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Abstract

In this thesis, the deals with an asymptotic behavior of positive solution for

a new classe of parabolic system involving of (p(x),q(x))- Laplacian system

of partial differential equations using a new method which is a sub and super

solution according to some ([13]-[44]) which treated the stationary case, this

idea is new for evolutionary case of this kind of problem. The purpose of

our this thesis will provide a framework for image restoration. Furthermore,

fuild modeling electrolysis is widely considered as an important application

that treats non-homogenous Laplace operators. In the last century, many

studies of the experimental side have been studied on various materials that

rely on this advanced theory, as they are important in electrical fluids, which

states that viscosity relates to the electric field in a certain liquid.

Keywords

Parabolic differential equations-(p(x)-q(x))-Laplacian-Positive solutions- Sub-

super solution- Asymptotic behavior.
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Résumé

Dans cette thèse, le comportement de la présence de la solution positive a

été prouvé ainsi que son comportement convergent pour une nouvelle classe 

d’équations parabolique (système de Laplace d’équations aux dérivées par-

tielles parabolique), en utilisant une nouvelle méthode, qui est la méthode des 

solutions partielles considérant quelques des conditions aux limites données 

dans les articles de recherche précédents liés aux équations aux dérivées 

partielles elliptiques, Et nos résultats sont une extension de notre publi-

cation précédente dans ([13]-[44]), qui traitait de l’état stationnaire qui n’est 

pas lié au temps variable, et cette idée est un nouveau cas évolutif pour ce 

type de problème, de nombreuses expériences ont été étudiées sur différents 

problèmes physiques sur la base de cette étude mathématique présentée, car 

ils sont  importants dans les électro-fluides.

Mots clés

équations différentielles- parabolique-(p(x)-q(x))- système Laplacian-solutions 

positive-sub-super solution- comportement asymptotique.
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Notation
Ω : bounded domain in R2.

Γ : topological boundary of Ω.

x = (x1, x2) : generic point of R2.

dx = dx1dx2 : Lebesgue measuring on Ω.

∇u : gradient of u.

∆u : Laplacien of u.

divu : diverge of u.

D (Ω) : space of differentiable functions with compact support in Ω.

D′ (Ω) : distribution space.

Ck (Ω) : space of functions k-times continuously differentiable in Ω.

Lp (Ω) : space of functions p-th power integrated on with measure of dx.

‖f‖p =

(∫
Ω

(|f |p)
) 1

p

.

W 1,p (Ω) = {u ∈ Lp (Ω) , ∇u ∈ Lp (Ω)} .
H : Hilbert space.

H1
0 (Ω) = W 1,2

0 (Ω) .

Hm
0 (Ω) = W 1,m

0 (Ω) .

QT = (0, T )× Ω, T > 0

If X is a Banach space

Lp (0, T ; X) =

{
f : (0, T ) −→ X is measurable;

T∫
0

‖f (t)‖pX dt <∞
}
.

L∞ (0, T ; X) =

{
f : (0, T ) −→ X is measurable; ess− sup

t ∈[0, T ]

‖f (t)‖pX <∞

}
.

Ck ([0, T ] ; X) :Space of functions k−times continuously differentiable for [0, T ] −→ X.

D ([0, T ] ; X): Space of functions continuously differentiable with compact support in [0, T ] .

Euler’s schema method
Euler’s Method assumes our solution is written in the form of a Taylor’s Series.We’ll have a

function of the form:

Contents 3



f(x+ h) = f(x) + hf ′(x) +
h2f ′′(x)

2!
+
h2f ′′′(x)

3!
+
h2f (iv)(x)

4!
+ ...

This gives us a reasonably good approximation if we take plenty of terms, and if the value of

h is reasonably small.

For Euler’s Method, we just take the first 2 terms only.

f(x+ h) = f(x) + hf ′(x)

The last term is just h times our
df(x)

dx
expression, so we can write Euler’s Method as follows:

f(x+ h) = f(x) + hf ′(x)
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Introduction
Partial differential equations are of crucial importance in modelization and description of

natural phenomena in physics, mechanics, chemistry, biology ...etcs.

Several physical phenomena : Fluid dynamics, continuum mechanics, simulation of airplane,

calculator charts and time prediction are modelized by various systems of partial differential

equations.

The authors in their paper in [77] studied the existence of positively solution for the following

stationary problem: 
−∆p(x)u = λp(x)f(v) in Ω,

−∆q(x)v = λq(x)g(u) in Ω,

u = v = 0 on ∂Ω,

where, we have the following condition:

lim
u→+∞

f(M(g(u))
1
p−1 )

up−1
= 0 for all M > 0,

and the author did not consider any condition of symmetric and without any sign initial

condition on g(0) and f(0). Then they studied the existence of positively solution of the last

stationary problem, in this theoretical of the thesis, we will extend the previous study into

the following evolutionary problem: find u ∈ L2(0, T,H1
0 (Ω)) solution of

∂u

∂t
−∆p(x)u = λp(x) [λ1a(x)f(v) + µ1c(x)h(u)] in QT = (0, T )× Ω,

∂v

∂t
−∆q(x)v = λq(x) [λ2b(x)g(u) + µ2d(x)τ(v)] in QT = (0, T )× Ω,

u = v = 0 on ∂QT = (0, T )× ∂Ω,

u(x, 0) = ϕ(x),

We assume also Ω ⊂ RN is a bounded domain, and the functions p(x), q(x) belong to C1(Ω)

and satisfying the following conditions:

1 < p− := inf
x∈Ω

p(x) ≤ p+ := sup
Ω
p(x) <∞, 1 < q− := inf

x∈Ω
q(x) ≤ q+ := sup

x∈Ω
q(x) <∞

Contents 5
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and satisfy some natural growth condition at u =∞.
∆p(x) is given by ∆p(x)u = div(|∇u|p(x)−2∇u) is called p(x)-Laplacian, the parameters λ, λ1, λ2, µ1

and µ2 are positive with a, b, c, d are regular functions. In addition we did not consider any

sign condition on f (0) , g (0) , h (0) , τ (0) .

The linear and nonlinear stationary equations with operators of quasilinear homogeneous type

as p-Laplace operator can be carried out according to the standard Sobolev spaces theory

of Wm,p, and thus we can find the weak solutions. The last spaces consist of functions

having weak derivatives which verify some conditions of integrability. Thus, we can have the

nonhomogeneous case of p(.)-Laplace operators in this last condition. We will use Sobolev

spaces of the exponential variable in our standard framework, so that Lp(.) (Ω) will be used

instead of Lebesgue spaces Lp (Ω) .

Also, we will denote the new Sobolev space byWm,p (Ω) and if we replace Lp (Ω) by Lp(.) (Ω) ,the

Sobolev spaces becomes Wm,p(.) (Ω).Several Sobolev spaces properties have been extended to

spaces of Orlicz-Sobolev, particularly by O’Neill in the reference ([61]). The spaces Wm,p(.) (Ω)

and Lp(.) (Ω) have been carefully studied by many researchers team (see the references [29]-[30],

[50]-[56],[70]).

Here, in our study we consider the boundedness condition in domain Ω, because many results

for p(x)-Laplacian theory are not usually verified for the p(x)-Laplacian theory, for that in

([37]) the quotient

λp(x) = inf
u∈W 1,p(x)

0 (Ω)�{0}

∫
Ω

1
p(x)
|∇u|p(x) dx∫

Ω
1

p(x)
|u|p(x) dx

becomes 0 generally. Then λp(x) can be positive only for some given conditions In fact, the

first eigenvalue of p(x)-Laplacian and its associated eigenfunction cannot exist, the existence

of the positive first eigenvalue λp and getting its eigenfunction are very important in the p-

Laplacian problem study. Therefore, the study of existence of solutions of our problems have

more meaning.

Many studies of the experimental side have been studied on various materials that rely on this

advanced theory, as they are important in electrical fluids, which states that viscosity relates

to the electric field in a certain liquid.

We shall introduce the existence of positively solution of the parabolic partial differential

equation and will be proved according to the conditions of symmetry, using super-solution

and sub-solution.

Contents 6
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The outline of the thesis is as follows:

- In the first chapter, we introduce some of the basic concepts of functional spaces, and we

present a brief description

of those aspects of the Hilbert space, Banach space, continuous function spaces, and functional

analysis, the Lp space and Sobolev spaces, which lie at the heart of the modern theory of Partial

Differential Equations (PDE).

- In the second chapter, we introduce a elliptic boundary value problems system for (p, q, r)−Laplacien,

we can be applied in evolutionary boundary value problems.

- In the third chapter we prove that model for parabolic problem involving (p(x), q(x))-

Laplacien system, we shall study is problems we prove the existence of positive solutions by

sup-super solutions methods. Finally we will study the asymptotics behavior of that models.

-In fourth chapter we provide a existence of positive solutions of Kirchhoff parabolic systems

involving of (p(x), q(x))-Laplacien systems with multiple parameter, she is nouvels models.

Where are apply the previous theories by existence of positive solutions and results.

During the period of the thesis study, we were able to publish the following article:

1. Medekhel, H.; Boulaaras, S; Guefaifia, R. Existence of positive solutions for a class of

Kirchhoff parabolic systems with multiple parameters. Appl. Math. E-Not.(18), 295–306,

2018. (index in Scopus)

2. H. Medekhel, S. Boulaaras, K.Zennir and A. Allahem , Existence of Positive Solutions and

Its Asymptotic Behavior of (p(x), q(x))-Laplacian Parabolic System, 11(3), 332, Symmetry,

2019. https://doi.org/10.3390/sym11030332. (index in ISI)
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Chapter 1

Preliminary and functional analysis

——————————————————————————————————

1- Continuous function spaces

2-Banach spaces
3-Hilbert spaces

4- Lp Spaces

5- Functional analysis

6- Sobolev Spaces

7- Maximum principle

8- Eigenvalue problem

9- Comparison lemma

——————————————————————————————————
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Chapter 1. Preliminary and functional analysis

In this chapter we shall introduce and state some necessary materials needed in the proof of

our results, and shortly the basic results which concerning continuous spaces, Banach spaces,

Hilbert space, the Lp space, Sobolev spaces, Maximum principe and other theorems. The

knowledge of all this notations and results are important for our study.

1.1 Continuous function spaces

We give here some notations and conventions used in the following.

Let x = (x1, x2, ..., xn) denote the generic point of an open set Ω of Rn. Let u be a function

defined from Ω to Rn, we designate by Diu (x) =
∂u (x)

∂xi
the partial derivative of u with respect

to xi (1 ≤ i ≤ n) . Let’s also define the gradient and the p-Laplacian from u, respectively as

following

Ou = (
∂u

∂x1

,
∂u

∂x2

, ...,
∂u

∂xn
) T and |Ou|2 =

n∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣2 (1.1)

∆pu (x) = div
(
|∇u|p−2∇u

)
(x) . (1.2)

Note by C(Ω) the space of continuous functions from Ω to R, (C(Ω),Rm) the space of contin-

uous functions from Ω to Rm and Cb
(
Ω
)

the space of all continuous and bounded functions

on Ω, it is equipped with the norm ‖.‖∞ :

‖u‖∞ = sup
x∈Ω

|u (x)| (1.3)

For k ≥ 1 integer, Ck (Ω) is the space of functions u which are k times derivable and whose

derivation of order k is continuous on Ω. Ck
c (Ω) is the set of functions of Ck (Ω) , whose

support is compact and contained in Ω.

We are also define Ck
(
Ω
)
, as the set of restrictions to Ω of elements from Ck (Rn) or as being

the set of functions of Ck (Ω) , such that for all 0 ≤ j ≤ k, and for all x0 ∈ ∂Ω, the limit

lim
x→x0

Dju (x) exists and depends only on x0.

C∞0 (Ω) or D (Ω) , is the space of the infinitely differentiable functions, with compact supports

called test function space.

1.1. Continuous function spaces 9



Chapter 1. Preliminary and functional analysis

1.2 Banach Spaces: Definition and Properties

We first review some basic facts from calculus in the most important class of linear spaces

”Banach spaces”.

Definition 1.2.1 A Banach space is a complete normed linear space X. Its dual space X
′

is

the linear space of all continuous linear functional f : X −→ R.

Proposition 1.2.1 ([72]) X
′

equipped with the norm

‖f‖X′ = sup {|f (u)| : ‖u‖X ≤ 1} ,

is also a Banach space.

Definition 1.2.2 Let X be a Banach space, and let (un)n∈N be a sequence in X. Then un

converges strongly to u in X if and only if

lim
n−→∞

‖un − u‖X = 0,

and this is denoted by un −→ u, or lim
n−→∞

un = u

Definition 1.2.3 A sequence (un) in X is weakly convergent to u if and only if

lim
n−→∞

f (un) = f (u) ,

for every f ∈ X ′and this is denoted by lim
n−→∞

un = u.

1.3 Hilbert spaces

The proper setting for the rigorous theory of partial differential equation turns out to be the

most important function space in modern physics and modern analysis, known as Hilbert

spaces. Then, we must give some important results on these spaces here.

Definition 1.3.1 A Hilbert space H is a vectorial space supplied with inner product (u, v)

such that ‖u‖ =
√

(u, u) is the norm which let H complete.

1.2. Banach Spaces: Definition and Properties 10



Chapter 1. Preliminary and functional analysis

The Cauchy-Schwarz inequality Every inner product satisfies the Cauchy-Schwarz in-

equality

|(x1, x2)| ≤ ‖x1‖ ‖x2‖ .

The equality sign holds if and only if x1 and x2 are dependent.

Corollary 1.3.1 Let (un)n∈N be a sequence which converges to u, in the weak topology and

(vn)n∈N is an other sequence which converge weakly to v, then

lim
n−→∞

(vn, un) = (v, u) .

1.4 Functional Spaces

1.4.1 The Lp (Ω) spaces

Now we define Lebesgue spaces and collect some properties of these spaces. We consider R2

with the Lebesgue-measure µ.

If Ω ⊂ R2 is a measurable set, two measurable functions f, g : Ω −→ R are called equivalent,

if f = g a.e. (almost every where) in Ω.

An element of a Lebesgue space is an equivalence class.

