People's Democratic Republic of Algeria Ministry of Higher Education and Scientific Research

Larbi Tebessi University -Tebessa
Faculty of Exact Sciences and Natural Sciences and Life
Department of Mathematics and Computer Sciences

Doctoral thesis in mathematics

Option: Stationary Problems

Theme

Study of some fractional elliptic problems

Presented by Mr. ABID Djamel

Dissertation Committee:

President	ZARAI Abderrahmane	Prof	Larbi Tebessi University-Tebessa
Supervisor	AKROUT Kamel	Prof	Larbi Tebessi University- Tebessa
Co-Supervisor	GHANMI Abdeljabbar	A. Prof	Tunis EI Manar University- Tunisia
Examiner	SAOUDI Khaled	Prof	Abbes Laghrour university- Khenchela
Examiner	BERBICHE Mohamed	Prof	Mohamed Khider University- Biskra
Examiner	BOUMAZA Nouri	A. Prof	Larbi Tebessi University- Tebessa
Examiner	BERRAH Khaled	A. Prof	Larbi Tebessi University- Tebessa

Contents

Introduction 9
1 Preliminaries 12
1.1 Functional spaces 13
1.1.1 Space of continuous functions 13
1.1.2 $\quad L^{p}(\Omega)$ Spaces 13
1.1.3 Sobolev Space $W^{1, p}(\Omega)$ 14
1.1.4 Fractional Sobolev spaces $W^{s, p}(\Omega)$ 16
1.2 Notions on operators 17
1.3 Weak derivative 18
1.4 Convergence criteria 18
2 Variational methods 21
2.1 Critical point theory 22
2.1.1 Critical point 22
2.1.2 Palais-Smale condition 23
2.2 The Nehari Manifold 23
2.3 Fibering method 24
2.3.1 Example of application 25
2.4 Ekeland's variational principle 28
3 Existence result for sub-critical and critical p-fractional elliptic equations via Nehari manifold method 30
3.1 Introduction 31
3.2 Nehari manifold and fibering maps analysis 34
3.3 Proof of Theorem (3.1) 39
3.4 Proof of Theorem (3.2) 42
4 Multiple solutions for the p-fracional laplacian problem with critical growth 47
4.1 Introduction 48
4.2 Functional settings 49
4.3 Proof of the main result 55
Conclusion 57
Bibliography 58

Acknowledgements

First, I want to thank God, for giving me the courage and patience to be able to finish this thesis. It is my honor to express my gratitude to my supervisor Pr. AKROUT Kamel, for his tremendous support and guidance, without which this thesis would have been inconceivable.I thank him for An interesting research topic that he suggested for me. Thanking him for his help, and his great patience despite my shortcomings, I feel very proud and very lucky to have been mentored by this person. And I cannot thank him or give him his due in return for his help and guidance, which had the greatest impact on this thesis. I also extend my sincere thanks to my co-supervisor, Dr. GHANMI Abdeljabbar, for his help, his advice, and his encouragement. I would like to sincerely thank Pr. ZARAI Abderrahman for the honor he bestowed on me by agreeing to chair my thesis jury. My thanks then go to Pr. SAOUDI Khaled, Pr. BERBICHE Mohamed, Dr. BOUMAZA Nouri and Dr. BERRAH Khaled who agreed to participate in the jury for this thesis.

Dedication

I am dedicating this modest thesis to my parents, to all my family, friends, and peers.

العمل المدد في هذه الأطروحة خصص لدراسة الوجود وتعدية الحلول الوجبة غير التافهة لسسألة p ا ـ العالس الكسرية.
تم الحصول على التتأجُ باستخدام بعض تقنيات التويع. التيجة الأولى مي وجود طلين موجيبين غير تافهين ، باستخدام منوعة ينياري وطريقة الألياف ، في الحالات الحرجة ودون الحير الحرجة. النتيجة الثانية تحتوي على وجود ثلاثة طول كتالفة ، فقط في الحالة الحرجة ، باستخدام مبدأ إيكيالدن التغير، في ظل فرضيات يكتلفة. الكلماتِ الفتاحية : العامل الكسري ، منوعة نهاري ،طريقة الألياف ، مبدأ إيكيلاند المتغي.

