxides allow the substrate inside the metal pores for the catalysed reaction [39].  

There are two main families of metal oxides, the first of which concerns p-type (hole 

conduction), they are known to be relatively unstable because of their tendency to exchange 

oxygen from their lattice easily with air. The second family includes n-types (electron 

conduction). They fill the majority of gas sensor applications, as they are more stable [12]. 

I.3. Properties and applications of tin dioxide 

I.3.1. Properties of tin dioxide 

Is an inorganic compound with the chemical formula SnO2. It mainly occurs in the mineral 

cassiterite and crystallizes with a tetragonal structure. It is a colorless, amphoteric and 

diamagnetic solid [38]. That is usually thought of, as an oxygen deficient n-type semiconductor. 

It is insoluble in water, but dissolves in alkalis and acids [9]. 

I.3.1.1. Structural properties of tin dioxide 

SnO2 has the tetragonal structure it (a = b = 4.738 Å and c = 3.186 Å) [9], it is a n-type 

semiconductor with wide energy band gap (3.7 eV). Its unit cell contains two tin and four 

oxygen atoms as is shown in Figure I.14 the tin atom is at the center of six oxygen atoms placed 

at the corners of a regular octahedron. Every oxygen atom is surrounded by three tin atoms at 

the corners of an equilateral triangle. If tin dioxide was completely stoichiometric, it would be 

an insulator [39]. 

 

Figure I.14.  Unit cell of SnO2 in the rutile structure [41]. 
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I.3.1.2. Optical properties of tin dioxide 

The optical properties of a semiconductor are associated with the intrinsic and extrinsic 

effects. Intrinsic optical transitions take place between electrons in the conduction band and the 

holes in the valence band, including the effects of excitants due to the coulomb interaction. 

Extrinsic properties are related to dopants or defects which usually create discrete electronic 

states in the band gap, and influence absorption and emission processes [1].Due to its large gap 

energy, SnO2 has optical transparency in the visible range and the near infrared which 

sometimes exceeds the 85% threshold [42]. Tin dioxide (SnO2) is a semiconductor n-type with 

wide energy band gap (Eg= 3.6-4.2 eV) .The optical properties of SnO2 depend on the 

electromagnetic wave interaction with the semiconductor electrons. And a direct band gap [43]. 

I.3.1.3. Electrical properties of tin dioxide 

Tin dioxide (SnO2) close to perfectly stoichiometry condition, have low free carrier 

concentration and high resistivity, which is similar to insulation. However, nonstoichiometric 

forms of these oxide films have high free carrier concentration. In other words, during crystal 

growth, there is an oxygen vacancy in the structure and therefore the formula for thin film form 

of this material is SnO2-X, where x is the deviation from stoichiometry. Indeed, the electrical 

conduction in this material results from existence of defects in the crystal, generally, either 

oxygen vacancies or interstitial atoms, which may act as donor [3]. 

Table I.1. The optical and electrical properties of a tin dioxide film [44, 45]. 

 

Optical properties of SnO2 Electrical properties of SnO2 

Transmission 

in the visible 

range 

Refractive 

index 

Optical 

band gap 

Optical 

band gap 

nature 

Conductivity 

type 

Free carrier 

concentration 

(cm-3) 

85% 1.8-2 3.6–4.2 eV Direct n 1018-1020 

 

1.3.2. Applications of tin dioxide  

Some of the applications of tin dioxide are given below [46]: 

 Magnetic properties of tin dioxide nanoparticles are used in magnetic data storage and 

magnetic resonance imaging. 

 As catalysts, energy-saving coatings and anti-static coatings. 

 As electrodes and anti-reflection coatings in solar cells. 
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 In the making of gas sensors, optoelectronic devices and resistors. 

 Making of liquid crystal displays. 

Very thin (100 nm), transparent films of tin dioxide are deposited on glass containers in 

order to increase their mechanical surface resistance. Thicker tin dioxide films (1 μm) provide 

electrically conductive layers, after appropriate doping with antimony or fluorine, which can be 

used as electrodes, light-emitting devices (for low-intensity light panels or display panels ), 

fluorescent lamps, antistatic double glazing, heated windshields (mainly for aircraft), etc. 

Another property of these thick films is their ability to reflect a large proportion of IR radiation, 

while remaining transparent to visible radiation (use in double glazing for thermal insulation of 

windows) [12, 38]. 
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Chapter II: Elaboration of tin oxide thin films 
 

This chapter is divided into two parts, the first part will study the method of ultrasonic spray 

pyrolysis with the steps of preparing tin oxide thin films. While the methods of optical and 

electrical characterization of our films will be studied in the second part. 

Part one: Ultrasonic spray pyrolysis technique 

II.1. Choice of ultrasonic spray pyrolysis technique 

The ultrasonic spray pyrolysis method is a cost-effective and adaptable technique based on 

an aerosol process for synthesizing nanoparticles and depositing thin films [43]. The spray 

pyrolysis technique has several advantages and the most important is: 

 Ultrasonic spraying and atomization allow for full process control resulting in 

homogeneous high-quality output. Ultrasonic spray pyrolysis excels conventional 

techniques, e.g. CVD by its homogeneous distribution and its cost-efficiency. 

 Due to its easy feasibility, flexibility, and cost-efficiency. 