Definition 1.4.1 Let 1 ≤ p < ∞, and let Ω be an open domain in Rn, n ∈ N∗. Define the

standard Lebesgue space Lp (Ω), by

Lp (Ω) =

f : Ω −→ R is measurable;

∫
Ω

|f (x)|p dx <∞

 .

Notation 1.4.1 For p ∈ R, and 1 ≤ p <∞ denote by

‖f‖p =

∫
Ω

|f (x)|p dx

 1
p

.

If p =∞, we have

L∞ (Ω) =

{
f : Ω −→ R is measurable and there exist a constant C,

such that, ; |f (x)| < C a.e on Ω.

}
Also, we denote by

‖f‖L∞ = ess sup
t∈Ω
|f (x)| = inf {C, |f (x)| < C a.e on Ω} .

1.4. Functional Spaces 11
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Theorem 1.4.1 ([72])
(
Lp(Ω), ‖.‖p

)
, (L∞(Ω), ‖.‖∞) are a Banach spaces.

Remark 1.4.1 In particularly, when p = 2, L2 (Ω) equipped with the inner product

(f, g)L2(Ω) =

∫
Ω

f (x) .g (x) dx,

is a Hilbert space.

1.4.2 Some integral inequalities

We will give here some important integral inequalities. These inequalities play an important

role in applied mathematics and also, it is very useful in our next chapters.

Theorem 1.4.2 ([72]) (Hölder’s inequality)

Let 1 ≤ p <∞. Assume that f ∈ Lp (Ω) and g ∈ Lq (Ω), then, fg ∈ L1 (Ω) and∫
Ω

|f.g| dx ≤ ‖f‖Lp(Ω) ‖g‖Lq(Ω) .

where
1

p
+

1

q
= 1.

Lemma 1.4.1 (Minkowski inequality)

For 1 ≤ p <∞, we have

‖u+ v‖Lp(Ω) ≤ ‖u‖Lp(Ω) + ‖v‖Lp(Ω) .

1.5 Sobolev spaces

1.5.1 Weak derivative

Definition 1.5.1 Let Ω be an open set of R, and 1 ≤ i ≤ n. a function u ∈ L1
loc (Ω) has an

ith weak derivative in L1
loc (Ω) if there exists fi ∈ L1

loc (Ω) such that for all ϕ ∈ C∞0 (Ω) we

have ∫
Ω

u (x) ∂iϕ (x) dx = −
∫
Ω

fi (x)ϕ (x) dx

This leads to say that the ith derivative within the meaning of distributions of u belongs to

L1
loc (Ω) , we write

∂iu =
∂u

∂xi
= fi

1.5. Sobolev spaces 12
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1.5.2 W 1,p (Ω) spaces

Let Ω be a bounded or unbounded open set of Rn, and p ∈ R, 1 ≤ p ≤ +∞, the space W 1,p (Ω)

is defined by

W 1,p (Ω) = {u ∈ Lp (Ω) ; such that ∂iu ∈ Lp (Ω) , 1 ≤ i ≤ n} (1.4)

where ∂i is the ith weak derivative of u ∈ L1
loc (Ω)

Theorem 1.5.1 The space W 1,p (Ω) is continuously embedded into L∞ (Ω) (W 1,p (Ω) ↪→
L∞ (Ω)) for all 1 ≤ p ≤ +∞, i.e that there is a constant C (depending only on Ω ) such

as

‖u‖L∞ ≤ C ‖u‖W 1,p , ∀u ∈ W 1,p (Ω)

furthermore if Ω is bounded we have

W 1,p (Ω) ↪→ C (Ω) with compact imbedding , 1 < p ≤ +∞,
W 1,1 (Ω) ↪→ Lq (Ω) with compact imbedding , 1 ≤ q < +∞.

Corollary 1.5.1 Suppose that Ω an unbounded open set of Rn, and let u ∈ W 1,p (Ω). Then

lim
|x|→+∞
x∈Ω

u (x) = 0

1.5.3 Wm,p (Ω) Spaces

Let Ω be an open set of Rn,m ≥ 2 and p a real number such that 1 ≤ p ≤ +∞, we define the

space Wm,p (Ω) as following

Wm,p (Ω) = {u ∈ Lp (Ω) such that ∂iu ∈ Lp (Ω) , ∀α, |α| ≤ m}

where α ∈ Nn, |α| = α1 + ... + αn the length of α and ∂iu = ∂α1
1 ...∂αnn is the weak derivative

of a function u ∈ L1
loc (Ω) in the sense of definition 1.5.1.

The space Wm,p (Ω) is equiped with the norm

‖u‖Wm,p = ‖u‖Lp +
∑

0<|α|≤m
‖∂iu‖Lp

1.5. Sobolev spaces 13
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1.5.4 W 1,p
0 (Ω) Spaces

Definition 1.5.2 For 1 ≤ p < +∞ we define the space W 1,p
0 (Ω) as being the closure of D (Ω)

in W 1,p (Ω) , and we write

W 1,p
0 (Ω) = D (Ω)W

1,p

Definition 1.5.3 Hm
0 (Ω) is given by the completion of D (Ω) with respect to the norm ‖.‖Hm(Ω).

Remark 1.5.1 Clearly Hm
0 (Ω) is a Hilbert space with respect to the norm ‖.‖Hm(Ω).

The dual space of Hm
0 (Ω) is denoted by H−m (Ω) = [Hm

0 (Ω)]∗.

Lemma 1.5.1 Since D (Ω) is dense in Hm
0 (Ω) , we identify a dual H−m (Ω) of Hm

0 (Ω) in a

weak subspace on Ω, and we have

D (Ω) ↪→ Hm
0 (Ω) ↪→ L2 (Ω) ↪→ H−m (Ω) ↪→ D′ (Ω) .

1.6 The Lp (0, T ; X) spaces

Definition 1.6.1 [51] Let X be a Banach space, denote by Lp (0, T ;X) the space of mea-

surable functions

f : ]0, T [ −→ X

t −→ f (t) ,

such that
T∫
0

(‖f (t)‖pX)
1
p dt = ‖f‖Lp(0, T, X) <∞.

If p =∞
‖f‖L∞(0, T, X) = sup

t ∈]0, T [

ess ‖f (t)‖X .

Theorem 1.6.1 ([58],[72])The space Lp (0, T, X) is a Banach space.

Lemma 1.6.1 Let f ∈ Lp (0, T, X) and
∂f

∂t
∈ Lp (0, T, X) for 1 ≤ p ≤ ∞, then the

function f is continuous from [0, T ] to X. i. e. f ∈ C1 (0, T,X) .

Proof. see of [51], [58].

1.6. The Lp (0, T ; X) spaces 14
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1.6.1 Green’s formula

Proposition 1.6.1 ([58]) Let Ω be an open subset of Rd , with a Lipschitz boundary. Then

for all u, v ∈ H1 (Ω) we have

∫
Ω

(
∂u

∂xi
v +

∂v

∂xi
u) dx =

∫
∂Ω

γ0(u)γ0(v)ηids, i = 1, ..., d.

where ηi is the i− th component of the outward normal vector η.

1.7 Maximum principle

A large number of results of existence or uniqueness of solutions to boundary problems (elliptic

or parabolic), can be established using the maximum principle. Here we give some variants

of this result.

Let Ω be an open set of Rn, a(.) = (aij (.))1≤i,j≤n a matrix, b(.) = (bi (.))1≤i≤n a vector and c

a function. We consider the second-order symmetric operator L defined by

Lu = −
n∑

i,j=1

aij∂iju+
n∑
i=1

bi∂iu+ cu (1.5)

It is assumed that the square matrix a satisfies the coercive (or elliptic) condition.

∃α > 0, ∀ξ ∈ Rn, a (x) ξ.ξ =
n∑

i,j=1

aij (x) ξiξj ≥ α |ξ|2 a.e on Ω, (1.6)

where |ξ| designates the Euclidean norm of ξ in Rn

Theorem 1.7.1 ( Classical maximum principle ) [48] Let Ω a bounded and connected

open set, and L as in (1.5) . We suppose that c ≥ 0, (1.6) is satisfied and aij, bi, c ∈ C
(
Ω
)
.

If u ∈ C2 (Ω) ∩ C1
(
Ω
)

verify Lu ≤ 0 then we have

sup
x∈Ω

u (x) ≤ sup
σ∈∂Ω

u+ (σ) where u+ (σ) = max (u (σ) , 0)

Theorem 1.7.2 (Hopf maximum principle ) [48] Let Ω a bounded and connected open

set, and L as in (1.5). We suppose that c ≥ 0, (1.6) is satisfied and aij, bi, c ∈ C
(
Ω
)
.

If u ∈ C2 (Ω) ∩ C1
(
Ω
)

verify Lu ≤ 0 and if u reaches a maximum ≥ 0 in the interior of Ω,

then u is constant on Ω.

1.7. Maximum principle 15
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Theorem 1.7.3 (Aleksandrov maximum principle) [48] Let Ω a bounded and connected

open set, and L as in (1.5). We suppose that c ≥ 0, (1.6) is satisfied and aij, bi, c ∈ C
(
Ω
)

and f ∈ LN (Ω). There exists C > 0 depending on N , ‖b‖LN (Ω) and the diameter of Ω such

that if u ∈ W 2,N
loc (Ω) ∩ C

(
Ω
)

verify Lu ≤ f then we have

sup
x∈Ω

u (x) ≤ sup
σ∈∂Ω

u (σ) + C ‖f‖LN (Ω)

Lemma 1.7.1 (boundary point lemma) [68] Suppose u is continuous on Ω; Lu ≥ 0

(resp. Lu ≤ 0) on Ω , and u reaches its maximum (resp. minimum) at a point p ∈ ∂Ω.

So, all outward directional drifts from u to point p are positive (resp. negative).

1.8 Eigenvalue problem

Definition 1.8.1 We say that u ∈ W 1,p
0 (Ω) , u 6= 0, is an eigenfunction of the operator −4pu

if: ∫
Ω

|∇u|p−2∇u.∇ϕdx = λ
∫
Ω

|u|p−2 u.ϕdx (1.7)

for all ϕ ∈ C∞0 (Ω) . The corresponding real number λ is called eigenvalue.

Let λ1 defined by

λ1 = inf
u∈W 1,p

0 (Ω),u6=0

∫
Ω

|∇u|p dx∫
Ω

|u|p dx
(1.8)

equivalent to

λ1 = inf

{∫
Ω

|∇u|p dx;
∫
Ω

|u|p dx = 1, u ∈ W 1,p
0 (Ω) , u 6= 0

}
λ1 is the first eigenvalue of the p-Laplacian operator with null Dirichlet conditions at the edge.

Lemma 1.8.1 λ1 is isolated, i.e there exists δ > 0 such that in the interval (λ1, λ1 + δ) , there

is no other eigenvalues of (1.7).

Lemma 1.8.2 a) Let p ≥ 2, then for all ξ1, ξ2 ∈ Rn

|ξ2|p ≥ |ξ1|p + p |ξ1|p−2 〈ξ1, ξ2 − ξ1〉+ C (p) |ξ1 − ξ2|p ,

1.8. Eigenvalue problem 16
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b)Let p < 2, then for all ξ1, ξ2 ∈ Rn

|ξ2|p ≥ |ξ1|p + p |ξ1|p−2 〈ξ1, ξ2 − ξ1〉+ C (p)
|ξ1 − ξ2|p

(|ξ2|+ |ξ1|)2−p ,

where C (p) is constant depending only on p.

Lemma 1.8.3 The first eigenvalue λ1 is simple, i.e, if u, v are two eigenfunctions associated

with λ1, then, there exists k such that u = kv.

Lemma 1.8.4 Let u an eigenfunction associated with the eigenvalue λ1, then u does not

change sign on Ω, further if u ∈ C1,α, ∀x ∈ Ω. u (x) 6= 0

Proof. By lemma 1.7.1, we can suppose that u, v are positive on Ω, and taking

ϕ1 =
(up − vp)
up−1

,

ϕ2 =
(vp − up)
vp−1

,

two test functions in the weak formulation 1.7, we get

∫
Ω

|∇u|p−2∇u∇
(
up − vp

up−1

)
dx = λ

∫
Ω

|u|p−2 u

(
up − vp

up−1

)
dx (1.9)

∫
Ω

|∇v|p−2∇v∇
(
vp − up

vp−1

)
dx = λ

∫
Ω

|v|p−2 v

(
vp − up

vp−1

)
dx

The addition of these two formulas gives

0 =

∫
Ω

|∇u|p−2∇u∇
(
up − vp

up−1

)
dx+

∫
Ω

|∇v|p−2∇v∇
(
vp − up

vp−1

)
dx (1.10)

And using the identities

∇
(
up − vp

up−1

)
= ∇u− pv

p−1

up−1
∇v + (p− 1)

vp

up
∇u,

∇
(
vp − up

vp−1

)
= ∇v − pu

p−1

vp−1
∇u+ (p− 1)

up

vp
∇v, (1.11)

1.8. Eigenvalue problem 17
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we get the first term of 1.10∫
Ω

|∇u|p−2∇u∇
(
up − vp

up−1

)
dx =

∫
Ω

|∇u|p dx− p
∫
Ω

vp−1

up−1
|∇u|p−2∇v∇udx (1.12)

+

∫
Ω

(p− 1)
vp

up
|∇u|p dx

=

∫
Ω

|∇ lnu|p updx− p
∫
Ω

vp |∇ lnu|p−2 〈∇ lnu,∇ ln v〉dx

+

∫
Ω

(p− 1) |∇ lnu|p vpdx

We have a similar expression for the second term of 1.10. Then the formula 1.10 becomes

0 =

∫
Ω

(up − vp) (|∇ lnu|p − |∇ ln v|p) dx (1.13)

−p
∫
Ω

vp
(
|∇ lnu|p−2 〈∇ lnu,∇ ln v −∇ lnu〉

)
dx

−p
∫
Ω

up
(
|∇ ln v|p−2 〈∇ ln v,∇ lnu−∇ ln v〉

)
dx

Taking ξ1 = ∇ lnu and ξ2 = ∇ ln v and using lemma 1.6.1 we get, for p ≥ 2

0 ≥
∫
Ω

C (p) |∇ lnu−∇ ln v| (up + vp) dx (1.14)

or

0 = |∇ lnu−∇ ln v| (1.15)

then u = kv.