Résumé

Le travail présenté dans cette thèse est consacré à l'étude de l'existence et la multiplicité de solutions positives non triviales d'un problème p-laplacien fractionnaire. Les résultats sont obtenus en utilisant certaines techniques variationnelle. La première résultat est celle de l'existence de deux solutions positives non-triviales, en utilisant la variété de Nehari et la méthode de fibering, dans les cas critique et sous-critique. La deuxième résultat contient l'existence de trois solutions distincts, seulement dans le cas critique, en utilisans le principe variationnelle d'Ekeland, sous différentes hypothèses.

Mots-clés: Opérateur fractionnaire, la variété de Nehari, méthode des fibering, principe d'Ekeland.

Abstract

The work presented in this thesis is devoted to the study of the existence and multiplicity positive non-trivial solutions of a fractional p-Laplacian problem. The results are obtained using some variational techniques. The first result is that of the existence of two non-trivial positive solutions, using the Nehari manifold and the fibering method, in the critical and subcritical cases. The second result contains the existence of three distinct solutions, only in the critical case, using Ekeland's variational principle, under different assumptions.

Keywords: Fractional operator, Nehari Manifold, Fibering method, Ekeland's variational principle.

Introduction

The topic of differential fractional equations is one of the most important subjects since the concept of fractional calculus appeared in the correspondence of Leibniz and Lopital in 1695. this topic has several important applications in the real world. Physics, financial, mechanics, chemestry. And other various phenomena in diverse fields that can be studied as a fractional equation such as nuclear reactor dynamics, thermoelasticity, mecanical vebrations, bilogical tissues, fractional entropy, fractional diffusion [29,31], phase transitions [4,36], materials science [12], water waves [20,23], conservation laws [13]. For more details on this subject, we refer to $[9,19]$.
Our interest in the work is related to the fractional Laplacian (the Ries fractional derevative), which appears in physical sciences, describing an unusual diffusion process as result of the random jumpers that are able to move between nearby sites, or distant sites by means of Lèvey flights, in the general case, fracional Laplacian describes the contribution to a conservation law of a non-local process affected by the global state of intrest at given time. This study is concerned with fractional Laplacian equations with regular nonlinearities. There are many works on the existence of solutions for this kind of elliptic equations such as

$$
\left\{\begin{array}{l}
(-\Delta)^{s} u=\lambda u^{p}+u^{q} \text { in } \Omega, u>0 \tag{1}\\
u=0 \text { on } \mathbb{R}^{N} \backslash \Omega
\end{array}\right.
$$

where $N>2 s, 0<s<1, p, q>0$, and $\lambda>0$, see for example [1,11]. In [33,34], Servadei and Valdinoci, studied the following more general problem

$$
\left\{\begin{array}{l}
(-\Delta)^{s} u=f(x, u) \text { in } \Omega \tag{2}\\
u=0 \text { on } \mathbb{R}^{N} \backslash \Omega
\end{array}\right.
$$

Under appropriate conditions on the nonlinearity f, and by using variational method, the authors proved the existence and multiplicity of non-negative solutions to the subcritical
growth problems (2). Critical exponent problems like (2), are studied in [11,28,35].
Problems similar to (1) have been also studied in the local setting with different elliptic operators; see [5,14,25]. Very recently, Saoudi et al. [33], considered an extension of (1), more precisely

$$
\left\{\begin{array}{l}
\mathcal{L} u=\lambda a(x) u^{p}+b(x) u^{q} \text { in } \Omega, u>0 \tag{3}\\
u=0 \text { on } \mathbb{R}^{N} \backslash \Omega
\end{array}\right.
$$

where \mathcal{L} is a nonlocal operator which is a generalization of the fractional laplacian equation. By constrained minimization on suitable subsets of Nehari manifold combined with fibering maps, the authors proved that for $\lambda>0$, small enough, problem (3), has at least two nonnegative solutions.
As far as we know, in this direction, the first example for the p-Laplacian operator, was given in [27]. After that, problems involving fully nonlinear operators has been studied in [22]. Ghanmi [27], considered the following elliptic problem