 Ultrasonic spray pyrolysis gives you full control over the most important process 

parameters such as: ultrasonic amplitude, precursor solution, precursor composition, 

viscosity, flow rate, deposition temperature, and substrate temperature. 

II.2. Thermal effects of the substrate on droplets 

Droplets impact on the substrate surface, spread into a ball-shaped structure, and undergo 

thermal decomposition. The shape and size of the ball depends on the momentum and volume 

of the droplet, as well as the substrate temperature (Figure II.1). Consequently, the film is 

usually composed of overlapping disks of metal salt being converted into oxides on the heated 

substrate [47]. 

In process A: In the lowest temperature regime, the droplet splashes onto the substrate and 
decomposes. 

In process B: At medium temperature regime, the solvent evaporates completely during the 
flight of the droplet and dry precipitate hits the substrate, where decomposition occurs. 

In process C: At high temperature regime, the solvent also evaporates before the droplet 
reaches the substrate. Then the solid precipitate melts and evaporates without decomposition 
and the vapor diffuses to the substrate to undergo the CVD process. 

In process D: At very high temperature regime, the precursor evaporates before it reaches the 
substrate, thus solid particles are formed after the chemical reaction in the vapor phase. 
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Figure II.1. Thermal effects of the substrate on droplets. 

 

As the droplets move through the ambient, they experience physical and chemical changes 

depicted in FigureII.1. As the droplet traverses the ambient, there are four forces simultaneously 

acting on it, describing its path [44]. Those forces are gravitational, electrical, thermophoretic, 

and the Stokes force. 

II.3. Elaboration of tin oxide films 

On a glass substrate, we deposit thin films form aqueous solution alcohol containing tin 

chloride dihydrate (SnCl2∙2H2O) (99.8 %, Aldrich) was dissolved in a wide variety of precursor 

solution; solvent A (methanol: water; 25:75; v/v) and solvent B (methanol: water; 75:25; v/v) 

at different molarities (0.02M, 0.04M, 0.06M ,0.08M, and 0.10M). 

II.3.1. Choice and preparation of substrate 

In our work, the glass substrates used are equidistant (Figure II.2) that are sterilized by 

solvent solutions (distilled water, acetone, and ethanol) and dried with Joseph paper in the 

following steps:   
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Figure II.2. Isometric glass substrates and diamond pen. 

 

 The  glass substrates have cut  into equal dimensional substrates by pen of diamond 

point (Figure II.2 and Figure II.3.a),  

 Soak the substrates in acetone to remove grease and fats, 

 The substrates are immersed in distilled water to remove traces of acetone, 

 Soak the substrates in ethanol to remove the organic matter. The substrates are again 

immersed in distilled water to remove traces ethanol (Figure II.3.b), 

 The glass slides ultrasonically cleaned in each for about 5 min (Figures II.3.c and d), 
Drying the substrates using Joseph paper, so as not to leave any traces or impurities. 

 
 
 
 

 

 

 

 

  

Figure II.3. Substrate preparation and cleaning process. 
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II.3.2. Preparation of precursor solutions 

There are several precursors to obtain thin films of tin oxide such as tin tetrachloride 

pentahydrate (SnCl4∙5H2O) and tin dichloride dihydrate (SnCl2·2H2O) [48]. 

In our work, we chose tin dichloride dihydrate (Figure II.4.a) dissolved in two different 

aqueous alcohol solutions; 25% (v/v) Methanol and 75% (v/v) Methanol. To obtain solution 

(VTCD) of (SnCl2 2H2O) with molar mass (M = 225.63 g/mol), and molarity (C1 = 0.1 mol/l). 

By following these steps: 

 Measure a mass of tin dichloride dihydrate m=C1.M.VTCD = (0.900.02)g, ( Figure 

II.4.b) using a balance (KERN442-432N).  

 The previous mass was dissolved in an aqueous alcohol solution by volume VTCD=40ml 

(Figures II.4.c and d). 

 The solution was stirred with ultrasonic bath cleaners for about five minutes.  

 From the  main solution (C1=0.1mol/l ) for the both solvents, we prepare solutions with 

different molarities (C2=0.08 mol/l, C3=0.06mol/l, C4=0.04mol/l, and C5=0.02mol/l), 

the following relationships:  

Cn1Vn1=Cn2Vn                                (II.1) 
      

Figure II.4. Preparation of spraying solutions; (a): TCD, (b): mass TCD, (c): TCD dissolved 
in methanol 75 % (v/v), (d): TCD dissolved in methanol 25 % (v/v).  
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II.3.3. Ultrasonic spray pyrolysis’s equipment 

We have developed tin oxide thin films using ultrasonic spray pyrolysis technique 

(FigureII.5) , at  laboratory of material and structure of electromechanically systems and their 

reliability (LMSSE: Laboratoire des Matériaux et Structure des Systèmes électromecaniques 

et leur Fiabilité) of the University of Larbi Ben M’Hidi in Om El Bouaghi. 

 

Figure II.5. Complete experimental devices of the ultrasonic spray pyrolysis technique. 

 

Figure II.6. The schematic experimental set up of the spray pyrolysis system [45].  