Theorem 1.8.1 (Dominated convergence theorem) [48] Let {fn}n≥1 a series of func-

tions of L1 (Ω) converging almost everywhere to a measurable function f . It is assumed that

there exists g ∈ L1 (Ω) such that for all n ≥ 1, we get |fn| ≤ g a.e on Ω. Then f ∈ L1 (Ω)

and

lim
n→+∞

‖fn − f‖L1 = 0, and
∫
Ω

f (x) dx = lim
n→+∞

∫
Ω

fn (x) dx

1.8. Eigenvalue problem 18
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Definition 1.8.2 [48] Let ω be a part of a Banach space X and F : ω → R. Si u ∈ ω, we

says that F is Gâteaux differentiable (or G-differentiable ) at u, if there exists l ∈ X ′ such

that in each direction z ∈ X where F (u+ tz) exists for t > 0 small enough, the directional

derivative F ′z (u) exists and we have

lim
t→0+

F (u+ tz)− F (u)

t
= 〈l, z〉 .

we write F ′ (u) = l.

Theorem 1.8.2 Let Ω ⊂ Rn, n ≥ 3, an open set, for p ∈ (1,+∞) we define a functional

J : W 1,p
0 (Ω)→ R by

J (u) =

∫
Ω

|∇u|p dx

then J is differentiable in W 1,p
0 (Ω) and

J ′ (u) (v) = p

∫
Ω

|∇u|p−2∇u.∇vdx,∀v ∈ W 1,p
0 (Ω)

Proof. We consider the function ϕ : Rn → R, defined by ϕ (x) = |x|p , it is a function of class

C1, and ∇ϕ = p |x|p−2 x,

then for all x, y ∈ Rn,
lim
t→0

ϕ (x+ ty)− ϕ (x)

t
= p |x|p−2 x.y

as a consequence

lim
t→0

|∇u (x) + t∇v (x)|p − |∇u (x)|p

t
= p |∇u (x)|p−2∇u (x) .∇v (x)

by Mean value theorem, for almost every x ∈ Ω and for t > 0, there exists a function θ that

takes its values in ]0, 1[ and we can write

|∇u (x) + t∇v (x)|p − |∇u (x)|p − tp |∇u (x)|p−2∇u (x) .∇v (x)

= tp |∇u (x) + θ (t, x) t∇v (x)|p−2 (∇u (x) + θ (t, x) t∇v (x)) .∇v (x)

−tp |∇u (x)|p−2∇u (x) .∇v (x) (1.16)

By dividing by t, we get for almost every x :
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lim
t→0

|∇ (u+ tv) (x)|p − |∇u (x)|p − tp |∇u (x)|p−2∇u (x) .∇v (x)

t
= 0.

On the other hand, one can see that the second member of the equality 1.16 devided by t is

bounded by

h (x) = 2 |∇v (x)| (|∇u (x)|+ |∇v (x)|)p−1

Then using the Holder inequality we have:

|h| ≤ C ‖∇v‖p
(
‖∇u‖p−1

p + ‖∇v‖p−1
p

)
.

One can apply the Dominated convergence theorem and conclude

J ′ (u) (v) = p

∫
Ω

|∇u|p−2∇u.∇vdx,∀v ∈ W 1,p
0 (Ω)

then J is Gâteaux differentiable.

Lemma 1.8.5 (Comparison lemma)[4] Let u, v ∈ W 1,p
0 (Ω) satisfying∫

Ω

|∇u|p−2∇u.∇ϕdx ≤
∫
Ω

|∇v|p−2∇v.∇ϕdx (1.17)

for all ϕ ∈ W 1,p
0 (Ω) , ϕ ≥ 0, then u ≤ v a.e in Ω.

Proof. Our proof is based on the arguments presented in [8, 9]. We start by defining the

function J : W 1,p
0 (Ω)→ R by the formula

J (u) =
1

p

∫
Ω

|∇u|p dx (1.18)

it is clear that the functional J is Gâteaux differentiable and continuous and its derivative at

u ∈ W 1,p
0 (Ω) is the function J ′ (u) ∈ W−1,p

0 (Ω) i.e

J ′ (u) (ϕ) =

∫
Ω

|∇u|p−2∇u.∇ϕdx, ϕ ∈ W 1,p
0 (Ω) . (1.19)

J ′ (u) is continuous and bounded. We will show that J ′ (u) is strictly monotonic in W 1,p
0 (Ω) .

Indeed, for all u, v ∈ W 1,p
0 (Ω) , u 6= v without loss of generality, we can suppose that∫

Ω

|∇u|p dx ≥
∫
Ω

|∇v|p dx

1.8. Eigenvalue problem 20



Chapter 1. Preliminary and functional analysis

Using the Cauchy inequality we have

∇u.∇v ≤ |∇u| |∇v| ≤ 1

2

(
|∇u|2 + |∇v|2

)
(1.20)

from formula (1.18) we deduce∫
Ω

|∇u|p dx−
∫
Ω

|∇u|p−2∇u.∇vdx ≥ 1

2

∫
Ω

|∇u|p−2 (|∇u|2 − |∇v|2) dx (1.21)

∫
Ω

|∇v|p dx−
∫
Ω

|∇v|p−2∇v.∇udx ≥ 1

2

∫
Ω

|∇v|p−2 (|∇v|2 − |∇u|2) dx (1.22)

If |∇u| ≥ |∇v| , By using (1.18)-(1.20), we get

I1 (u) = J ′ (u) (u)− J ′ (u) (v)− J ′ (v) (u) + J ′ (v) (v)

=

(∫
Ω

|∇u|p dx−
∫
Ω

|∇u|p−2∇u.∇vdx
)

−
(∫

Ω

|∇v|p−2∇v.∇udx−
∫
Ω

|∇v|p dx
)

≥
∫
Ω

1
2
|∇u|p−2 (|∇u|2 − |∇v|2) dx

−1
2

∫
Ω

|∇u|p−2 (|∇u|2 − |∇v|2) dx
= 1

2

∫
Ω

(
|∇u|p−2 − |∇v|p−2) (|∇u|2 − |∇v|2) dx

≥ 1
2

∫
Ω

(
|∇u|p−2 − |∇v|p−2) (|∇u|2 − |∇v|2) dx

(1.23)
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if |∇v| ≥ |∇u| , by changing the role of u and v in (1.18)-(1.20) we have

I2 (v) = J ′ (v) (v)− J ′ (v) (u)− J ′ (u) (v) + J ′ (u) (u)

=

(∫
Ω

|∇v|p dx−
∫
Ω

|∇v|p−2∇v.∇udx
)

−
(∫

Ω

|∇u|p−2∇u.∇vdx−
∫
Ω

|∇u|p dx
)

≥ 1
2

∫
Ω

|∇v|p−2 (|∇v|2 − |∇u|2) dx
−1

2

∫
Ω

|∇v|p−2 (|∇v|2 − |∇u|2) dx
= 1

2

∫
Ω

(
|∇v|p−2 − |∇u|p−2) (|∇v|2 − |∇u|2) dx

≥ 1
2

∫
Ω

(
|∇v|p−2 − |∇u|p−2) (|∇v|2 − |∇u|2) dx

(1.24)

from (1.21)-(1.22), we have

(J ′ (u)− J ′ (v)) (u− v) = I1 = I2 ≥ 0,∀u, v ∈ W 1,p
0 (Ω)

in addition, if u 6= v and (J ′ (u)− J ′ (v)) (u− v) = 0, then we have∫
Ω

(
|∇u|p−2 − |∇v|p−2) (|∇u|2 − |∇v|2) dx = 0,

if |∇u| = |∇v| in Ω, we deduce that

(J ′ (u)− J ′ (v)) (u− v) = J ′ (u) (u− v)− J ′ (v) (u− v)

=
∫
Ω

|∇u|p−2 |∇u−∇v|2 dx = 0,

(1.25)

i.e u− v is a constant, given u = v = 0 on ∂Ω we are getting u = v , which is contrary with

u 6= v. Then (J ′ (u)− J ′ (v)) (u− v) > 0 et J ′ (u) is strictly monotonic in W−1,p
0 (Ω) . Let u, v

two functions such that (1.19) is satisfied, let’s take ϕ = (u− v)+, the positive part of u− v
as a test function in (1.19), we get that

(J ′ (u)− J ′ (v)) (ϕ) =
∫
Ω

|∇u|p−2∇u.∇ϕdx−
∫
Ω

|∇v|p−2∇v.∇ϕdx ≤ 0. (1.26)

Relationships (1.23) and (1.24) imply that u ≤ v.

1.8. Eigenvalue problem 22



Chapter 2

Results on existence and non-existence

of positive weak solutions for 3× 3

p-Laplacian elliptic systems

——————————————————————————————————

1- Existence results

2- Non Existence results

3- Application

——————————————————————————————————

23



Chapter 2. Results on existence and non-existence of positive weak solutions for 3× 3
p-Laplacian elliptic systems

In mathematics, in the field of partial differential equations, a boundary value problem

is a differential equation together with a set of additional constraints, called the boundary

conditions following: {
Au = f in Ω,

Bu = g on Γ,
(2.1)

where Ω is an open domain in RN ,and Γ = ∂Ω is the boundary of Ω.

A solution to a boundary value problem is a solution to the differential equation which also

satisfies the boundary conditions. It’s called the strong solution of the problem, and (2.1) is

called the strong formulation of the problem.

A side from the boundary condition, boundary value problems are also classified according

to the type of differential operator involved. For an elliptic operator, one discusses elliptic

boundary value problems and for an parabolic operator, one discusses parabolic boundary

value problems.

In most cases it is not possible to find analytical solutions of these problems i.e. that the

explicit computation of the exact solution of such equations is often out to be achieved.

Therefore, in general, the exact problem is the solution weak positive by a discrete problem

that can be solved by sub-super solution methods.

During the past few years, the treatise of positive solutions of singular partia differential

equations or systems has been an extremely active research areas. The singular nonlinear

problems emerge naturally and they take a main role in the interdisciplinary eld between

analysis, biology, geometry, mathematical physics, elasticity, etc.

We will explain in this chapter the main for the solution weak by sub-super solution methods

that will be used later.

Consider in this chapter for elliptic system problem the following :

−∆pu = λα (x) f (u, v, w) in Ω,

−∆qv = µβ (x) g (u, v, w) in Ω,

−∆rw = νγ (x)h (u, v, w) in Ω,

u = v = w = 0 on ∂Ω,

(2.2)

where ∆σz = div
(
|∇z|σ−2∇z

)
, σ ≥ 1, λ, µ and ν are functions on L∞ (Ω) and Ω is a bounded
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domain of RN with a bounded border ∂Ω. we prove the existence of a positive weak solution

for λ , µ and ν big enough under the following condition

lim
t→+∞

f (t, t, t)

tp−1
= lim

t→+∞

g (t, t, t)

tq−1
= lim

t→+∞

h (t, t, t)

tr−1
= 0.

2.1 Definitions and notations

Let X be the Cartesian product of the 3 spaces W 1,p
0 (Ω) ,W 1,q

0 (Ω) and W 1,r
0 (Ω) , i.e,

X = W 1,p
0 (Ω)×W 1,q

0 (Ω)×W 1,r
0 (Ω) .

Let’s start by defining the weak solution, the weak sub-solution and the weak super-solution

of problem (2.2)

Definition 2.1.1 We say that (u1, u2, u3) ∈ X is a weak positive solution of (2.2) if∫
Ω

|∇u|p−2∇u.∇φ1dx = λ
∫
Ω

α (x) f (u, v, w)φ1dx,

∫
Ω

|∇v|q−2∇v.∇φ2dx = µ
∫
Ω

β (x) g (u, v, w)φ2dx,

∫
Ω

|∇w|r−2∇w.∇φ3dx = ν
∫
Ω

γ (x)h (u, v, w)φ3dx,

for all φ = (φ1, φ2, φ3) ∈ X with φi ≥ 0.

Definition 2.1.2 We say that (ψ1, ψ2, ψ3) , (z1, z2, z3) ∈ X are respectively sub-solution and

positive super-solution of (2.2), if the following formulas are satisfied∫
Ω

|∇ψ1|p−2∇ψ1.∇φ1dx ≤ λ
∫
Ω

α (x) f (ψ1, ψ2, ψ3)φ1dx,

∫
Ω

|∇ψ2|q−2∇ψ2.∇φ2dx ≤ µ
∫
Ω

β (x) g (ψ1, ψ2, ψ3)φ2dx,

∫
Ω

|∇ψ3|r−2∇ψ3.∇φ3dx ≤ ν
∫
Ω

γ (x)h (ψ1, ψ2, ψ3)φ3dx,
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respectively ∫
Ω

|∇z1|p−2∇z1.∇φ1dx ≥ λ
∫
Ω

α (x) f (z1, z2, z3)φ1dx,

∫
Ω

|∇z2|q−2∇z2.∇φ2dx ≥ µ
∫
Ω

β (x) g (z1, z2, z3)φ2dx,

∫
Ω

|∇z3|r−2∇z3.∇φ3dx ≥ ν
∫
Ω

γ (x)h (z1, z2, z3)φ3dx,

with 0 ≤ ψi ≤ zi , for all φ = (φ1, φ2, φ3) ∈ X with φi ≥ 0, 1 ≤ i ≤ 3.