$$
\left\{\begin{array}{l}
(-\Delta)_{p}^{s} u(x)=\lambda|u|^{q-2} u+f(x, u) \text { in } \Omega \tag{4}\\
u=0 \text { on } \mathbb{R}^{n} \backslash \Omega
\end{array}\right.
$$

where $(-\Delta)_{p}^{s}$ is the p-fractional Laplacian operator. Using the decomposition of the Nehari manifold, the auther, proved that the non-local elliptic problem (4), has at least two nontrivial solutions. We also refer to $[7,8]$ where the author obtained a multiplicity result for a more general problem.
In this thesis, we consider the following p-fractional Laplacian problem

$$
\left\{\begin{array}{l}
(-\Delta)_{p}^{s} u(x)=\lambda|u|^{p-2} u+f(x, u)+\mu g(x, u) \text { in } \Omega, u>0 \tag{E}\\
u=0 \text { on } \mathbb{R}^{n} \backslash \Omega
\end{array}\right.
$$

where Ω is a smooth bounded domain in $\mathbb{R}^{n}, n>p s, s \in(0,1), \lambda$ and μ are positive parameters and $f, g: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}_{+}$, are continuous functions.
In the first chapter, we start by giving some basic notions, that concern the functional framework necessary to obtain the results of the existence of solutions for the considered problem.

In the second chapter, we present the variational methods, which contains the critical point theory, Nehari manifold, fibering map, palais-smale condition, and Ekeland's variational principal.

In the third chapter, we use the Nehari Manifold and fibering maps to obtain the existence of two positive solutions.
In the fourth chapter, under different assumptions, we obtain the existence of three different solutions, by using Ekeland's variational principal.

Preliminaries

Contents

1.1 Functional spaces . 13
1.1.1 Space of continuous functions . 13
1.1.2 $L^{p}(\Omega)$ Spaces . 13
1.1.3 Sobolev Space $W^{1, p}(\Omega)$. 14
1.1.4 Fractional Sobolev spaces $W^{s, p}(\Omega)$. 16
1.2 Notions on operators . 17
1.3 Weak derivative . 18
1.4 Convergence criteria . 18

In this chapter, we briefly recall the essential definitions and notions which we will use in the later chapters such as space of continuous functions, $L^{p}(\Omega)$ spaces, Sobolev and fractional Sobolev spaces, and some basic theorems.

1.1 Functional spaces

1.1.1 Space of continuous functions

Definition 1.1 Let $\Omega \subseteq \mathbb{R}^{N}$ be an open set and $u: \Omega \rightarrow \mathbb{R}$ a function. We say that u is continuous if

$$
\forall x_{0} \in \Omega, \forall \varepsilon>0, \exists \delta>0
$$

such that

$$
x \in E,\left\|x-x_{0}\right\|<\delta \Longrightarrow|u(x)-u(y)|<\varepsilon
$$

where the norm in \mathbb{R}^{N} is the Euclidean norm.

Definition 1.2 Let Ω be an open set in \mathbb{R}. We define :

$$
C(\Omega):=\{u: \Omega \rightarrow \mathbb{R} u \text { is continuous }\}
$$

$$
C(\bar{\Omega}):=\{u: \Omega \rightarrow \mathbb{R} u \text { is continous and extends continuously to } \bar{\Omega}\} .
$$

Let

$$
\begin{gathered}
\|\cdot\|_{C}: C(\bar{\Omega}) \rightarrow \mathbb{R}, \\
u \longmapsto \sup _{x \in \Omega}|u(x)| \text { is a norm. } .
\end{gathered}
$$

1.1.2 $L^{p}(\Omega)$ Spaces

[15]
Let $p \in \mathbb{R}$ with $1 \leq p<\infty$ and $\Omega \subset \mathbb{R}^{N}$, we set

$$
L^{p}(\Omega)=\left\{f: \Omega \longrightarrow \mathbb{R} \backslash f \text { is measurable and } \int|f|^{p} d \mu<\infty\right\}
$$

we define the L^{p} norm of f by

$$
\|f\|_{L^{p}}=\|f\|_{p}=\left(=\int_{\Omega}|f|^{p} d \mu\right)^{1 / p}
$$

If $p=\infty$, the space $L^{\infty}(\Omega)$ satisfy

$$
L^{\infty}(\Omega)=\{f: \Omega \longrightarrow \mathbb{R} / f \text { is measurable and } \exists C>0 \text { such that }|f(x)| \leq C \text { a.e on } \Omega\}
$$

we define the L^{∞} norm of f by

$$
\|f\|_{L^{\infty}}=\|f\|_{\infty}=\inf \{C ;|f| \leq C \text { a.e on } \Omega\}
$$