 

The schematic diagram of experimental set up of the spray pyrolysis system, which is built 

in LMSSEF, is shown in figureII.6. It consists of: 

1. Ultrasonic generator (40 KHz): allows decomposing the solution at the atomizer to 

very fine droplets (Ø ~40 μm). 
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2. Syringe pump with Syringe contains the solution: Model PHOENIX D-CP (GF-

FOURES) to control the precursor solution flow rate. 

3. Atomizer: the atomizer is placed on a support height adjustable to control the 
nozzle spray distance. 

4. Substrate heater: it is substrate holder (Ø =25 cm) heated by joule effect. The used 
temperature in our experiment is 350 C. 
 

II.3.4. Preparation of thin films 

After preparing the substrates and solutions, all samples are preparation through the 

following steps: 

1. The prepared precursor solution of tin (II) chloride dihydrate (SnCl2∙2H2O) with 

different molarities (0.02M, 0.04M, 0.06M, 0.08M, and 0.01M) by using two 

different solvents (75 % Vol. mathanol+25 % Vol. distilled water) and (25 % Vol. 

methanol +75 % Vol. distilled water) is placed in the syringe to be sprayed in the 

form of very thin drops, using both ultrasonic generator and syringe pump, that 

precipitate over the glass substrate. Before deposition, the substrates (0.12 x 2.54 x 

2.54) cm3 were kept at ambient temperature to avoid thermal shock. 

2. The substrates were heated to (350 °C) temperature for film. 

3. The nozzle was kept at a distance of 5 cm from the substrate during deposition. 

4. The spray rate was maintained at 60 ml/h using an ultrasonic generator (40 kHz). 

5. The spraying time (5 min) was maintained each time. When aerosol droplets came 

close to the substrates, the compounds reacted to become a new chemical 

compound. SnO2 formulation can be represented as[46]: 

SnCl2 + 2H2O → SnO2 + Cl2↑ + 2H2↑                            (II.2) 

 

Table II.1. Process parameters for the spray deposition of SnO2 thin films. 

Solvent Aqueous alcohol solutions 

(SnO2 2H2O) solution concentration 0.1M, 0.08M, 0.06M, 0.04M, 0.02M 

Substrate temperature (°C) 35010 

Nozzle-substrate distance (cm) 50.5 

Spray rate (ml/h) 60 

Deposition time (min) 5 
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Part two: Characterization techniques of thin films 

II.1. Optical characterization and measurement 

Characterizations methods of transparent conductive oxides thin films are different, there 

are a lot of structural, electrical and optical methods which specialize the thin films and help to 

obtain characteristics (band gap, absorption coefficient, grain size, thickness, film types) of the 

deposited thin films [3]. Which is obtained by studying the transmission spectrum (optical 

transmittance curve as a function of wavelength) data given by UV-Vis Spectrophotometer. 

II.1.1. Ultraviolet-visible spectroscopy 

Ultraviolet-visible spectrophotometry is based on the interaction between electromagnetic 

radiation and matter in spectral fields. This method is considered non-destructive and depends 

on the transition from the ground state to the excited state of the electron [2]. 

Ultraviolet-visible spectroscopy or ultraviolet-visible spectrophotometry (UV-Vis or 

UV/Vis) refers to absorption spectroscopy or reflectance spectroscopy in the ultraviolet visible 

spectral region. The absorption or reflectance in the visible range directly affects the perceived 

color of the chemicals involved, it measures the intensity of light passing through a sample I 

and compares it to the intensity of light before it passes through the reference I0. The ratio I/I0 

is called the transmittance and it is usually expressed as a percentage (T %). The absorbance, 

A is based on the transmittance [9].  

 

Figure II.7. Schematic spectrometer of UV-Vis [49]. 

 

Source consisting of two lamps which provide a continuum of emission over the entire UV-

Visible wavelength range. A monochromator, by moving, makes it possible to select 
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wavelengths and therefore to scan the spectral range. The beam of photons of selected 

wavelength crosses a mirror which synchronizes the movement of the monochromator then the 

beam crosses the sample (glass+layer) and the reference (glass) [1].  

The transmission curves of the thin layers studied are obtained using a UV-Vis type (V-

630), the operating principle of which is represented by the diagram in Figure II.7. Computer-

controlled, it can perform spectral scanning between (190 nm- 1100 nm). Spectra are processed 

using UVPC software. Then, we manage to record curves representing the variation of the 

transmittance as a function of the wavelength in the Ultra-Violet and Visible range. The 

exploitation of these curves makes it possible to determine optical characteristics such as the 

optical absorption threshold, the absorption coefficient. Figure II.8. Experimental device for 

UV-Vis-NIR spectroscopy. 

 

Figure II.8. Experimental device for UV-Vis-NIR spectroscopy. 

 

II.1.1.1. Determination of film thickness and refractive index 

The Method of Least Squares is a procedure to determine the best fit line to data; the proof 

uses simple calculus and linear algebra. The basic problem is to find graph y=f(x) given that, 

for n ∈ {1,….N}, the pairs (xn, yn) are observed [50]. Least squares regression is used to predict 

the behavior of dependent variables. We determine the thickness and refractive index of tin 

oxide thin films from the spectrum of transmittance, using Fit software that allows to vary a 

number of parameters. We use the least squares method to adjust a simulated transmittance 

curve to that measured (Figure I.9) [51]. 
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Figure II.9. Fitting the measured transmittance spectra to Swanepoel's method. 