We suppose that f, g and h : [0,∞[ × [0,∞[ × [0,∞[ → R are respectively in Lp
∗

(Ω) , re-

spectively Lq
∗

(Ω) et Lr
∗

(Ω) , where p∗ = Np
N−p , q

∗ = Nq
N−q et r∗ = Nr

N−r , verify the assumption

:

1) f, g, h : [0,∞[× [0,∞[× [0,∞[→ R monotonic of class C1,

2) lim
t1,t2,t3→∞

f (t1, t2, t3) = lim
t1,t2,t3→∞

g (t1, t2, t3) = lim
t1,t2,t3→∞

h (t1, t2, t3) = +∞,
(2.3)

3) ∃k0 > 0 : f (t1, t2, t3) , g (t1, t2, t3) , h (t1, t2, t3) ≥ −k0 pour tout t1, t2, t3 ≥ 0,

4) ∃α0, β0, γ0, α1, β1, γ1, > 0 :



α0 ≤ α (x) ≤ α1

β0 ≤ β (x) ≤ β1

γ0 ≤ γ (x) ≤ γ1

(2.4)

lim
t→+∞

f (t, t, t)

tp−1
= lim

t→+∞

g (t, t, t)

tq−1
= lim

t→+∞

h (t, t, t)

tr−1
= 0 (2.5)

∃ξ1, ξ2, ξ3, η1, η2, η3, ν1, ν2, ν3 > 0 :



f (t1, t2, t3) ≤ ξ1t
p−1
1 + η1t

q( p−1
p )

2 + ζ1t
r( p−1

p )
3

g (t1, t2, t3) ≤ ξ2t
p( q−1

q )
1 + η2t

q−1
2 + ζ2t

r( q−1
q )

3

h (t1, t2, t3) ≤ ξ3t
p( p−1

p )
1 + η3t

q( r−1
r )

2 + ζ3t
r−1
3

(2.6)
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Let λ1, µ1 and ν1 respectively the first eigenvalues of −∆p ,−∆q ,−∆r, with the homogeneous

Dirichlet conditions at the boundary, ϕp, ϕq and ϕr the corresponding positive eigenfunctions

with ‖ϕp‖∞ = ‖ϕq‖∞ = ‖ϕr‖∞ = 1,et mp,mq,mr, δ, α0, β0, γ0, α1, β1, γ1 > 0 real numbers

verifying 

|∇ϕp|p − λ1ϕ
p
p ≥ mp

|∇ϕq|q − µ1ϕ
q
q ≥ mq

|∇ϕr|r − ν1ϕ
r
r ≥ mr

in Ωδ = {x ∈ Ω : d (x, ∂Ω) ≤ δ} (2.7)

Note by

θ1 =

(
α1

(p− 1)
(ξ1 + ξ2) + β1η1 + γ1ζ1

)
,

θ2 =

(
β1

(p− 1)
(η1 + η2) + α1ξ1 + γ1ζ2

)
,

θ3 =

(
γ1

(p− 1)
(ζ1 + ζ2) + α1ξ2 + β1η2

)
,

λ0 =
pλ1

(p− 1) max
i=1,2,3

(θi)

µ0 =
qµ1

(q − 1) max
i=1,2,3

(θi)

ν0 =
rν1

(r − 1) max
i=1,2,3

(θi)

2.2 Existence result

Theorem 2.2.1 Assume that (2.3) and (2.4) are true, then for λ, µ, and ν large enough,

system (2.2) admits a weak positive solution(u, v, w) .
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Proof. choose (ψ1, ψ2, ψ3) ∈ X, as following

ψ1 = (λα0k0
mp

)
1
p−1

(
p−1
p

)
ϕ

p
p−1
p ,

ψ2 = (µβ0k0
mq

)
1
q−1

(
q−1
q

)
ϕ

q
q−1
q ,

ψ3 = (νγ0k0
mr

)
1
r−1

(
r−1
r

)
ϕ

r
r−1
r ,

and see that it is a sub-solution of (2.2) for λ, µ and υ large enough.

Let φ = (φ1, φ2, φ3) ∈ X with φi ≥ 0, 1 ≤ i ≤ 3. A simple calculation shows that∫
Ω

−∆pψ1φ1dx =
∫
Ω

|∇ψ1|p−2∇ψ1.∇φ1dx

= λα0k0
mp

∫
Ω

ϕp |∇ϕp|p−2∇ϕp.∇φ1dx

= λα0k0
mp

{∫
Ω

|∇ϕp|p−2∇ϕp∇ (ϕpφ1) dx−
∫
Ω

|∇ϕp|p φ1dx

}

= λα0k0
mp

∫
Ω

(
λ1ϕ

p
p − |∇ϕp|

p)φ1dx.

∫
Ω

−∆qψ2φ2dx = µβ0k0
mq

∫
Ω

(
µ1ϕ

q
q − |∇ϕq|

q)φ2dx.∫
Ω

−∆rψ3φ3dx = νγ0k0
mr

∫
Ω

(µ1ϕ
r
r − |∇ϕr|

r)φ3dx.

Now, in Ωδ we have

|∇ϕp|p − λ1ϕ
p
p ≥ mp,

|∇ϕq|q − µ1ϕ
q ≥ mq,

|∇ϕr|r − ν1ϕ
r ≥ mr.
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Which imply that

α0k0

mp

(
λ1ϕ

p
p − |∇ϕp|

p)− α (x) f (ψ1, ψ2, ψ3) ≤ k0 (α0 − α (x)) ≤ 0,

β0k0

mq

(
µ1ϕ

q
q − |∇ϕq|

q)− β (x) g (ψ1, ψ2, ψ3) ≤ k0 (β0 − β (x)) ≤ 0,

γ0k0

mr

(υ1ϕ
r
r − |∇ϕr|

r)− γ (x)h (ψ1, ψ2, ψ3) ≤ k0 (γ0 − γ (x)) ≤ 0.

Whereas in Ω\Ωδ, we have ϕp ≥ σp, ϕq ≥ σq and ϕr ≥ σr for σp, σq and σr ≥ 0, and then for

λ, µ and ν large enough

α (x) f (ψ1, ψ2, ψ3) ≥ α0k0

mp

λ1 ≥
α0k0

mp

(
λ1ϕ

p
p − |∇ϕp|

p)

β (x) g (ψ1, ψ2, ψ3) ≥ β0k0

mq

µ1 ≥
β0k0

mq

(
µ1ϕ

q
q − |∇ϕq|

q)

γ (x)h (ψ1, ψ2, ψ3) ≥ γ0k0

mr

ν1 ≥
γ0k0

mr

(ν1ϕ
r
r − |∇ϕr|

r)

And consequently ∫
Ω

|∇ψ1|p−2∇ψ1.∇φ1dx ≤ λ
∫
Ω

α (x) f (ψ1, ψ2, ψ3)φ1dx,

∫
Ω

|∇ψ2|q−2∇ψ2.∇φ2dx ≤ µ
∫
Ω

β (x) g (ψ1, ψ2, ψ3)φ2dx,

∫
Ω

|∇ψ3|r−2∇ψ3.∇φ3dx ≤ ν
∫
Ω

γ (x)h (ψ1, ψ2, ψ3)φ3dx,

i.e. (ψ1, ψ2, ψ3) is a sub-solution of (2.2).

Let ep, eq and er the solutions of the following problems:

−∆pep = 1 in Ω,

ep = 0 on ∂Ω.

,

−∆qeq = 1 in Ω,

eq = 0 on ∂Ω.

and

−∆rer = 1 in Ω,

er = 0 on ∂Ω.
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Let

z1 =
C

‖ep‖∞
λ

1
p−1 ep,

z2 = (µ)
1
q−1

(
g
(
Cλ

1
p−1 , Cλ

1
p−1 , Cλ

1
p−1

)) 1
q−1

eq,

z3 = (ν)
1
r−1

(
h
(
Cλ

1
p−1 , Cλ

1
p−1 , Cλ

1
p−1

)) 1
r−1

er.

where C is a large enough positive number. We are going to check that (z1, z2, z3) is a super-

solution of (2.2) for λ, µ and υ large enough.

by (2.3) and (2.4), we can choose C large enough so that(
Cλ

1
p−1

)q−1

≥ ‖eq‖q−1
∞ µg

(
Cλ

1
p−1 , Cλ

1
p−1 , Cλ

1
p−1

)
≥ µg

(
Cλ

1
p−1 , Cλ

1
p−1 , Cλ

1
p−1

)
eq−1
q = zq−1

2

which implies

Cλ
1
p−1 ≥ z2

and consequently (
Cλ

1
p−1

)r−1

≥ ‖er‖r−1
∞ νh

(
Cλ

1
p−1 , Cλ

1
p−1 , Cλ

1
p−1

)
≥ νh

(
Cλ

1
p−1 , Cλ

1
p−1 , Cλ

1
p−1

)
er−1
r

from which we deduce that

Cλ
1
p−1 ≥ z3

which implies then(
Cλ

1
p−1

)p−1

≥ ‖ep‖p−1
∞ λf

(
Cλ

1
p−1 , Cλ

1
p−1 , Cλ

1
p−1

)

≥ ‖ep‖p−1
∞ λf

(
C

‖ep‖∞
λ

1
p−1 ‖ep‖∞ , Cλ

1
p−1 , Cλ

1
p−1

)

≥ ‖ep‖p−1
∞ λf

(
C

‖ep‖∞
λ

1
p−1 ep, Cλ

1
p−1 , Cλ

1
p−1

)

= ‖ep‖p−1
∞ λf (z1, z2, z3)
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then we have

∫
Ω

|∇z1|p−2∇z1.∇φ1dx = λ

(
C

‖ep‖∞

)p−1 ∫
Ω

|∇ep|p−2∇ep.∇φ1dx

= λ

(
C

‖ep‖∞

)p−1 ∫
Ω

φ1dx

≥ λ
∫
Ω

α1f (z1, z2, z3)φ1dx

≥ λ
∫
Ω

α (x) f (z1, z2, z3)φ1dx

On the other hand∫
Ω

|∇z2|q−2∇z2.∇φ2dx = µβ1g
(
Cλ

1
p−1 , Cλ

1
p−1 , Cλ

1
p−1

) ∫
Ω

|∇eq|q−2∇eq.∇φ2dx

≥ µ
∫
Ω

β1g

(
C

‖ep‖∞
λ

1
p−1 ‖ep‖∞ , Cλ

1
p−1

)
φ2dx

≥ µ
∫
Ω

β1g (z1, z2, z3)φ2dx ≥ µ
∫
Ω

β (x) g (z1, z2, z3)φ2dx

and with the same way, we get∫
Ω

|∇z3|r−2∇z3.∇φ3dx = νγ1h
(
Cλ

1
p−1 , Cλ

1
p−1 , Cλ

1
p−1

) ∫
Ω

|∇er|r−2∇er.∇φ3dx

≥ ν
∫
Ω

γ1h

(
C

‖ep‖∞
λ

1
p−1 ‖ep‖∞ , Cλ

1
p−1 , Cλ

1
p−1

)
φ3dx

≥ ν
∫
Ω

γ (x)h (z1, z2, z3)φ3dx

i.e (z1, z2, z3) is a super-solution of (2.2) with zi ≥ ψi for C large enough, i = 1, 2, 3. Hence the

existence of a weak solution (u, v, w) of (2.2) with ψ1 ≤ u ≤ z1, ψ2 ≤ v ≤ z2 and ψ3 ≤ w ≤ z3.
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2.3 Non-existence Result

Theorem 2.3.1 Assume that f, g and h verify (2.6) and

f (0, 0, 0) = g (0, 0, 0) = h (0, 0, 0) = 0,

then for

0 < λ < λ0, 0 < µ < µ0 and 0 < ν < ν0. (2.8)

system (2.2) admits only the trivial solution.

λ1, µ1 are ν1 are respectively the first eigenvalues of the operators −∆p,−∆q and −∆r.

Proof. Let’s multiply the first equation by u, and integrating on Ω, using Young’s inequality,

we get

‖∇u‖pp =
∫
Ω

λα (x) f (u, v, w)udx ≤ λα1

∫
Ω

(
ξ1u

p−1 + η1v
q( p−1

p ) + ζ1w
r( p−1

p )
)
udx

≤ λα1

∫
Ω

(
ξ1u

p + η1
p

(up + (p− 1) vq) + ζ1
p

(up + (p− 1)wr)
)
dx

≤ λα1

∫
Ω

(
ξ1 +

η1 + ζ1

p
up +

(
p−1
p

)
η1v

q +
(
p−1
p

)
ζ1w

r

)
dx

=
λα1

p
(pξ1 + η1 + ζ1) ‖u‖pp + λα1

(
p−1
p

)
η1 ‖v‖qq + λα1

(
p−1
p

)
ζ1 ‖w‖rr

then we have

‖∇u‖pp ≤
λα1

p
(pξ1 + η1 + ζ1) ‖u‖pp +

λα1 (p− 1)

p
η1 ‖v‖qq +

λα1 (p− 1)

p
ζ1 ‖w‖rr

‖∇v‖qq ≤
µβ1
q

(ξ2 + qη2 + ζ2) ‖v‖qq + µβ1(q−1)
q

ξ2 ‖u‖pp +
µβ1 (q − 1)

q
ζ2 ‖w‖rr

‖∇w‖rr ≤
νγ1
r

(ξ3 + η3 + rζ3) ‖w‖rr +
νγ1 (r − 1)

r
ξ3 ‖u‖pp +

νγ1 (r − 1)

r
η3 ‖v‖qq

(2.9)

On the other hand

λ1 = inf
‖∇u‖pp
‖u‖pp

, µ1 = inf
‖∇v‖qq
‖v‖qq

et ν1 = inf
‖∇w‖rr
‖w‖rr

(2.10)
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combine (2.9) and (2.10) we get

(λ1 − λ0) ‖u‖pp + (µ1 − µ0) ‖v‖qq + (ν1 − ν0) ‖w‖rr ≤ 0.

which contradicts (2.8). So (2.2) does not admit weak solutions other than the trivial solution

(u = v = w = 0) .

2.4 Applications

Theorem 2.4.1 For the system :

−∆pu = λum1vn1wl1 in Ω,

−∆qv = µ um2vn2wl2in Ω,

−∆rw = υum3vn3wl3 in Ω,

u = v = w = 0 on ∂Ω,

(2.11)

1) If

m1 + n1 + l1 < p− 1,

m2 + n2 + l2 < q − 1,

m3 + n3 + l3 < r − 1.

(2.12)

System (2.11) admits a large positive weak solution.

2) If

qrm1 + prn1 + pql1 = qr (p− 1) ,

qrm2 + prn2 + pql2 = pr (q − 1) ,

qrm3 + prn3 + pql3 = pq (r − 1) .