$L^{\infty}(\Omega)$ is a Banach space.
If $p=2$, the space $L^{2}(\Omega)$ is a Hilbert space for scalar product

$$
(f, g)=\int_{\Omega} f(x) g(x) d x
$$

We denote by $L_{l o c}^{1}(\Omega)$ the set of locally integrable functions on Ω and we write

$$
L_{l o c}^{1}(\Omega)=\left\{u: u \in L^{1}(K) \text { for all compact } K \text { of } \Omega\right\} .
$$

Remark 1.1 If $f \in L^{\infty}(\Omega)$ then we have

- $|f| \leq\|f\|_{L^{\infty}}$ a.e. on Ω.
- $L^{p}(\Omega) \subset L_{\text {loc }}^{1}(\Omega)$ for all $1 \leq p \leq \infty$.
- $\left(L^{p}(\Omega),\|\cdot\|_{p}\right)$ is Banach space for $1 \leq p \leq \infty$ separable for $1 \leq p<\infty$ and reflexive for $1<p<\infty$

Theorem 1.1 [15] (Hölder's inequality)

Let $1 \leq p \leq \infty$, we denote by p^{\prime} the conjugate exponent,

$$
\frac{1}{p}+\frac{1}{p^{\prime}}=1
$$

Assume that $f \in L^{p}(\Omega)$ and $g \in L^{q}(\Omega)$, then $f g \in L^{1}(\Omega)$ and

$$
\int_{\Omega}|f g| \leq\|f\|_{L^{p}}\|g\|_{L^{p^{\prime}}}
$$

1.1.3 Sobolev Space $W^{1, p}(\Omega)$

Let $\Omega \subset \mathbb{R}^{N}$ be an open set and let $p \in \mathbb{R}$ with $1 \leq p \leq \infty$.

Definition 1.3 [15] The Sobolev space $W^{1, p}(\Omega)$ is defined by $W^{1, p}(\Omega)=\left\{u \in L^{p}(\Omega): \exists g_{1}, \ldots, g_{N} \in L^{p}(\Omega)\right.$ such that $\left.\int_{\Omega} u \frac{\partial \varphi}{\partial x_{i}}=-\int_{\Omega} g_{i} \varphi \forall \varphi \in C_{c}^{\infty}(\Omega), \forall i=\overline{1, N}\right\}$. We set

$$
H^{1}(\Omega)=W^{1,2}(\Omega)
$$

For $u \in W^{1, p}(\Omega)$ we define $\frac{\partial u}{\partial x_{i}}=g_{i}$, and we write

$$
\nabla u=\operatorname{grad} u=\left(\frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}}, \ldots, \frac{\partial u}{\partial x_{N}}\right)
$$

The space $W^{1, p}(\Omega)$ is equipped with the norm

$$
\|u\|_{W^{1, p}}=\|u\|_{L^{p}}+\sum_{i=1}^{N}\left\|\frac{\partial u}{\partial x_{i}}\right\|_{L^{p}} .
$$

Proposition 1.1 [15] $W^{1, p}(\Omega)$ is a Banach space for every $1 \leq p \leq \infty$. $W^{1, p}(\Omega)$ is reflexive for $1<p<\infty$, and it is separable for $1 \leq p<\infty$.