 

II.1.1.2. Determination of absorption coefficient and optical band gap 

The term “band gap” refers to the energy difference between the top of the valence band to 

the bottom of the conduction band electrons are able to jump from one band to another. In order 

for an electron to jump from a valence band to a conduction band, it requires a specific 

minimum amount of energy for the transition, the band gap energy. A diagram illustrating the 

band gap is shown in FigureII.10 [9]. 

In order to find the band gap (Eg) values of films, initially the absorption coefficient (α) 

should be identified by the relation [52]:   

𝛼 = 𝑙𝑛                                                  (II.6) 

In the spectrum domain where light is absorbed and knowing the film thickness (d), the 

film absorption coefficient α (λ) is deduced from T (λ) through the Beer–Lambert law [2]: 

𝑇 = 𝑒                                                                (II.7) 
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Figure II.10. Explanation of band gap [9]. 

 

where: 

T is the transmittance and d is the film thickness. The optical band gap of SnO2 thin film is 

obtained from the Tauc formula [52]:  

(𝛼ℎ𝜈)  = 𝐴 ℎ𝜈 −  𝐸                                                      (II.8) 

where: 

h ν: Energy of incident photon (eV). 

A: Constant dependent on electron-hole mobility.  

Eg: Energy of the optical gap (eV). 

The Eg value is determined for direct transition (n=2) by plotting (𝛼ℎ𝜈)   versus (ℎ𝜈)  

and extrapolating the linear region of the plot to zero absorption ((𝛼ℎ𝜈) = 0). 

II.1.1.3. Determination of Urbach Energy 

Another important parameter that characterizes the disorder of the material is the energy of 

the Urbach tail. According to Urbach's law, the expression of the absorption coefficient is 

according to the equation II.9 [2]. 
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α =  𝛼  exp                                       (II.9)  

where: 

𝛼 : Constant. 

𝐸 : Energy of Urbach. 

By plotting lnα as a function of hυ (Figure II.11), we can access the value of 𝐸   
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Figure II.11. Determination of Urbach energy 

 

II.2. Electrical properties 

Besides the basic optical properties, the electronic properties are of particular interest in 

thin films. Especially the conductivity/resistivity is of interest for electrical applications. To 

reliably determine the resistance of the manufactured layers, a four-terminal sensing method 

was applied [53]. 

This method is employed when the sample is in the form of a thin wafer, such as a thin 

semiconductor material deposited on a substrate. The sample is millimeter in size and having a 

thickness (d). It consists of four probesarranged linearly in a straight line at equal distance (S) 

from each other. A constant current (I) is passed through the two external probes and the 

potentialdrop of voltage (V) across the middle two probes is measured (Figure I.11) [2]. 

Since each pair of the four pins was equidistant during the measurement, and the thickness 

of the layer is much smaller than its lateral dimension as well as the distance between the pins, 

the sheet resistance (𝜌 ) can be calculated as follows [54].  
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𝜌 = 𝛽                                               (II.10)   

𝛽 It is a geometric factor and in the case of semi-infinite thin films it is equal to . 

Since the film thickness (𝑑) is known from the optical transmittance measurements, the 

material electrical conductivity (σ) can be calculated: 

𝜎 =                                                     (II.11) 

In order to know the electrical surface resistivity (𝜌 ) and electrical conductivity (𝜎) of tin 

oxide thin films, we used jandel four-point probe device where the LMSSEF laboratory of Larbi 

ben M M'Hidi  University at Oum Bouaghi, the probe consists of four contacts aligned linearly 

and the distance between the four terminals (s=1mm). A variable current (I) is applied between 

the two external terminals and the voltage (V) is measured between the two internal probes 

using keitheley 2400, which makes it possible to measure low voltages (Figure II.12). 

Figure II.12.Four-point probe + keitheley 2400 Source Meter. 

 

Figure II.11.Diagram representing the principle of the four-point method. 
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Chapter III: Results and discussion 

  

The purpose of this chapter is to present and interpret the experimental results of our work 

on the elaboration and characterization of tin oxide thin films deposited on glass substrates by 

ultrasonic spray pyrolysis technique from tin (II) chloride dihydrate at different precursor 

solution concentrations (0.02, 0.04, 0.06, 0.08 and 0.10 mol/l) using two different solvent 

concentrations with constant deposition conditions. 

We present the effect of the solution concentration and solvent concentration on the 

properties of the obtained films. These films are characterized by UV-Vis-NIR 

spectrophotometer for the determination the average thickness and some the fundamental 

optical properties (optical gap energy, Urbach energy, and refractive index) of each deposited 

film. To determine the electrical properties, we used the four-point probe method for the 

determination of electrical conductivity of our samples. Observe that these characterization 

techniques were explained in chapter II. 

 

III.1. Effect of solvent concentration and solution concentration on color of our samples 

Table III.1 shows the photographs of tin oxide thin films deposited on glass substrates at 

different concentrations of solution (0.02, 0.04, 0.06, 0.08, and 0.10 mol/l) using two different 

solvent concentrations (75 % Vol. methanol+25 % Vol. distilled water) and (25 % Vol. 

methanol+75 % Vol. distilled water). 

A gradation in color from light to dark yellow was observed for samples deposited with 

different solution concentrations from 0.02 to 0.10 mol/l using an aqueous alcohol solution. 