(2.13)

and

0 < λ < λ1, 0 < µ < µ1 and 0 < ν < ν1. (2.14)
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system (2.11) admits only the trivial solution

Proof. 1) (2.5) implies that (2.12) is verified. So by theorem (2.2.1) the system (2.11) admits

a weak positive solution.

2) The first equation in (2.13) implies that

1
θ1

+ 1
θ2

+ 1
θ3

= 1(
p−1
m1

) + 1
q
p

(
p−1
n1

) + 1
r
p

(
p−1
l1

) = 1 (2.15)

Using the generalized Young inequality, we get

f1 (u, v, w) = um1vn1wl1 ≤ 1
θ1
um1θ1 + 1

θ2
vn1θ2 + 1

θ3
wl1θ3

= 1
θ1
up−1 + 1

θ2
vq(

p−1
p ) + 1

θ3
wr(

p−1
p )

(2.16)

The assumption (2.6) is satisfied.

Let

λ0 = 1
p

(λ (m1 + 1) + µm2 + νm3) < λ1,

µ0 = 1
q

(λn1 + µ (n2 + 1) + νn3) < µ1,

ν0 = 1
r

(λl1 + µl2 + ν (l3 + 1)) < ν1.

Then

p (λ− λ1) + q (µ− µ1) + r (ν − ν1) < 0. (2.17)

Therefore, the system (2.11) does not admit non trivial positive weak solutions.

Theorem 2.4.2 For λ large, the problem
−∆3

pu = λ3γ (x)H
(
u,−∆pu,∆

2
pu
)

in Ω,

u = ∆pu = ∆2
pu = 0 on ∂Ω,

(2.18)

admits a positive weak solution.
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Here Ω is a bounded domain of RN with a smooth boundary ∂Ω, λ is a positive real parameter,

γ ∈ L∞ (Ω) and

H : ([0,∞[)3 → R is of class C1,

H (t1, t2, t3) is increasing compared to à t1, t3,

H (t1, t2, t3) is decreasing compared to t2,

lim
t→+∞

H (t,−λt, λ2t)

tp−1
= 0, p > 2

∃k0 > 0 : H (t1, t2, t3) ≥ −k0,∀ (t1, t2, t3) ∈ ([0,+∞[)3

(2.19)

Proof. The problem (2.18) can be written in the following form

−∆pu = λv in Ω,

−∆pv = λw in Ω,

−∆pw = λγ (x)H (u,−λv, λ2w) in Ω,

u = v = w = 0 on ∂Ω,

in this case, the assumptions of theorem (2.2.1) are satisfied.
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Existence of positive solutions and its

asymptotic behavior of

(p(x), q(x))-Laplacian parabolic systems.

—————————————————————————————————————————

1) Preliminaire results problems and assumption
2) The Semi-Discrete problem

3) Existence results of (p(x), q(x))-Laplacian parabolic systems
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In this chapter deals with the study of existence of positively solution and its asymptotic

behavior for parabolic system of (p(x), q(x))-Laplacian system of partial differential equations

using a method sub and super solution according to some given boundary conditions. We will

study an extension of Boulaaras’s [13],[15, 45], that is which studie the stationary case, we

will study idea is new for evolutionary case of this kind of problem for (p(x), q(x))-Laplacian

parabolic system.

We consider the following evolutionary problem: find u ∈ L2(0, T,H1
0 (Ω)) solution of

∂u

∂t
−∆p(x)u = λp(x) [λ1a(x)f(v) + µ1c(x)h(u)] in QT = (0, T )× Ω,

∂v

∂t
−∆q(x)v = λq(x) [λ2b(x)g(u) + µ2d(x)τ(v)] in QT = (0, T )× Ω,

u = v = 0 on ∂QT = (0, T )× ∂Ω,

u(x, 0) = ϕ(x),

(3.1)

where Ω ⊂ RN is a bounded domain and the functions p(x), q(x) belong to C1(Ω) and

satisfying the following conditions:

1 < p− := inf
x∈Ω

p(x) ≤ p+ := sup
Ω
p(x) <∞, 1 < q− := inf

x∈Ω
q(x) ≤ q+ := sup

x∈Ω
q(x) <∞ (3.2)

and satisfy some natural growth condition at u =∞.
∆p(x) is given by ∆p(x)u = div(|∇u|p(x)−2∇u) is called p(x)-Laplacian, the parameters λ, λ1, λ2, µ1

and µ2 are positive with a, b, c, d are regular functions. In addition we did not consider any

sign condition on f (0) , g (0) , h (0) , τ (0) .

The linear and nonlinear stationary equations with operators of quasilinear homogeneous type

as p-Laplace operator can be carried out according to the standard Sobolev spaces theory

of Wm,p, and thus we can find the weak solutions. The last spaces consist of functions

having weak derivatives which verify some conditions of integrability. Thus, we can have the

nonhomogeneous case of p(.)-Laplace operators in this last condition. We will use Sobolev

spaces of the exponential variable in our standard framework, so that Lp(.) (Ω) will be used

instead of Lebesgue spaces Lp (Ω) .

We denote new Sobolev space by Wm,p (Ω), if we replace Lp (Ω) by Lp(.) (Ω), the Sobolev

spaces becomes Wm,p(.) (Ω). Several Sobolev spaces properties have been extended to spaces
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of Orlicz-Sobolev, particularly by O’Neill in the reference ([61]). The spaces Wm,p(.) (Ω) and

Lp(.) (Ω) have been carefully studied by many researchers team (see the references ([13] and

[30, 39, 40]).

Here, in our study we consider the boundedness condition in domain Ω, because many results

under p-Laplacian theory are not usually verified for the p(x)-Laplacian theory; for that in

([14]) the quotient

λp(x) = inf
u∈W 1,p(x)

0 (Ω)�{0}

∫
Ω

1
p(x)
|∇u|p(x) dx∫

Ω
1

p(x)
|u|p(x) dx

(3.3)

becomes 0 generally. Then λp(x) can be positive only for some given conditions. In fact, the

first eigenvalue of p(x)-Laplacian and its associated eigenfunction cannot exist, the existence

of the positive first eigenvalue λp and getting its eigenfunction are very important in the p-

Laplacian problem study. Therefore, the study of existence of solutions of our problems have

more meaning. Many studies of the experimental side have been studied on various materials

that rely on this advanced theory, as they are important in electrical fluids, which states that

viscosity relates to the electric field in a certain liquid.

Recently, in ([13, 14, 44]), we have proved the existence of positive solutions of many classes of

(p(x), q(x))-Laplacian stationary problems by using the sub-super solution concept. The cur-

rent results are an extension of our previous stationary study to the parabolic case, where

we follow-up the same procedures mathematical proofs similar to that in ( [13, 16]) by using

difference time scheme taking into consideration the stability analysis of the used scheme and

the same conditions which have given in references mentioned earlier. Our result is an exten-

sion for our previous study in ( [13, 16, 45]) which studied the stationary case, this idea is

new for evolutionary case of this kind of problem.

The outline of chapter consists as follow: In first section we give some definitions, basic

theorems and necessarily propositions in the functional analysis which will be used in our

study. Then in Section 3.4, we prove our main result.

3.1 Preliminaries Results and Assumptions

In order to discuss problem (3.1), we need some theories on W
1,p(x)
0 (Ω) which we call variable

exponent Sobolev space. Firstly we state some basic properties of spaces W
1,p(x)
0 (Ω) which

will be used later (for details, see [74]).
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Let us define

Lp(x) (Ω) =

u : u is a measurable real-valued function such that

∫
Ω

|u (x)|p(x) dx <∞

 .

We introduce the norm on Lp(x) (Ω) by

|u (x)|Lp(x) = inf

λ > 0 :

∫
Ω

∣∣∣∣u (x)

λ

∣∣∣∣p(x)

dx ≤ 1


and

W 1,p(x) (Ω) =
{
u ∈ Lp(x) (Ω) ; |∇u| ∈ Lp(x) (Ω)

}
,

with the norm

‖u‖ = |u|Lp(x) + |∇u|Lp(x) ,∀u ∈ W
1,p(x) (Ω) .

We denote by W
1,p(x)
0 (Ω) the closure of C∞0 (Ω) in W 1,p(x) (Ω) .

We introduce in this applying for problem (2), we will assume that:

(H1) p, q ∈ C1(Ω) and 1 < p− < p+, 1 < q− < q+;

(H2) f, g, h and τ : [0,+∞[→ R are C1,monotone functions, such that

lim
u→+∞

f(uk) = +∞ lim
u→+∞

g(uk) = +∞, lim
u→+∞

h(uk) = +∞, lim
u→+∞

τ(uk) = +∞,

(H3) lim
u→+∞

f(M(g(uk))
1

q−−1 )

up
−−1
k

= 0, for all M > 0;

(H4) lim
u→+∞

h(uk)

up
−−1
k

= 0, and lim
u→+∞

τ(uk)

up
−−1
k

= 0;

(H5) a, b, c, d : Ω→ (0,+∞) are contionous functions, such that

a1 = min
x∈Ω

a(x), b1 = min
x∈Ω

b(x), c1 = min
x∈Ω

c(x), d1 = min
x∈Ω

d(x),

a2 = max
x∈Ω

a(x), b2 = max
x∈Ω

b(x), c2 = max
x∈Ω

c(x), d2 = max
x∈Ω

d(x).

3.2 The Semi-Discrete problem

We discrete the problem (3.1) by difference time scheme, we obtain the following problems
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

uk − τ ′∆p(x)uk = τ ′λp(x) [λ1a(x)f(v) + µ1c(x)h(uk)] + uk−1 in Ω,

vk − τ ′∆q(x)v = τ ′λq(x) [λ2b(x)g(uk) + µ2d(x)τ(v)] + vk−1 in Ω,

uk = v = 0 on ∂Ω,

u0 = ϕ0,

(3.4)

where Nτ ′ = T, 0 < τ ′ < 1, and for 1 ≤ k ≤ N.

We define

〈L(uk), v〉 =

∫
Ω

|∇uk|p(x)−2∇uk∇vdx,∀uk, v ∈ W 1,p(x)
0 (Ω).

According to([15] in Theorem 3.1), the bounded operator L : W
1,p(x)
0 (Ω) →

(
W

1,p(x)
0 (Ω)

)∗
is

a continuous and strictly monotone, and it is a homeomorphism.

We considere mapping A : W
1,p(x)
0 (Ω)→

(
W

1,p(x)
0 (Ω)

)∗
as

〈A(uk), ϕ〉 =

∫
Ω

(
|∇uk|p(x)−2∇uk∇ϕ+ h(x, uk)ϕ

)
dx, for all uk, v ∈ W 1,p(x)

0 (Ω),

where h(x, uk) is continuous on Ω × R, and h(x, .) is increasing function.It is easy to verify

that A is a continuous bounded mapping. By the proof ([73]).

3.3 Existence of positive solutions of (p(x), q(x))-Laplacian

parabolic systems

An weak solution to discretized problems (Pk) is a sequence (uk, v)0≤k≤N such that u0 = ϕ0

and (uk, v) is defined by

uk − τ ′∆p(x)uk = τ ′λp(x) [λ1a(x)f(v) + µ1c(x)h(uk)] + uk−1 in Ω,

vk − τ ′∆q(x)v = τ ′λq(x) [λ2b(x)g(uk) + µ2d(x)τ(v)] + vk−1 in Ω,

uk = v = 0 on ∂Ω,
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such that 

−∆p(x)uk = λp(x) [λ1a(x)f(v) + µ1c(x)h(uk)]− uk−uk−1

τ ′
in Ω,

−∆q(x)v = λq(x) [λ2b(x)g(uk) + µ2d(x)τ(v)]− vk−vk−1

τ ′
in Ω,

uk = v = 0 on ∂Ω.

(3.5)

We have the following:

(1) If (uk, v) ∈
(
W

1.p(x)
0 (Ω)×W 1.q(x)

0 (Ω)
)
, (uk, v) is called a weak solution of (3.5) if it satisfies∫

Ω

|∇uk|p(x)−2∇uk.∇ϕdx =

∫
Ω

[
λp(x) [λ1a(x)f(v) + µ1c(x)h(uk)]−

uk − uk−1

τ ′

]
ϕdx,

∫
Ω

|∇v|q(x)−2∇v.∇ψdx =

∫
Ω

[
λq(x) [λ2b(x)g(uk) + µ2d(x)τ(v)]− vk − vk−1

τ ′

]
ψdx. (3.6)

for all

(ϕ, ψ) ∈
(
W

1.p(.)
0 (Ω)×W 1.q(.)

0 (Ω)
)

with (ϕ, ψ) > 0.

(2) We say called a sub solution (respectively a super solution) of (3.1) if

∫
Ω

|∇uk|p(x)−2∇uk.∇ϕdx ≤ (respectively >)

∫
Ω

[
λp(x) [λ1a(x)f(v) + µ1c(x)h(uk)]−

uk − uk−1

τ ′

]
ϕdx,

∫
Ω

|∇v|q(x)−2∇v.∇ψdx ≤ (respectively >)

∫
Ω

[
λq(x) [λ2b(x)g(uk) + µ2d(x)τ(v)]− vk − vk−1

τ ′

]
ψdx.

Lemma 3.3.1 (Comparison principle) Let uk, v ∈ W 1,p(x)
0 (Ω) verify Auk−Av > 0 in

(
W

1,p(x)
0 (Ω)

)∗
,

and ϕ(x) = min {uk(x)− v(x), 0}. If ϕ(x) ∈ W 1,p(x)
0 (Ω) (i.e., uk > v on ∂Ω),then uk > v

a.e in Ω .

Here, we will use the notation d(x, ∂Ω) to denote the distance of x ∈ Ω to denote the distance

of Ω.