Corollary 1.1 [24] Let $1 \leq p \leq \infty$. We have

- $W^{1, p}(\Omega) \subset L^{p^{*}}(\Omega)$, where $\frac{1}{p^{*}}=\frac{1}{p}-\frac{1}{N}$, if $p<N$,
- $W^{1, p}(\Omega) \subset L^{q}(\Omega), \forall q \in[p,+\infty)$, if $p=N$,
- $W^{1, p}(\Omega) \subset L^{\infty}(\Omega)$, if $p>N$,
and all these injections are continuous. Moreover, if $p>N$ we have, for all $u \in W^{1, p}(\Omega)$,

$$
|u(x)-u(y)| \leq C\|u\|_{W^{1, p}}|x-y|^{\alpha} \text { a.e. } x, y \in \Omega,
$$

with $\alpha=1-(N / p)$ and C is a constant depends only on Ω, p, and N. In particular $W^{1, p}(\Omega) \subset C(\bar{\Omega})$.
Theorem 1.2 [24] (Rellich-Kondrachov). Suppose that Ω is bounded and of class C^{1}. Then we have the following compact injections:

- $W^{1, p}(\Omega) \subset L^{q}(\Omega), \forall q \in\left[1, p^{*}\right) W^{1, p}(\Omega) \subset L^{q}(\Omega), \forall q \in\left[1, p^{*}\right)$, where $\frac{1}{p^{*}}=\frac{1}{p}-\frac{1}{N}$, if $p<N$,
- $W^{1, p}(\Omega) \subset L^{q}(\Omega), \forall q \in[p,+\infty)$, if $p=N$,
- $W^{1, p}(\Omega) \subset C(\bar{\Omega}), \forall q \in[p,+\infty)$, if $p>N$.

In particular, $W^{1, p}(\Omega) \subset L^{p}(\Omega)$, with compact injection for all $p($ and all N).

1.1.4 Fractional Sobolev spaces $W^{s, p}(\Omega)$

Let Ω be a smooth bounded set in $\mathbb{R}^{N}, N>p s$ with $s \in(0,1)$, we introduce fractional Sobolev space

$$
W^{s, p}(\Omega)=\left\{u \in L^{p}(\Omega): \frac{u(x)-u(y)}{|x-y|^{\frac{N+p s}{p}}} \in L^{p}(\Omega)\right\}
$$

with the norm

$$
\|u\|_{W^{s, p}(\Omega)}=\|u\|_{L^{p}(\Omega)}+\left(\int_{\Omega \times \Omega} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+p s}} d x d y\right)^{\frac{1}{p}}
$$

We consider the space

$$
X=\left\{u: \mathbb{R}^{N} \rightarrow \mathbb{R}, u \in L^{p}(\Omega) \text { and } \frac{u(x)-u(y)}{|x-y|^{\frac{N+p s}{p}}} \in L^{p}(\Sigma)\right\}
$$

with the norm

$$
\|u\|_{X}=\|u\|_{L^{p}(\Omega)}+\left(\int_{\Sigma} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+p s}}\right)^{\frac{1}{p}} .
$$

Proposition 1.2 [24] The space $W^{s, p}(\Omega)$ is of local type, that is, for every u in $W^{s, p}(\Omega)$ and for every $\varphi \in D(\Omega)$, the product φ u belongs to $W^{s, p}(\Omega)$.

Proposition 1.3 [24] The space $D\left(\mathbb{R}^{N}\right)$ is dense in $W^{s, p}(\Omega)$.
Theorem 1.3 [24] [28]Let $s \in] 0,1[$ and let $p \in] 1, \infty[$. We have:

- If $s p<N$, then $W^{s, p}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{q}\left(\mathbb{R}^{N}\right)$ for every $q \leq N p /(N-s p)$.
- If $N=s p$, then $W^{s, p}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{q}\left(\mathbb{R}^{N}\right)$ for every $q<\infty$.
- If $s p>N$, then $W^{s, p}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{\infty}\left(\mathbb{R}^{N}\right)$ and, more precisely,

$$
W^{s, p}\left(\mathbb{R}^{N}\right) \hookrightarrow C_{b}^{0, s-N / p}\left(\mathbb{R}^{N}\right)
$$

Proposition 1.4 [24] Let $s \in[0,1[$ and let $p>1$. Let Ω be an open set that admits an (s, p) extension; then $D(\bar{\Omega})$, the space of restrictions to Ω of functions in $D\left(\mathbb{R}^{N}\right)$, is dense in $W^{s, p}\left(\mathbb{R}^{N}\right)$.