This may be due to the increase in the thickness of the samples due to the increase in the amount 

of material deposited with increasing molarity [55]. 

It was also noticed that the color of samples prepared with 25% (v/v) methanol is dark 

yellow compared to samples prepared with 75% (v/v) methanol. Through observation, it can be 

said that the latter has high transparency compared to the other. 
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Table III.1. Photos of SnO2 thin films deposited on glass substrates. 

 
Bare 

substrate 
C1=0.10M C2=0.08M C3=0.06M C4=0.04M C5=0.02M 

25% 

(v/v) 

methanol 

 

     

75% 

(v/v) 

methanol 
     

 

  

III.2. Effect of solvent concentration and solution concentration on the optical 
transmittance of tin oxide 

The transmittance spectra obtained by UV-visible spectroscopy as function of wavelength 

over spectral range 300-1100 nm are showing. 

Figure III.1 represents typical spectra of the variation in optical transmittance as a function 

of the wavelength of the incident photon in the UV-Vis-NIR, recorded in the range from 300 to 

1100 nm obtained of tin oxide sample prepared onto glass substrate by ultrasonic spray 

pyrolysis technique, with different solution concentrations of tin (II) chloride dihydrate using 

25% (v/v) methanol (Figure III.1.a), and 75% (v/v) methanol (Figure III.1.b) as a solvent with 

the precise experimental conditions (TS=350°C and tD=5 min). 

The change of curves is convergent and can be divided into two fields: 

 In the field [300-450 nm], we observe a low optical transmittance followed by a strong 

energy absorption, and a large energy. Which corresponds to the basic absorption (λ < 

450 nm). This absorption is due to the band-to-band electronic transition (from the 

valence band to the conduction band). This region is exploited for the determination the 

energy of the optical gap (Eg), the Urbach parameter (EUrb), and the type of transition 

(direct or indirect) according to the method detailed in chapter II [2, 51]. 



             Chapter III                                 Results and discussion  
 

31 

 A region of strong transparency is located between 450 and 1100 nm. The value of the 

transmission is about 50-70 % for 25% (v/v) methanol and about 70-85% for 75% (v/v) 

methanol. In this wavelength range which corresponds to the visible and near-infrared 

region. This region is exploited for the determination of the layer thickness [2, 56].  

Where the following was observed. 

 Interference fringes are not observed in the of the solvent concentration "25 % (v/v) 

methanol and 75 % (v/v) methanol". This can be explained by preparation conditions, oxygen 

deficiency in the material, surface roughness of the thin films, and also the change of our 

samples color [57, 55]. 
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Figure III.1. Optical transmittance spectra of SnO2 samples at different solution 

concentrations using two different solvent concentrations (a): 25% (v/v) methanol (b): 

75% (v/v) methanol. 
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Figure III.2 incident photon in the UV-Vis-NIR range, recorded in the range from 300 to 

1100 nm obtained of tin oxide thin films prepared by ultrasonic spray pyrolysis technique 

represents typical spectra of the variation in optical transmittance as a function of the 

wavelength of the incident photon in the UV-Vis-NIR domain. 
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Figure III.2. Optical transmittance spectra of SnO2 thin films at different solution 

concentrations using two different solvent concentrations; (a): 25% (v/v) methanol, 

(b): 75% (v/v) methanol. 

 

Where the following has been noted: 

- The decrease in the percentage of transparency with an increase in molarity, this is due to 

the increase the tin atoms (Amount of material), which is the reason for the change in color 

from lighter to darker, which is followed by an increase in the thickness of the sample. 
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- The transparency in the case of 25% (v/v) methanol is less than the transparency in the 

case of 75% (v/v) methanol. We can explain this that the solubility of (SnCl2.2H2O) in 75% 

(v/v) methanol is better than 25% (v/v) methanol, since in a 75% (v/v) methanol solution the 

drop will take time for enough. Therefore, the SnO2 precipitates well compared to a solution of 

25% (v/v) methanol and also the Cl evaporates  during preparation the film, and1 the membranes 

are rich in oxygen, unlike a solution of 25% (v/v) methanol. 

- The variation of transparency of all samples prepared with 25% (v/v) methanol decreases 

with the decrease in the wavelength of the incident photon and this indicates oxygen significant 

poverty compared to samples prepared with 75% (v/v) methanol that there are diffractions in 

the visible region [57], as shown in the figure III.3, which represents the change in the 

transparency ratio in terms of the wavelength of the tin oxide films in both cases 25% (v/v) and 

75% (v/v) methanol at a concentration of 0.08M.   
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Figure III.3. The change in the transparency ratio in terms of the wavelength of the 

tin oxide films deposited at 0.08 M with different solvent concentrations. 
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III.3. Effect of solvent concentration and solution concentration on the thickness and 
film growth kinetics of tin oxide 

We estimated the average thickness of our films from the variation of the optical 

transmittance according to the wavelength of the incident photon in the UV-Vis-NIR domain 

using least squares methods which was explained than in chapter II. 

Figure III.4 shows the variation of thickness of tin oxide thin films deposited by ultrasonic 

spray pyrolysis as a function of the solution concentration of the solution using two alcoholic 

solutions. 
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Figure III.4. Variation of average thickness of SnO2 film with solution concentration. 