Denote d(x) = d(x, ∂Ω) and ∂Ωε = {x ∈ Ω : d(x, ∂Ω) < ε} .
Since ∂Ω is C2 regularly, there exists a constant δ ∈ (0, 1) such that d(x) ∈ C2(∂Ω3δ) and

|∇d(x)| = 1.
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Denote also

v1(x) =



γd(x), d(x) < δ,

γδ +
∫ d(x)

δ
γ(2δ−t

δ
)

2
p−−1 (λ1a1 + µ1c1)

2
p−−1dt, δ ≤ d(x) ≤ 2δ,

γδ +
∫ 2δ

δ
γ(2δ−t

δ
)

2
p−−1 (λ1b1 + µ1d1)

2
p−−1dt, 2δ ≤ d(x)

and

v2(x) =



γd(x), d(x) < δ,

γδ +
∫ d(x)

δ
γ(2δ−t

δ
)

2
p−−1 (λ2a2 + µ2c2)

2
q−−1dt, δ ≤ d(x) ≤ 2δ,

γδ +
∫ 2δ

δ
γ(2δ−t

δ
)

2
p−−1 (λ2b2 + µ2d2)

2
q−−1dt, 2δ ≤ d(x).

Obviously,

0 ≤ v1(x), v2(x) ∈ C1(Ω).

Considering 
−∆p(x)w(x) = η in Ω

w = 0 on ∂Ω.

(3.7)

Lemma 3.3.2 ([32]), If positive parameter η is large enough and w is the unique solution of

(3.7), then we have

(i) For any θ ∈ (0, 1) there exists a positive constant C1, such that

C1η
1

p+−1+θ ≤ max
x∈Ω

w(x).

(ii) There exists a positive constant C2, such that

max
x∈Ω

w(x) ≤ C2η
1

p−−1

3.4 Existence result

In the following, once we have no misunderstanding, we always use Ci to denote the positive

constants.
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Theorem 3.4.1 Assume that the conditions (H1)–(H5) are statisfied.Then, problem (3.1) has

a positive solution when λ is large enough.

Proof. We establish Theorem 3.4.1 by constructing a positive subsolution (φk1 , φk2) and

supersolution (zk1 , zk2) of (3.1) such that φk1 ≤ zk1 and φk2 ≤ zk2 , that is (φk1 , φk2) and

(zk1 , zk2) satisfies

∫
Ω

|∇φk1|
p(x)−2∇φk1 .∇ϕdx ≤

∫
Ω

[
λp(x) [λ1a(x)f(φk2) + µ1c(x)h(φk1)]−

φk1 − φk1−1

τ ′

]
ϕdx,

∫
Ω

|∇φk2|
q(x)−2∇φk2 .∇ψdx ≤

∫
Ω

[
λq(x) [λ2b(x)g(φk1) + µ2d(x)τ(φk2)]−

φk1 − φk1−1

τ ′

]
ψdx,

and∫
Ω

|∇zk1|
p(x)−2∇zk1 .∇ϕdx ≥

∫
Ω

[
λp(x) [λ1a(x)f(zk2) + µ1c(x)h(zk1)]−

zk1 − zk1−1

τ ′

]
ϕdx,

∫
Ω

|∇zk2|
q(x)−2∇zk2 .∇ψdx ≥

∫
Ω

[
λq(x) [λ2b(x)g(zk1) + µ2d(x)τ(zk2)]−

zk1 − zk1−1

τ ′

]
ψdx,

for all (ϕ, ψ) ∈
(
W

1.p(x)
0 (Ω)×W 1.q(x)

0 (Ω)
)

with (ϕ, ψ) > 0. According to the sub-super solution

method for (p(x), q(x))-Laplacian systems see ([32, 45]), the problem (3.1) has a positive

solution.

Step 1. We will construct a subsolution of (3.1). Let σ ∈ (0, δ) is small enough. Denote

φk1(x) =



ekd(x) − 1, d(x) < σ,

ekd(x) − 1 +
∫ d(x)

δ
kekσ( 2δ−t

2δ−σ )
2

p−−1dt, σ ≤ d(x) < 2δ,

ekd(x) − 1 +
∫ 2δ

σ
kekσ( 2δ−t

2δ−σ )
2

p−−1dt, 2δ ≤ d(x)

and

φk2(x) =



ekd(x) − 1, d(x) < σ,

ekd(x) − 1 +
∫ d(x)

δ
kekσ( 2δ−t

2δ−σ )
2

q−−1dt, σ ≤ d(x) < 2δ,

ekd(x) − 1 +
∫ 2δ

σ
kekσ( 2δ−t

2δ−σ )
2

q−−1dt, 2δ ≤ d(x).
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It easy to see that φk1 , φk2 ∈ C1(Ω).

Denote

α = min

{
inf p(x)− 1

4(sup |∇p(x) + 1|)
,

inf q(x)− 1

4(sup |∇q(x) + 1|)
, 1

}
and

ξ = min {λ1a1f(0) + µ1c1h(0), λ2b1g(0) + µ2d1σ(0),−1} .

By some simple computations we obtain

−∆p(x)φk1 =



−k(ekd(x))p(x)−1
[
(p(x)− 1) + (d(x) + ln k

k
)∇p∇d+ ∆d

k

]
, d(x) < σ

{
1

2δ−σ
2(p(x)−1)
p−−1

−
(

2δ−d
2δ−σ

) [(
ln kekσ

) (
2δ−d
2δ−σ

) 2
p−−1 ∇p∇d+ ∆d

]}
×
(
Kekσ

)p(x)−1 ( 2δ−d
2δ−σ

) 2(p(x)−1)

p−−1
−1
, σ ≤ d(x) < 2δ,

0, 2δ ≤ d(x)

and

−∆p(x)φk2 =



−k(ekd(x))q(x)−1
[
(q(x)− 1) + (d(x) + ln k

k
)∇q∇d+ ∆d

k

]
, d(x) < σ,

{
1

2δ−σ
2(q(x)−1)
q−−1

−
(

2δ−d
2δ−σ

) [(
ln kekσ

) (
2δ−d
2δ−σ

) 2
q−−1 ∇q∇d+ ∆d

]}
×
(
Kekσ

)q(x)−1 ( 2δ−d
2δ−σ

)2(q(x)− 1)

q− − 1
−1

, σ ≤ d(x) < 2δ,

0, 2δ ≤ d(x).

From (H3) there exists a positive constant M > 1 such that

f(M − 1) > 1, g(M − 1) > 1,

h(M − 1) > 1, σ(M − 1) > 1.

Let σ = 1
k

lnM, then

σk = lnM. (3.8)

If k is sufficiently large, from (3.8), we have

−∆p(x)φk1 ≤ −kp(x)α, d(x) < σ. (3.9)
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Let λξ = kα, then

kp(x)α > −λp(x)ξ.

From (3.9), we have
−∆p(x)φk1 ≤ λp(x)ξ ≤ λp(x)(λ1a1f(0) + µ1c1h(0))

≤ λp(x)(λ1a(x)f(φk2) + µ1c(x)h(φk1)), d(x) < σ.

(3.10)

Since d(x) ∈ C2(∂Ω3δ), there exists a positive constant C3, such that

−∆p(x)φk1 ≤
(
Kekσ

)p(x)−1
(

2δ − d
2δ − σ

)2(p(x)− 1)

p− − 1
−1

(λ1a1 + µ1c1)

×
∣∣∣∣{ 1

2δ − σ
2(p(x)− 1)

p− − 1
−
(

2δ − d
2δ − σ

)
×

[(
ln kekσ

)(2δ − d
2δ − σ

) 2
p−−1

∇p∇d+ ∆d

]}∣∣∣∣∣
≤ C3

(
Kekσ

)p(x)−1
(λ1a1 + µ1c1) ln k, σ ≤ d(x) < 2δ.

If k is sufficiently large, let λξ = kα, then we have

C3

(
Kekσ

)p(x)−1
(λ1a1 + µ1c1) ln k = C3 (kM)p(x)−1 (λ1a1 + µ1c1) ln k

≤ λp(x)(λ1a1 + µ1c1),

then

−∆p(x)φk1 ≤ λp(x)(λ1a1 + µ1c1), σ ≤ d(x) < 2δ (3.11)

Since φk1(x), φk2(x) and f, h are monotone, when λ is large enough, we have

−∆p(x)φk1 ≤ λp(x)(λ1a(x)f(φk2) + µ1c(x)h(φk1)), σ ≤ d(x) < 2δ

and

−∆p(x)φk1 = 0 ≤ λp(x)(λ1a1 + µ1c1) ≤ λp(x)(λ1a(x)f(φk2)

+ µ1c(x)h(φk1)), 2δ ≤ d(x). (3.12)
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Combining (3.10), (3.12) and (3.13), we can deduce that

−∆p(x)φk1 ≤ λp(x)(λ1a(x)f(φk2) + µ1c(x)h(φk1)), a.e. on Ω. (3.13)

Similarly

−∆q(x)φk2 ≤ λq(x)(λ2b(x)g(φk1) + µ2d(x)τ(φk2)), a.e. on Ω (3.14)

From (3.13) and (3.14), we can see that (φk1 , φk2) is a subsolution of problem (3.1).

Step 2. We will construct a supersolution of problem (3.1), we consider

−∆p(x)zk1 = λp+(λ1a2 + µ1c2)µ in Ω,

−∆q(x)zk2 = λq+(λ1b2 + µ1d2)g(β(λp+(λ1a2 + µ1c2)µ)) in Ω,

zk1 = zk2 = 0 on ∂Ω,

where

β = β(λp+(λ1a2 + µ1c2)µ) = max
x∈Ω

zk1(x).

We shall prove that (zk1 , zk2) is a supersolution of problem (3.1).

From Lemma 3.3.2, we have

max
x∈Ω

zk1(x) ≤ C2

[
λp+(λ1a2 + µ1c2)µ

] 1
p−−1

and

max
x∈Ω

zk2(x) ≤ C2

[
λq+(λ2b2 + µ2d2)g(β(λp+(λ1a2 + µ1c2)µ))

] 1
q−−1 .

For ψ ∈ W 1,q(x)
0 (Ω) with ψ > 0, it is easy to see that

∫
Ω

|∇zk2|
q(x)−2∇zk2 .∇ψdx =

∫
Ω

λq+(λ2b2 + µ2d2)g(β(λp+(λ1a2 + µ1c2)µ))ψdx >

∫
Ω

λq+λ2b(x)g(zk1)ψdx+
∫
Ω

λq+µ2d(x)g(β(λp+(λ1a2 + µ1c2)µ))ψdx.

By (H4), for µ a large enough, using Lemma 3.3.2, we have
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g(β(λp+(λ1a2 + µ1c2)µ))

> τ(C2 [λq+(λ2b2 + µ2d2)g(β(λp+(λ1a2 + µ1c2)µ))]
1

q−−1 )

> τ(zk2).

(3.15)

Hence

∫
Ω

|∇zk2|
q(x)−2∇zk2 .∇ψdx >

∫
Ω

λq+λ2b(x)g(zk1)ψdx+

∫
Ω

λq+µ2d(x)τ(zk2)ψdx. (3.16)

Also, for ϕ ∈ W 1,p(x)(Ω) with ϕ ≥ 0, it is easy to see that∫
Ω

|∇zk1 |
p(x)−2∇zk1 .∇ϕdx =

∫
Ω

λp+(λ1a2 + µ1c2)µϕdx.

By (H3), (H4) and Lemma 3.3.2, when µ is sufficiently large, we have

(λ1a2 + µ1c2)µ >
1

λp+

[
1

C2

β(λp+(λ1a2 + µ1c2)µ)

]p−−1

> µ1h(β(λp+(λ1a2 + µ1c2)µ))

+λ1f
(
C2

[
λq+(λ2b2 + µ2d2)g(β(λp+(λ1a2 + µ1c2)µ))

] 1
q−−1

)
.

Then∫
Ω

|∇zk1 |
p(x)−2∇zk1 .∇ϕdx >

∫
Ω

λp+λ1a(x)f(zk2)ϕdx+

∫
Ω

λp+µ1c(x)h(zk1)ϕdx. (3.17)

According to (3.16) and (3.17), we can conclude that (zk1 , zk2) is a supersolution of problem

(3.1). It only remains to prove that φk1 ≤ zk1 and φk2 ≤ zk2 .

In the definition of v1(x), let

γ =
2

δ

(
max

Ω
φk1(x) + max

Ω
|∇φk1| (x)

)
.
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We claim that

φk1(x) ≤ v1(x), ∀x ∈ Ω. (3.18)

From the definition of v1,it is easy to see that

φk1(x) ≤ 2 max
Ω

φk1(x) ≤ v1(x), when d(x) = δ,

φk1(x) ≤ 2 max
Ω

φk1(x) ≤ v1(x), when d(x) > δ

and

φk1(x) ≤ v1(x) when d(x) < δ.

Since v1 − φk1 ∈ C1(∂Ωδ), there exists a point x0 ∈ ∂Ωδ, such that

v1(x0)− φk1(x0) = min
x0∈∂Ωδ

(v1(x0)− φk1(x0)).

If v1(x0)− φk1(x0) < 0, It is easy to see that 0 < d(x) < δ and then

∇v1(x0)−∇φk1(x0) = 0.

From the definition of v1,we have

|∇v1(x0)| = γ =
2

δ

(
max

Ω
φk1(x0) + max

Ω
|∇φk1| (x0)

)
> |∇φk1| (x0).

It is a contradiction to

∇v1(x0)−∇φk1(x0) = 0.

Thus, (3.18) is valid.

Obviously, there exists a positive constants C3, such that γ ≤ C3λ.

Since d(x) ∈ C2(∂Ω3δ), according to the proof of Lemma 3.3.2, there exists a positive constant

C4, such that

−∆p(x)v1(x) ≤ C∗γ
p(x)−1+θ ≤ C4λ

p(x)−1+θ a.e Ω, where θ ∈ (0, 1).

Since η > λp+ is large enough, we have −∆p(x)v1(x) ≤ η.

Under the comparaison principle, we have

v1(x) ≤ w(x), for all x ∈ Ω. (3.19)
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From (3.18) and (3.19), when η > λp+ and λ > 1 is sufficiently large, we have

φk1(x) ≤ v1(x) ≤ w(x), for all x ∈ Ω. (3.20)

According to the comparaison principle, when µ is large enough, we have

v1(x) ≤ w(x) ≤ zk1(x), for all x ∈ Ω.

Combining the definition of v1(x) and (3.20), it is easy to see that

φk1(x) ≤ v1(x) ≤ w(x) ≤ zk1(x), for all x ∈ Ω.