Corollary 1.2 [24] Let $s \in] 0,1[$ and let $p \in] 1, \infty[$. Let Ω be a Lipschitz open set. We then have:

- If $s p<N$, then $W^{s, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ for every $q \leq N p /(N-s p)$.
- If $N=s p$, then $W^{s, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ for every $q<\infty$.
- If $s p>N$, then $W^{s, p}(\Omega) \hookrightarrow L^{\infty}(\Omega)$ and, more precisely,

$$
W^{s, p}(\Omega) \hookrightarrow C_{b}^{0, s-N / p}(\Omega) .
$$

Theorem 1.4 [24] Let Ω be a bounded Lipschitz open subset of \mathbb{R}^{N}. Let $s \in[0,1[$, let $p>1$, and let $N \geq 1$. We then have:

- If $s p<N$, then the embedding of $W^{s, p}(\Omega)$ into L^{k} is compact for every

$$
k<N p /(N-s p) .
$$

- If $s p=N$, then the embedding of $W^{s, p}(\Omega)$ into L^{q} is compact for every $q<\infty$.
- If $s p>N$, then the embedding of $W^{s, p}(\Omega)$ into $C_{b}^{0, \lambda}(\Omega)$ is compact for $\lambda<s-N / p$.

1.2 Notions on operators

Let $(X,\|\cdot\|)$ be a real Banach space and let X^{\prime} be topological dual.
Definition 1.4 Let $A: X \rightarrow X^{\prime}$, we say that :

- Continuous if $\left\|A x_{n}-A x\right\|_{X^{\prime}} \rightarrow 0$ when $\left\|x_{n}-x\right\|_{X} \rightarrow 0$.
- Compact if $A\left(\bar{B}_{X}\right)$ is relatively compact in X^{\prime}, where B_{X} denotes the ball unit in X.
- Coercive if

$$
\lim _{\|x\| \rightarrow+\infty} \frac{\langle A(x), x\rangle}{\|x\|}=+\infty
$$

- Monotonous if

$$
\langle A u-A v, u-v\rangle \geq 0, \forall u, v \in X \text { with } u \neq v .
$$

- Strictly monotonous if

$$
\langle A u-A v, u-v\rangle>0, \forall u, v \in X \text { with } u \neq v .
$$

- Bounded if the image by A of any bounded subset of X is a bounded subset of X^{\prime}.
- Semi-continuous

$$
\text { if } u_{n} \rightarrow u \text { when } n \rightarrow \infty \text { implies } A u_{n} \rightharpoonup A u \text { when } n \rightarrow \infty .
$$

- Strongly continuous

$$
\text { if } u_{n} \rightharpoonup u \text { when } n \rightarrow \infty \text { implies } A u_{n} \rightarrow A u \text { when } n \rightarrow \infty .
$$

1.3 Weak derivative

Definition 1.5 [30] (Directional derivative)

Let w be a part of a Banach space X and $F: w \rightarrow \mathbb{R}$ a real valued function. If $u \in w$ and $z \in X$ we have $u+t z \in w$, we say that F admits (at the point u) a derivative in the direction z if the limit

$$
\lim _{\substack{+t \rightarrow 0}} \frac{F(u+t z)-F(u)}{t}, \text { for all } t>0 \text { small enough }
$$

exists. We will denote this limit $F_{z}^{\prime}(u)$. The Gateaux differential generalizes the idea of a directional derivative.

Definition 1.6 [30] (Gateaux derivative) Let w be a part of a Banach space X and $F: w \rightarrow \mathbb{R}$. If $u \in w$, we say that F is Gateaux differentiable in u, if there exists $l \in X^{\prime}$ or $F(u+t z)$ for $t>0$ small enough. The Gateaux differential is defined

$$
\langle l, z\rangle=\lim _{t \rightarrow 0^{+}} \frac{F(u+t z)-F(u)}{t} .
$$

Where $F^{\prime}(u):=l$.