 

The proportionality between increasing the thickness and increasing the concentration of 

the solution was observed, and it was noted that the thickness values ranged between 425 and 

775 nm at 25% (v/v) methanol and between 150 and 250 nm at 75% (v/v) methanol.  

The increase in thickness can be explained by an increase in the amount of material 

deposited (that is, there are more materials that contribute to the formation of membranes) [12]. 

It was also observed that the thickness of the films obtained with 25% (v/v) methanol is 

greater than the thickness of the films obtained with 75% (v/v) methanol. This may be due to: 
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The reaction rate of a 75% (v/v) methanol solution is greater than the reaction rate of a 25% 

(v/v) methanol solution with heat, since the increase in the reaction corresponds to a decrease 

in the volume of solute (granules), which means that the precipitated particles of smaller size 

give a smaller thickness and a denser substance, unlike 25 % (v/v) methanol, whose molecules 

are larger, resulting in an unorganized crystal structure and the presence of porosity in the film. 

III.4. Effect of solvent concentration and solution concentration on the optical band gap 
of tin oxide 

By using the optical process (Chapter II), the optical bandgap energy values Eg for tin oxide 

were determined. 

  As a reminder, we know that the band gap is an energy field in which electrons are not 

present. It represents the energy difference between the highest valence band and the lowest 

conduction band [56]. 
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Figure III.5. Variation of optical band gap of SnO2 with solution concentration using 

different solvent concentrations. 

 

Figure III.5 represents the change of the optical bandgap as a function of solution 

concentration. From the previous information, we know that the optical bandgap of tin oxide 
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varies between 3.6 and 4.2 eV [57], which corresponds to the optical bandgap values of the 

prepared tin oxide films, which range from 3.63 to 3.98 eV. 

Where it was observed that the optical bandgap decreases with increasing solution 

concentration in both cases of solvent concentration (75% (v/v) methanol and 25% (v/v) 

methanol).  

This decrease may be due to the increases of number of molecules that therefore there is 

not enough time to set them in the right place, which leads to: creates crystal defects [9], the 

enhancement in photon scattering, create lattice strain, and the decreases of the grain size 

[12,15,9]. 

As these defects are more in the materials prepared using the solvent 25% (v/v) methanol 

compared to the other solvent (75% (v/v) methanol), which led to a decrease in the band gap 

value. 

There is also be seen an obvious difference in the drop of optical bandgap that according to 

the solvent concentration used, as observed in the case of 25% (v/v) methanol, decreasing with  

higher values compared to 75% (v/v) methanol. This may be due to the difference in oxygen 

poverty. That is, the amount of tin deposited in 25% methanol is much greater than that in 75% 

(v/v) methanol. This results in an increase in charge carriers, which in turn can be observed at 

the 0.10 M point at 25% (v/v) methanol. The value of the gap is that films are almost lost at this 

point. A semiconductor becomes a conductor. 

 

III.5. Effect of solvent concentration and solution concentration on the Urbach energy of 
tin oxide 

In the process of deposition by ultrasonic spray pyrolysis the growth of the film takes place 

by thermal decomposition of a precipitate at the level of the substrate resulting from the 

vaporization of the droplets of the aerosol. In this situation, the material that forms contains 

different types of defects leading to disorder in the structure [2]. 
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Figure III.6. Variation of Urbach energy of SnO2 thin films with solution 

concentration. 

 

In Figure III.6, we reported the variation of Urbach energy of SnO2 films as a function of 

solution concentration using two different solvent types (25% (v/v) methanol and 75% (v/v) 

methanol). 

By the increase in solution concentration from 0.02 mol/l to 0.10 mol/l by using both 

precursors, the Urbach energy is increase from 0.20 eV to 0.56 eV and from 0.24 eV to 0.66 

eV for using 75% (v/v) methanol and 25% (v/v) methanol, respectively. This increase due to 

the increase in the amount of atoms in the short time (augment in molarity with a stable of 

solution flow rate) deposited mostly in random position causing an increase in disorder of films 

structure [58]. 

The increase in Urbach energy can also be explained by the decrease in the optical bandgap 

[56]. Figure 7.III. (a and b) showed the inverse relationship between the optical bandgap and 

the Urbach energy as a function of concentration using two different solvent concentrations. 
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Figure III.7. Variation of Eg and EUrb of SnO2 thin films versus solution concentration 

using: (a): 25% (v/v) methanol, (b): 75% (v/v) methanol. 

 



             Chapter III                                 Results and discussion  
 

39 

The Urbach energy value for thin films prepared with 25% (v/v) methanol is greater than 

75% (v/v) methanol that is show as less structured, more random, and more impurities 

compared to 75% (v/v) methanol (Figure III.6).  

III.6. Effect of solvent concentration and solution concentration on the refractive index 
of tin oxide 

Figure III.8 represents the changes of the refractive index of tin oxide thin films in terms of 

the concentration of the solution in the two cases (25% (v/v) methanol and 75% (v/v) methanol). 
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Figure III.8. Variation of refractive index of SnO2 thin films with solution concentration. 

 

We know that the refractive index depends on the scattering of photons in the material [59]. 

Where observed:  

  The value of the refractive index decreases with the increase in the concentration of both 

solutions, as the curve of 75% (v/v) methanol decreases from 1.72 to 1.62 and in 25% (v/v), it 

decreases from 1.69 to 1.61. The photon is scattered well [60]. 