When µ > 1 and λ is a large enough, from Lemma 3.3.2, we can note that

β(λp+(λ1a2 + µ1c2)µ is large enough, then

λq+(λ2b2 + µ2d2)g(β(λp+(λ1a2 + µ1c2)µ))

is a large enough. Similarly, we have φk2(x) ≤ zk2(x). This completes the proof.

3.5 Asymptotic behavior of the (p(x), q(x))-Laplacian parabolic

systems

Definition 3.5.1 A measurable funtion u : QT → R is an weak solution to parabolic systems

involving of (p(x), q(x))− Laplacien (3.1) in QT if u(., 0) = u0 in Ω,

u ∈ C(0, T ;L2(Ω)) ∩ Lp(0, T ;H1
0 (Ω)),

∂u

∂t
∈ L2(QT ),∇u ∈

(
L2(QT )

)N
and for all ϕ ∈ C1(QT ) and ψ ∈ C1(QT ), we have

T∫
0

∫
Ω

∂u

∂t
ϕdxdt+

T∫
0

∫
Ω

|∇u|p(x)−2∇u∇ϕdxdt+

T∫
0

∫
Ω

(−λp(x)µ1c(x)h(u))ϕdxdt

=

T∫
0

∫
Ω

λp(x)λ1a(x)f(v)ϕdxdt (3.21)
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Lemma 3.5.1 ([53])

T∫
0

∫
Ω

∂v

∂t
ψdxdt+

T∫
0

∫
Ω

|∇v|q(x)−2∇v∇ψdxdt+

T∫
0

∫
Ω

(−λq(x)λ2b(x)g(u))ψdxdt

=

T∫
0

∫
Ω

λq(x)µ2d(x)σ(v)ψdxdt

Lemma 3.5.2 ([53]) Let u, u be the solutions of (3.1) with u (x, 0) = ϕ1, u (x, 0) = ϕ2.Then

u (x, t) is nondercreasing in t, u (x, t) is nonincreasing and u > u for all t ≥ 0, x ∈ Ω

Theorem 3.5.1 Let hypotheses (H1), (H2) and (H3) be satisfied. and let u (x, t) the solution

of a new class of parabolic systems (3.1) with Ψ ∈ S∗ then

lim
t→∞

u (x, t) =

{
us (x) if ûs ≤ Ψ ≤ us

us (x) if us ≤ Ψ ≤ ũs

Proof. The pair (us, ûs) and the pair (ũs, us) are both sub-super solutions of (4.3), the

maximale and minimale property of us and us in S∗ ensures that: us is the unique solution in

[ûs, us] and us is the unique solution in [us, ũs].
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In this chapter, we introduce the problems of a new class of Kirchhoff parabolics systems,

we will study the existence of weak positive solution by using sub-super solutions method for

a class of Kirchhoff parabolic systems in bounded domains with multiple parameters. This

results are natural extensions from the previous ones in [11] and [39].

4.1 Statement of the problems and assumption

In this chapter, we consider the following system of parabolic differential equations

∂u

∂t
− A

(∫
Ω

|∇u|2 dx
)
4u = λ1α (x) f (v) + µ1β (x)h (u) in QT = Ω× [0, T ] ,

∂v

∂t
−B

(∫
Ω

|∇v|2 dx
)
4v = λ2γ (x) g (u) + µ2η (x) τ (v) in QT = Ω× [0, T ] ,

u = v = 0 on ∂QT ,

u(x, 0) = ϕ(x),

(4.1)

where Ω ⊂ RN (N ≥ 3) is a bounded smooth domain with C2 boundary ∂Ω, and A, B

: R+ → R+ are continuous functions, α, β, γ, η ∈ C
(
Ω
)
, λ1, λ2, µ1, and µ2 are non negative

parameters.

Since the first equation in (4.1) contains an integral over Ω, it is no longer a pointwise identity,

Therefore, it is often called nonlocal problem. This problem models several physical and

biological systems, where u describes a process which depends on the average of itself, such as

the population density, see [74]. Moreover, problem (4.1) is related to the stationary version

of the Kirchhoff equation

ρ
∂2u

∂t2
−

P0

h
+
E

2L

L∫
0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

 ∂2u

∂x2
= 0 (4.2)

presented by Kirchhoff in 1883 (see [49]). This equation is an extension of the classical

d’Alembert’s wave equation by considering the effect of the changes in the length of the string

during the vibrations. The parameters in (4.2) have the following meanings: L is the length

of the string, h is the area of the cross-section, E is the Young modulus of the material, ρ is

the mass density, and P0 is the initial tension.
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By using Euler time scheme on (4.1), we obtain the following problems



uk − τ ′A
(∫

Ω

|∇uk|2 dx
)
4u = τ ′ [λ1α (x) f (v) + µ1β (x)h (uk)] + uk−1 in Ω,

vk − τ ′B
(∫

Ω

|∇v|2 dx
)
4v = τ ′ [λ2γ (x) g (uk) + µ2η (x) τ (v)] + vk−1 in Ω,

uk = vk = 0 on ∂Ω,

u0 = ρ,

(4.3)

where Nτ ′ = T, 0 < τ ′ < 1, and for 1 ≤ k ≤ N.

In recent years, problems involving Kirchhoff type operators have been studied in many papers

as ([13], [59], [74], [17]-[35], [75]). In this thesis chapter, we have used different methods

to get the existence of solutions for (4.1) in the single equation case. Z. Zhang in ([59]

and [74]) studied the existence of nontrivial sign-changing solutions for system (4.1) where

A (t) = B (t) = 1 via sub-supersolution method. Our of the thesis is motivated by the

recent results in [10], [11], [16], [40], [44] and [45] . Azzouz and Bensedik (Theorem 2 in [11])

investigated the existence of a positive solution for the nonlocal problem of the form
−M

(∫
Ω

|∇u|2 dx
)
4u = |u|p−2 u+ λf (x) in Ω,

u = 0 on ∂Ω,

(4.4)

where Ω is a bounded smooth domain in RN , N ≥ 3 and p > 1, i.e. the nonlinear term at

infinity and f is a sign-changing function.

Using the sub and supersolution method combining a comparison principle introduced in

[10], in this chapter we established the existence of a positive solution for (4.4), where the

parameter λ > 0 is small enough. In the present chapter, we consider system (4.1) in the case

when the nonlinearities are “sublinear” at infinity, see the condition (H3). We are inspired

by the ideas in the interesting paper [40], in which the authors considered system (4.1) in

the case A (t) = B (t) = 1. More precisely, under suitable conditions on f and g, we shall

show that system (4.1) has a positive solution for λ > λ∗. To our best knowledge, this is
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a new research topic for nonlocal problems (see [59] and [74]). In the current in this thesis,

motivated by previous works in ([11], [40]) and by using the sub and supersolutions method,

we study the existence of weak positive solution for a class of Kirchhoff parabolic systems in

bounded domains with multiple parameters.

4.2 Existence result

Lemma 4.2.1 ([10]) Assume that M : R+ → R+ is a continuous and nonincreasing function

satisfying

M (s) > m0, for all s ≥ s0, (4.5)

where m0 is a positive constant and assume that u, v are two non-negative functions such that
−M

(∫
Ω

|∇u|2 dx
)
4u ≥ −M

(∫
Ω

|∇v|2 dx
)
4v in Ω,

u = v = 0 on ∂Ω,

(4.6)

then u ≥ v a.e. in Ω.

Proof. (Thanks to [10]) Suppose further that the function H (t) = tM (t2) , t ≥ 0 is a

increasing on R+.

We follow along the lines of Alves’ work in [10]. Multiplying both sides of the inequality by v

and u and integrating, we get

M
(
‖u‖2) ‖u‖2

M
(
‖v‖2) ≥ (u, v) ≥

M
(
‖v‖2) ‖v‖2

M
(
‖u‖2)

and so

M
(
‖u‖2) ‖u‖ ≥M

(
‖v‖2) ‖v‖

i.e.,

H (‖u‖) ≥ H (‖v‖) .

Since H is increasing, we obtain

‖u‖ ≥ ‖v‖ ,

then

M
(
‖u‖2) ≤M

(
‖v‖2) . (4.7)

4.2. Existence result 54



Chapter 4. Study of existence the positive solutions for a class of Kirchhoff parabolic
systems with multiple parameters.

Because M is nonincreasing. On the other hand, by application of the maximum principle to

(4.4), we get

M
(
‖u‖2)u ≥M

(
‖v‖2) v.

This with (4.7), yield u ≥ v. This ends the proof.

In this chapter, we shall state and prove the main result of this thesis. Let us assume the

following assumptions:

(H1) Assume that A,B : R+ → R+ are two continuous and increasing functions and there

exist ai, bi > 0, i = 1, 2, such that

a1 ≤ A (t) ≤ a2, b1 ≤ B (t) ≤ b2 for all t ∈ R+,

(H2) α, β, γ, η ∈ C
(
Ω
)

and

α (x) ≥ α0 > 0, β (x) ≥ β0 > 0, γ (x) ≥ γ0 > 0, η (x) ≥ η0 > 0,

for all x ∈ Ω,

(H3) f, g, h, and τ are continuous on [0,+∞[ , C1 on (0,+∞) , and increasing functions such

that

lim
t→+∞

f (t) = +∞, lim
t→+∞

g (t) = +∞, lim
t→+∞

h (t) = +∞, lim
t→+∞

τ (t) = +∞,

(H4) It holds that

lim
t→+∞

f (K (g (t)))

t
= 0, for all K > 0,

(H5)

lim
t→+∞

h (t)

t
= 0, lim

t→+∞

τ (t)

t
= 0.

4.3 Application methods of the existence positive of

Kirchhoff parabolic systems.

Theorem 4.3.1 Assume that the conditions (H1)− (H5) hold, we assumption A,B are con-

tinuous functions R+ → R+. Then for λ1α0 + µ1β0 and λ2γ0 + µ2η0 are large then problem

(4.1) has a large positive weak solution.

We give the following two definitions before we give our main result.

4.3. Application methods of the existence positive of Kirchhoff parabolic systems. 55



Chapter 4. Study of existence the positive solutions for a class of Kirchhoff parabolic
systems with multiple parameters.

Definition 4.3.1 Let (uk, v) ∈ (H1
0 (Ω)×H1

0 (Ω)) , (uk, v) is said a weak solution of (4.3) if

it satisfies

A

(∫
Ω

|∇uk|2 dx
)∫

Ω

∇uk∇φdx =
∫
Ω

[
λ1α (x) f (v) + µ1β (x)h (uk)−

uk − uk−1

τ ′

]
φdx in Ω,

B

(∫
Ω

|∇v|2 dx
)∫

Ω

∇v∇ψdx =
∫
Ω

[
λ2γ (x) g (uk)ψ + µ2η (x) τ (v)− vk − vk−1

τ ′

]
ψdx in Ω

for all (φ, ψ) ∈ (H1
0 (Ω)×H1

0 (Ω)) .

Definition 4.3.2 A pair of nonnegative functions
(
uk, v

)
, (uk, v) in (H1

0 (Ω)×H1
0 (Ω)) are

called a weak subsolution and supersolution of (4.1) if they satisfy
(
uk, v

)
, (uk, v) = (0, 0) on

∂Ω

A

(∫
Ω

∣∣∇uk∣∣2 dx)∫
Ω

∇uk∇φdx ≤
∫
Ω

[
λ1α (x) f (v) + µ1β (x)h

(
uk
)
− uk − uk−1

τ ′

]
φ dx in Ω,

B

(∫
Ω

|∇v|2 dx
)∫

Ω

∇v∇ψdx ≤
∫
Ω

[
λ2γ (x) g

(
uk
)

+ µ2η (x) τ (v)− vk − vk−1

τ ′

]
ψ dx in Ω

and

A

(∫
Ω

|∇uk|2 dx
)∫

Ω

∇uk∇φdx ≥
∫
Ω

[
λ1α (x) f (v) + µ1β (x)h (uk)−

uk − uk−1

τ ′

]
φ dx in Ω,

B

(∫
Ω

|∇v|2 dx
)∫

Ω

∇v∇ψdx ≥
∫
Ω

[
λ2γ (x) g (uk) + µ2η (x) τ (v)− uk − uk−1

τ ′

]
ψ dx in Ω

for all (φ, ψ) ∈ (H1
0 (Ω)×H1

0 (Ω)) .

Proof. of theorem 4.3.1. Let σ be the first eigenvalue of4 with Dirichlet boundary conditions

and φ1 the corresponding positive eigenfunction with ‖φ1‖∞ = 1.

Let k0,m0, δ > 0 such that f (t) , g (t) , h (t) , τ (t) ≥ −k0 for all t ∈ R+ and |∇φ1|2−σφ2
1 ≥ m0

on Ωδ = {x ∈ Ω : d (x, ∂Ω) ≤ δ} . For each λ1α0 + µ1β0 and λ2γ0 + µ2 η0 large, let us define

uk =

(
(λ1α0 + µ1β0) k0

2m0a1

)
φ2

1
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and

v =

(
(λ2γ0 + µ2η0) k0

2m0b1

)
φ2

1,

where a1 and b1 are given by the condition (H1) . We shall verify that
(
uk, v

)
is a subsolution

of problem (4.1) for λ1α0 + µ1β0 and λ2γ0 + µ2 η0 large enough. Indeed, let φ ∈ H1
0 (Ω) with

φ ≥ 0 in Ω. By (H1)− (H3) , a simple calculation shows that

A

∫
Ω

∣∣∇uk∣∣2 dx
∫

Ωδ

∇uk.∇φdx = A

∫
Ω

∣∣∇uk∣∣2 dx
 (λ1α0 + µ1β0) k0

m0a1

∫
Ωδ

φ1∇φ1.∇φdx

=
(λ1α0 + µ1β0) k0

m0a1

A

∫
Ω

∣∣∇uk∣∣2 dx
×


∫
Ωδ

∇φ1∇ (φ1.φ) dx−
∫
Ωδ

|∇φ1|2 φdx


=

(λ1α0 + µ1β0) k0

m0a1

A

∫
Ω

∣∣∇uk∣∣2 dx
∫

Ωδ

(
σφ2

1 − |∇φ1|2
)
φdx.