Definition 1.7 [30] (Frechet derivative) Let X be a Banach space, W an open space in X and F a function. If $u \in w$, we say that F is differentiable (or derivable) in u (in the sense of Frechet) if there exists $l \in X^{\prime}$, such that:

$$
\text { for all } \quad v \in W \text { we have, } F(v)-F(u)=\langle l, v-u\rangle+\sigma(v-u) \text {. }
$$

If F is differentiable, l is unique and we denote by $F^{\prime}(u):=l$. The set of differentiable functions $w \rightarrow \mathbb{R}$ will be denoted by $C^{1}(w, \mathbb{R})$.

1.4 Convergence criteria

Theorem 1.5 [15] (Lebesgue's dominated convergence) Let $\left(f_{n}\right)$ be a sequence of functions in $L^{1}(\Omega)$ that satisfy

- $f_{n}(x) \longrightarrow f$ a.e, on Ω,
- There is a function $g \in L^{1}(\Omega)$ such that for all n,

$$
\left|f_{n}(x)\right| \leq g(x), \text { a.e. on } \Omega
$$

Then

$$
f \in L^{1}(\Omega) \text { and }\left\|f_{n}-f\right\|_{L^{1}} \longrightarrow 0
$$

Theorem 1.6 [30] (Vitali's convergence theorem) Let $f_{1}, f_{2}, \ldots b e$ L ${ }^{p}$-integrable functions on some measure space, for $1 \leq p<\infty$. The sequence $\left\{f_{n}\right\}$ converges in L^{p} to a measurable function f if and and only if

- The sequence $\left\{f_{n}\right\}$ converges to f in measure,
- The functions $\left\{\left|f_{n}\right|^{p}\right\}$ are uniformly integrable
- For every $\epsilon>0$, there exists a set E of finite measure, such that $\int_{E^{c}}\left|f_{n}\right|^{p}<\epsilon$ for all n.

Theorem 1.7 Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $L^{p}(\Omega)$ and $f \in L^{p}(\Omega)$ such that

$$
\left\|f_{n}-f\right\|_{p} \xrightarrow[n \longrightarrow \infty]{\longrightarrow} 0 .
$$

Then, there exist a subsequence $\left(f_{n_{k}}\right)_{k \in \mathbb{N}}$ and a function $h \in L^{p}(\Omega)$ such that

- $f_{n_{k}}(x) \longrightarrow f(x)$ a.e on Ω,
- $\left|f_{n_{k}}(x)\right| \leq h(x) \forall k$, a.e. on Ω.

Lemma 1.1 [15] (Fatou's Lemma)

Let $\left(f_{n}\right)$ a sequence of functions in $L^{1}(\Omega)$ that satisfy

- For all $n, f_{n} \geq 0$,
- $\sup _{n} \int f_{n}<\infty$,

For almost all $x \in \Omega$ we set $f(x)=\liminf _{n \rightarrow \infty} f_{n}(x) \leq+\infty$. Then $f \in L^{1}(\Omega)$ and

$$
\int_{\Omega} f(x) d x \leq \lim _{n \rightarrow \infty} \inf \int_{\Omega} f_{n}(x) d x
$$

Lemma 1.2 [16] (Brezis-Lieb).[14] Let Ω be an open bounded set in \mathbb{R}^{n} and $1<p<+\infty,\left(f_{n}\right)_{n}$ is sequence of measurable functions such that $f_{n} \rightarrow f$ a.e. in $L^{p}(\Omega)$, then

$$
f \in L^{p}(\Omega) \text { and }\|f\|_{p}^{p}=\left\|f_{n}\right\|_{p}^{p}-\left\|f_{n}-f\right\|_{p}^{p}+\sigma(1) .
$$

Lemma 1.3 [34] Let $K: \mathbb{R}^{n} \backslash\{0\} \rightarrow(0,+\infty)$ satisfy the assumptions

- $\gamma K \in L^{1}\left(\mathbb{R}^{n}\right)$, where $\gamma(x)=\min \left\{\|x\|^{2}, 1\right\}$,
- $K(x)=K(-x) \quad$ for any $x \in \mathbb{R}^{n} \backslash\{0\}$.