 Refractive index values by using the solvent of 25% (v/v) methanol of the  less 

compared to 75% (v/v) methanol, and this is because the 25% (v/v) methanol sample 

is less dense, where the size of the precipitated particle is bigger and therefore more 

porous, and from it good scattering of the incident photon [61]. 
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Figure III.9 shows the inverse relationship between the refractive index and film thickness. 

This may be due to the presence of porosity in the films with decreasing of refractive index that 

it the increases of film thickness [61]. 
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Figure III.9. Variation of and n of d SnO2 thin films versus solution concentration using: 

(a):25% (v/v) methanol and (b): 75% (v/v) methanol. 
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III.7. Effect of solvent concentration and solution concentration on the electrical 

conductivity of tin oxide 

The results were obtained by examining our samples with a four-point probe device. 

Figure III.10 represents the electrical conductivity values of SnO2 films in terms of 

concentration in both 25 % (v/v) methanol and 75% (v/v) methanol. 
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Figure III.10. Variation of electrical conductivity of SnO2 thin films with solution 

concentration. 

A decrease in the electrical conductivity is observed in terms of concentration in both cases, 

we explain this by the decrease in the grain size, that is, the increase in the granular boundary 

which impedes the movement of charge carriers [62]. Also, As can be seen the drop of electrical 

conductivity of SnO2 prepared with 75 is a few compared to 25, which is due to the decrease 

rate in the grain size due to the solubility of solution which is related to the solvent 

concentration.
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General conclusion  

General conclusion 
In this work, tin oxide thin films are deposited by ultrasonic spray pyrolysis it is an easy 

and low-cost chemical technique. We get good quality films. 

On glass substrates tin (II) chloride dihydrate dissolved in two different alcohol 

concentrations (25% (v/v) methanol and 75% (v/v)) methanol at different molarities (0.02, 0.04, 

0.06, 0.08, 0.10 mol/l) were deposited. Substrate temperature (350°C), nozzle substrate distance 

(5cm), flow rate (60ml/h), and spray time (5min) were kept constant throughout the 

sedimentation process. The effect of solvent concentration and solution concentration on the 

optical and electrical properties of samples deposited are studied which have good adhesion to 

substrate. 

To characterize these samples, UV-Vis spectroscopy for optical characterization and the 

four-point method for electrical characterization were used. The characterization of the films 

led us to the following: 

  Increase in molarity leads to an increase in the change of our samples color ( from lighter 

to darker), film thickness, crystal defects with decreasing optical transmittance, refractive 

index,  optical band gap, and electrical conductivity, due to increase amount of material, an 

increase in the gaps in the material which leads to increase in disorder of films structure  the 

decrease in the grain size, the increase in the granular boundary which leads to increased crystal 

defects, decreased mobility of charge carriers and increased scattering of photons. 

The increase in the concentration of methanol as a solvent leads to an increase in: 

transmittance, refractive index, and optical band gap, with decreasing opacity, thickness, crystal 

defects, and electrical conductivity due to an increase in solubility and an increase in chemical 

reaction, which led to a decrease in the poverty of oxygen atoms in the material. Surface 

roughness, the gaps in the material decrease to become more dense. 

We conclude that when the proportion of methanol in water is predominant, it has a good 

solubility compared to with a lower percentage in water, so a solvent containing 75% (v/v) 

methanol is better than 25% (v/v) methanol and gives films with good optical and electrical 

properties. 
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Abstract  

Elaboration of tin dioxide thin films by spray pyrolysis using 

different concentrations of solution and solvent 

 

Abstract 

In this work, tin dioxide thin films (SnO2) were prepared onto glass substrates, using 

ultrasonic spray pyrolysis technique. 

These films are prepared from tin (II) chloride dihydrate dissolved in two solutions of 

different volume concentrations of methanol (25% and 75%) with different molarities (0.02, 

0.04, 0.06, 0.08, and 0.10 mol/l) under constant conditions of preparation. These films are 

characterized by UV-Visible-NIR spectrophotometer and four-point probe technique to study 

the effect of precursor concentration and solvent concentration on the optical and electrical 

properties of the prepared films, in order to obtain a good photoelectric property, which makes 

it an important candidate in many technological applications. 

It is observed that the optical and electrical properties are influenced by the variation of 

solution concentration and solvent concentration. All the samples obtained are n-type 

semiconductor and have high optical absorption in the ultraviolet domains. With the increase 

of solution concentration or the reducing  

the volumetric ratio of methanol as a solvent (from  75% to 25%); the optical 

transmittance, refractive index optical band gap and decrease with increasing  the Urbach 

energy and increasing molarity or volume ratio of methanol in solution. It was found that the 

films prepared with a higher concentration of methanol had better optical and electrical 

properties than those prepared with a small proportion of methanol. 

Key word: Thin films, Tin oxide, Spray pyrolysis, Optical gap, solvent concentration, 

Electrical conductivity.



 

 

Résumé  

Élaboration de couches minces de dioxyde d'étain par spray 

pyrolyse en utilisant différentes concentrations de solution et de 

solvant 

Résumé 
Dans ce travail, des couches minces de dioxyde d'étain (SnO2) ont été préparées sur des 

substrats en verre, en utilisant la technique de pulvérisation pyrolyse ultrasonique.  