On Ωδ, we have |∇φ1|2 − σφ2
1 ≥ m0, then by using (H3)

f (v) , h
(
uk
)
, g
(
uk
)
, τ (v) ≥ k0

m0

,

thus

A

(∫
Ω

∣∣∇uk∣∣2 dx) ∫
Ωδ

∇uk∇φdx ≤
(λ1α0 + µ1β0) k0

m0

∫
Ωδ

(
σφ2

1 − |∇φ1|2
)
φdx

≤
∫
Ω

[
λ1α (x) f (v) + µ1β (x)h

(
uk
)
− uk − uk−1

τ ′

]
φ dx.

(4.8)

Next, on Ω\Ωδ, we have φ1 ≥ r for some r > 0. Therefore, under the conditions (H1)− (H3)

4.3. Application methods of the existence positive of Kirchhoff parabolic systems. 57



Chapter 4. Study of existence the positive solutions for a class of Kirchhoff parabolic
systems with multiple parameters.

and the definition of v, it follows that

∫
Ω

[
λ1α (x) f (v) + µ1β (x)h

(
uk
)
− uk − uk−1

τ ′

]
φ dx ≥ (λ1α0 + µ1β0)

k0a2

m0a1

σ
∫

Ω\Ωδ

φdx

≥ (λ1α0 + µ1β0)
k0

m0a1

A

( ∫
Ω\Ωδ

∣∣∇uk∣∣2 dx)σ ∫
Ω\Ωδ

φdx

≥ (λ1α0 + µ1β0)
k0

m0a1

A

( ∫
Ω\Ωδ

∣∣∇uk∣∣2 dx) ∫
Ω\Ωδ

(
σφ2

1 − |∇φ1|2
)
φdx

= A

( ∫
Ω\Ωδ

∣∣∇uk∣∣2 dx) ∫
Ω\Ωδ

∇uk∇φdx,

(4.9)

for λ1α0 + µ1β0 > 0 large enough.

Relations (4.8) and (4.9) imply that

A

∫
Ω

∣∣∇uk∣∣2 dx
∫

Ω

∇uk∇φdx ≤
∫
Ω

[
λ1α (x) f (v) + µ1β (x)h

(
uk
)
− uk − uk−1

τ ′

]
φdx in Ω,

(4.10)

for λ1α0 + µ1β0 > 0 large enough and any φ ∈ H1
0 (Ω) with φ ≥ 0 in Ω.

Similarly,

B

∫
Ω

|∇v|2 dx

∫
Ω

∇v∇ψdx ≤
∫
Ω

[
λ2γ (x) g (uk)ψ + µ2η (x) τ (v)− vk − vk−1

τ ′

]
ψdx in Ω,

(4.11)

for λ2γ0 +µ2η0 > 0 large enough and any ψ ∈ H1
0 (Ω) with ψ ≥ 0 in Ω. From (4.10) and (4.11),(

uk, v
)

is a subsolution of problem (4.3). Moreover, we have uk > 0, v > 0 in Ω, u → +∞
and v → +∞ also λ1α0 + µ1β0 → +∞ and λ2γ0 + µ2η0 → +∞.

Next, we shall construct a supersolution of problem (4.3). Let e be the solution of the following

problem: 
−4e = 1 in Ω,

e = 0 on ∂Ω.

(4.12)
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Let

uk = Ce, v =

(
λ2 ‖γ‖∞ + µ2 ‖η‖∞

b1

)
[g (C ‖e‖∞)] e,

where e is given by (4.12) and C > 0 is a large positive real number to be chosen later. We

shall verify that (uk, v) is a supersolution of problem (4.3). Let φ ∈ H1
0 (Ω) with φ ≥ 0 in Ω.

Then, we obtain from (4.12) and the condition (H1) that

A

∫
Ω

|∇uk|2 dx

∫
Ω

∇uk.∇φdx = A

∫
Ω

|∇uk|2 dx

C

∫
Ω

∇ω.∇φdx

= A

∫
Ω

|∇uk|2 dx

C

∫
Ω

φdx

≥ a1C

∫
Ω

φdx.

By using (H4) and (H5), we can choose C large enough, thus

a1C ≥ λ1 ‖α‖∞ f
([

λ2 ‖γ‖∞ + µ2 ‖η‖∞
b1

]
g (C ‖e‖∞) ‖e‖∞

)
+ µ1 ‖β‖∞ h (C ‖e‖∞) .

Therefore,

A

(∫
Ω

|∇uk|2 dx
)∫

Ω

∇uk.∇φdx

≥
[
λ1 ‖α‖∞ f

([
λ2 ‖γ‖∞ + µ2 ‖η‖∞

b1

]
g (C ‖e‖∞) ‖e‖∞

)
+ µ1 ‖β‖∞ h (C ‖e‖∞)

]
−
∫
Ω

uk − uk−1

τ ′
φdx

≥ λ1 ‖α‖∞
∫
Ω

f

([
λ2 ‖γ‖∞ + µ2 ‖η‖∞

b1

]
g (C ‖e‖∞) ‖e‖∞

)
φdx+ µ1

∫
Ω

h (C ‖e‖∞)φdx−
∫
Ω

uk − uk−1

τ ′
φdx

≥
∫
Ω

[
λ1α (x) f (v) + µ1β (x)h

(
uk
)
− uk − uk−1

τ ′

]
φdx.

(4.13)
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Also, we have

B

(∫
Ω

|∇v|2 dx
)∫

Ω

∇v∇ψdx ≥ (λ2 ‖γ‖∞ + µ2 ‖η‖∞)
∫
Ω

g (C ‖e‖∞)ψdx

≥ λ2

∫
Ω

γ (x) g (uk)ψdx+ µ2

∫
Ω

η (x) g (C ‖e‖∞)ψdx−
∫
Ω

vk − vk−1

τ ′
ψdx.

(4.14)

Again by using (H4) and (H5) for C large enough, we have

g (C ‖e‖∞) ≥ τ

[
(λ2 ‖γ‖∞ + µ2 ‖η‖∞)

b1

g (C ‖e‖∞) ‖e‖∞
]
≥ τ (v) . (4.15)

From (4.14) and (4.15), we have

B

∫
Ω

|∇v|2 dx

∫
Ω

∇v∇ψdx ≥ λ2

∫
Ω

γ (x) g (uk)ψdx+µ2

∫
Ω

η (x) τ (v)ψdx−
∫
Ω

vk − vk−1

τ ′
ψdx.

(4.16)

From (4.13) and (4.16), we have (u, v) is a subsolution of problem (4.1) with u ≤ u and v ≤ v

for C large enough.

In order to obtain a weak solution of problem (4.3), we shall use the arguments by Azzouz

and Bensedik [11] (observe that f, g, h, and τ does not depend on x). For this purpose, we

define a sequence {(un, vn)} ⊂ (H1
0 (Ω)×H1

0 (Ω)) as follows: u0 = u, v0 = v and (un, vn) is

the unique solution of the system



−A
(∫

Ω

|∇un|2 dx
)
4un = λ1α (x) f (vn−1) + µ1β (x)h (un−1)− uk − uk−1

τ ′
in Ω,

−B
(∫

Ω

|∇vn|2 dx
)
4vn = λ2γ (x) g (un−1) + µ2η (x) τ (vn−1)− vk − vk−1

τ ′
in Ω,

un = vn = 0 on ∂Ω.

(4.17)

We have (un−1, vn−1) ∈ (H1
0 (Ω)×H1

0 (Ω)), in the sense that, the right hand sides of (4.17) is

independent on un and vn.

Setting

A (t) = tA
(
t2
)
, B (t) = tB

(
t2
)
.
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Since A (R) = R, B (R) = R, f (vn−1) , h (un−1) , g (un−1) , and τ (vn−1) ∈ L2 (Ω), we deduce

from the results in [10], that system (4.17) has a unique solution (un, vn) ∈ (H1
0 (Ω)×H1

0 (Ω)) .

By using (4.17) and the fact that (u0, v0) is a supersolution of (4.1), we have

−A
(∫

Ω

|∇u0|2 dx
)
4u0 ≥ λ1α (x) f (v0) + µ1β (x)h (u0)− uk − uk−1

τ ′

= −A
(∫

Ω

|∇u1|2 dx
)
4u1,

−B
(∫

Ω

|∇v0|2 dx
)
4v0 ≥ λ2γ (x) g (u0) + µ2η (x) τ (v0)− vk − vk−1

τ ′

= −B
(∫

Ω

|∇v1| dx
)
4v1

and by using Lemma 4.2.1, we also have u0 ≥ u1 and v0 ≥ v1. In addition, since u0 ≥ u, v0 ≥
v and under the monotonicity condition of f, h, g, and τ , we can deduce

−A

∫
Ω

|∇u1|2 dx

4u1 = λ1α (x) f (v0) + µ1β (x)h (u0)− uk − uk−1

τ ′

≥ λ1α (x) f (v) + µ1β (x)h (u)− uk − uk−1

τ ′

≥ −A

∫
Ω

|∇u|2 dx

4u
and

−B

∫
Ω

|∇v1|2 dx

4v1 = λ2γ (x) g (u0) + µ2η (x) τ (v0)− vk − vk−1

τ ′

≥ λ2γ (x) g (u) + µ2η (x) τ (v)− vk − vk−1

τ ′

≥ −B

∫
Ω

|∇v|2 dx

4v.
According to Lemma 4.2.1, we have u1 ≥ u, v1 ≥ v for any u2, v2, thus we can write
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−A

∫
Ω

|∇u1|2 dx

4u1 = λ1α (x) f (v0) + µ1β (x)h (u0)− uk − uk−1

τ ′

≥ λ1α (x) f (v1) + µ1β (x)h (u1)− uk − uk−1

τ ′

= −A

∫
Ω

|∇u2|2 dx

4u2,

−B

∫
Ω

|∇v1| dx

4v1 = λ2γ (x) g (u0) + µ2η (x) τ (v0)− vk − uk−1

τ ′

≥ λ2γ (x) g (u1) + µ2η (x) τ (v1)− vk − vk−1

τ ′

= −B

∫
Ω

|∇v2|2 dx

4v2.

Then, u1 ≥ u2, v1 ≥ v2.

Similarly, u2 ≥ u and v2 ≥ v because

−A

∫
Ω

|∇u2|2 dx

4u2 = λ1α (x) f (v1) + µ1β (x)h (u1)− uk − uk−1

τ ′

≥ λ1α (x) f (v) + µ1β (x)h (u)− uk − uk−1

τ ′

≥ −A

∫
Ω

|∇u|2 dx

4u,
−B

∫
Ω

|∇v2|2 dx

4v2 = λ2γ (x) g (u1) + µ2η (x) τ (v1)− vk − vk−1

τ ′

≥ λ2γ (x) g (u) + µ2η (x) τ (v)− vk − vk−1

τ ′

≥ −B

∫
Ω

|∇v|2 dx

4v.
Repeating this argument, we get a bounded monotone sequence {(un, vn)} ⊂ (H1

0 (Ω)×H1
0 (Ω))

satisfying

u = u0 ≥ u1 ≥ u2 ≥ ... ≥ un ≥ ... ≥ u > 0 (4.18)
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and

v = v0 ≥ v1 ≥ v2 ≥ ... ≥ vn ≥ ... ≥ v > 0. (4.19)

Using the continuity of the functions f, h, g, τ and the definition of the sequences {un} , {vn} ,there

exist constants Ci > 0, i = 1, ..., 4 independent of n such that

|f (vn−1)| ≤ C1, |h (un−1)| ≤ C2, |g (un−1)| ≤ C3 (4.20)

and

|τ (un−1)| ≤ C4 for all n.

Multiplying the first equation of (4.17) by un, integrating, using the Holder inequality and

Sobolev embedding, we can show that

a1

∫
Ω

|∇un|2 dx ≤ A

∫
Ω

|∇un|2 dx

∫
Ω

|∇un|2 dx

= λ1

∫
Ω

α (x) f (vn−1)undx+ µ1

∫
Ω

β (x)h (un−1)undx−
∫
Ω

uk − uk−1

τ ′
undx

≤ λ1 ‖α‖∞
∫
Ω

|f (vn−1)| |un| dx+ µ1 ‖β‖∞
∫
Ω

|h (un−1)| |un| dx−
∫
Ω

uk − uk−1

τ ′
|un| dx

≤ C1λ1

∫
Ω

|un| dx+ C2µ1

∫
Ω

|un| dx−
∫
Ω

uk − uk−1

τ ′
|un| dx

≤ C5 ‖un‖H1
0 (Ω) ,

or

‖un‖H1
0 (Ω) ≤ C5, ∀n, (4.21)

where C5 > 0 is a constant independent of n. Similarly, there exists C6 > 0 independent of n

such that

‖vn‖H1
0 (Ω) ≤ C6, ∀n. (4.22)

From (4.21) and (4.22), we infer that {(un, vn)} has a subsequence which weakly converges in

H1
0 (Ω) to a limit (u, v) with the properties u ≥ u > 0 and v ≥ v > 0. Being monotone and

also by using a standard regularity argument, {(un, vn)} converges itself to (u, v) .

Now, passing the limit in (4.17), we deduce that (u, v) is a positive solution of system (4.4).

The proof of theorem is completed.
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Conclusions

In this thesis, our result is an extension for our previous study in ( [13, 16, 44]) which studied

the stationary case, this idea is new for evolutionary case of this kind of problem, This thesis

deals with the existence of positively solution and its asymptotic behavior for parabolic system

of (p(x), q(x))-Laplacian system of partial differential equations using a sub and super solution

according to some given boundary conditions, which is familiar in physics, since it appears

clearly natural in inflation cosmology and super symmetric filed theories, quantum mechanics,

and nuclear physics (see [10, 40]). This sort of problem has many applications in several

branches of physics such as nuclear physics, optics, and geophysics (see [11, 16]). In future

work, we will try to extend this study for the hyperbolic case of the presented problem, but

by using the semigroup theory.
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elliptiques, Springer-Velarg, France, Paris, 1993.

[49] Kirchhoff, G. Mechanik ; Teubner: Leipzig, Germany, 1883.

[50] Kovcik. O., Rkosnk. J.: On spaces Lp(x) and W 1,p(x), Czechoslovak Math. J. 41, 592-618,

1991.
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