Ces films sont préparés à partir de chlorure du d'étain (II) dihydraté dissous dans deux 

solutions de différentes concentrations volumiques de méthanol (25 % et 75 %) avec des 

molarités différentes (0.02, 0.04, 0.06, 0.08 et 0.10 mol/l) dans des conditions de préparation 

constantes. Ces films sont caractérisés par un spectrophotomètre UV-Visible-NIR et une 

technique de quatre points pour étudier effet de la concentration de précurseur et de la 

concentration de solvant sur les propriétés optiques et électriques des films préparés, afin 

d'obtenir  une bonne propriété photoélectrique, ce qui en fait un candidat important dans de 

nombreuses applications technologiques. 

On observe que les propriétés optiques et électriques sont influencées par la variation de la 

concentration de la solution et de la concentration du solvant. Tous les échantillons  obtenus 

semi-conducteur de type n et ont une absorption optique élevée dans les domaines ultraviolets. 

Avec l'augmentation de la concentration de la solution ou réduire le pourcentage volumétrique 

du méthanol en tant que solvant (de 75 % à 25 %); la transmittance optique, l'indice de 

réfraction et l’énergie de gap optique diminuent avec l'augmentation de l'énergie d'Urbach et de 

l'épaisseur du film. D'autre part, la conductivité électrique diminue avec l'augmentation de la 

molarité ou pourcentage volumique du méthanol en solution. Il a été constaté que les films 

préparés avec une concentration plus élevée de méthanol avaient de meilleures propriétés 

optiques et électriques que ceux préparés avec une faible proportion de méthanol. 

Mots-clés : Couches minces, Oxyde d’étain, Spray pyrolyse, Concentration de solvant, Gap 
optique, Conductivité électrique. 



 

 

  ملخص 

  باستعمال الحراري  بالانحلال  الرش بواسطة القصدير أكسيد ثاني من رقيقة  أغشية تحضير
والمذيب  المحلول من  مختلفة تركيزات  

  
  ملخص 

  باستخدام   زجاجية،  ركائز  على  2SnO  القصدير  أكسيد   ثاني  من  رقيقة  أغشية  بإعداد   قمنا  العمل،   هذا  في

 الخواص   على  وتركيز المذيب   المولارية  كل من  تأثير  بدراسة  قمنا  لقد .  الصوتية  فوق  اجموالأ  الرش  تقنية

يجعل هذه    مما   جيدة،  كهروضوئية  خاصية   على  الحصول  أجل  من  ،المحضرة  للأغشية  والكهربائية   الضوئية

   .التكنولوجية  التطبيقات  من العديد  في مهمًا مرشحًاالأفلام 

الهيدرات ثنائي    القصديرلكلوريد    انطلاقا من محلول كحولي  زجاجية   ركائز  على  الأفلام  هذه  بإعداد   قمنا

  مع  )ميثانول) حجم/   حجم٪ (75و  ميثانول) حجم/   حجم ٪ ( 25(  مختلفة بتركيزات  محلولين  في تهذابإ تمت 

 . شخصت ثابتة  تحضير  ظروف  ظل  في)  لتر/    مول  0.10و  0.08  ،0.06  ،0.04  ،0.02(  مختلفة  موليات 

بنفسجية  هذه الفوق  الأشعة  مطيافية  باستعمال  وطريقة    القريبة  الحمراء  تحت -المرئية-العينات 

  للأغشية   والكهربائية  الضوئية  الخواص   على  وتركيز المذيب   المولارية  تأثير كل من  لدراسةالمسابيرالأربعة  

 العديد   في  مهمًا  يجعل هذه الأفلام مرشحًا  مما  جيدة،  كهروضوئية  خاصية  على  الحصول  أجل  من  المحضرة،

  التكنولوجية.  التطبيقات  من

المذيب. جميع العينات تركيز  فلام تتأثر بتغير المولارية وللأ  الكهربائية  الضوئية  أن الخصائص ظ  لوح

بزيادة    .بنفسجية  الفوق  للأمواج  عالي  امتصاص   ولهم   n نوعالتي تم الحصول عليها هي أشباه موصلات من  

تنخفض كل من   ؛)بالمئة  25  إلى  75  من(  كمذيب   للميثانول  الحجمية  النسبة  من  التقليل  أوتركيز المحلول  

معاملالشفافية   الممنوعة  الانكسار    الضوئية،  العصابة  طاقةوعرض    سمك واللاتنظيم)  (  اورباخ  بتزايد 

 في   للميثانول  الحجمية  النسبة  وزيادة  المولارية  بزيادة  الكهربائية  الناقلية  تتناقص   ناحية أخرى   . منالعينات 

  أفضل   وكهربائية  بصرية خصائص   لها  الميثانول  من   أعلى  بتركيز  المحضرة  الأفلام   أنوجد    كما.  المحلول

  . الميثانول من صغيرة  بنسبة المحضرة تلك من

  

المفتاحية أكسيد الرقيقةالأفلام   الكلمات  بالانحلال  ،رالقصدي  ،  المذيب   الحراري،  الرش  عرض    ،تركيز 

  الناقلية الكهربائية.  ،عصابة الطاقة

 