And let v_{j} be a bounded sequence in X_{0}. Then, there exists $v_{\infty} \in L^{v}\left(\mathbb{R}^{n}\right)$ such that, up to a subsequence,

$$
v_{j} \rightarrow v_{\infty} \text { in } L^{v}\left(\mathbb{R}^{n}\right) \text { asj } \rightarrow \infty, \text { for any } v \in\left[1,2^{*}\right)
$$

Theorem 1.8 (Bolzano's Theorem) Let a and b two real numbers with $a<b$ and let

$$
g:[a, b] \rightarrow \mathbb{R}
$$

a continuous application where

$$
g(a) g(b) \leq 0 .
$$

Then g admits at least one zero in $[a, b]$

Definition 1.8 [15] Let $f: D \rightarrow R$ and let $x_{0} \in D$. We say that f is lower semicontinuous function (l.s.c) at x_{0} if for every $\epsilon>0$, there exist $\delta>0$ such that

$$
f\left(x_{0}\right)-\epsilon<f(x) \quad \text { for all } \quad x \in B\left(x_{0} ; \delta\right) \cap D .
$$

Or equivalently

$$
\lim _{x \rightarrow x_{0}} \inf f(x) \geq f\left(x_{0}\right)
$$

Variational methods

Contents

2.1 Critical point theory . 22
2.1.1 Critical point . 22
2.1.2 Palais-Smale condition . 23
2.2 The Nehari Manifold . 23
2.3 Fibering method . 24
2.3.1 Example of application . 25
2.4 Ekeland's variational principle . 28

This chapter contains some fundamental definitions and theorems, as well as the different variational techniques which, will be used to obtain the main results in this thesis.

2.1 Critical point theory

2.1.1 Critical point

Definition 2.1 (Homogeneous function) Let f be a function of n variables defined on a set S for which $\left(t x_{1}, \ldots, t x_{n}\right) \in S$ whenever $t>0$ and $\left(t x_{1}, \ldots, t x_{n}\right) \in S$. Then f is homogeneous of degree k if

$$
f\left(t x_{1}, \ldots, t x_{n}\right)=t^{k} f\left(x_{1}, \ldots, x_{n}\right) \text { for all }\left(x_{1}, \ldots, x_{n}\right) \in S \text { and for all } \quad t>0
$$

Definition 2.2 (Coercivity) f is a coercive function if

$$
\lim _{\|x\| \rightarrow \infty} f(x)=\infty
$$

Definition 2.3 (Critical point) [30] A point $(u, v) \in E$ is critical for J_{λ} if $J_{\lambda}^{\prime}(u, v)=0$, otherwise (u, v) is regular. If $J_{\lambda}(u, v)=c$ for some critical point $(u, v) \in E$ of J_{λ}, the value c is critical, otherwise c is regular.

Let E be a Banach space, $\Phi \in C^{1}(E, \mathbb{R})$ and \mathcal{N} is a set of constraints where:

$$
\mathcal{N}=\{v \in E: \Phi(v)=0\}
$$

Definition 2.4 (Lagrange multiplier) [30] we suppose that for all $u \in \mathcal{N}$, we have $\Phi^{\prime}(u) \neq 0$. If J $\in C^{1}(E, \mathbb{R})$ we say that $c \in \mathbb{R}$ is critical value of J on \mathcal{N}, if there exists $u \in \mathcal{N}$, and $\lambda \in \mathbb{R}$ such that

$$
J(u)=c \text { and } J^{\prime}(u)=\lambda \Phi^{\prime}(u) .
$$

The point u is a critical point of J on \mathcal{N} and the real λ is called the Lagrange multiplier for the critical value c (or the critical point u).

When X is a functional space and the equation $J^{\prime}(u)=\lambda \Phi^{\prime}(u)$ corresponds to a partial derivative equation, we say that $J^{\prime}(u)=\lambda \Phi^{\prime}(u)$ is the Euler-Lagrange equation (or the Euler's equation) satisfied by the critical point u on the constraint \mathcal{N}.

Theorem 2.1 [30] Let $(E,\|\|$.$) be a Banach space, \Omega$ an open in E and $J: \Omega \rightarrow \mathbb{R}$ a differentiable function on Ω and $\Phi \in C^{1}\left(\Omega, \mathbb{R}^{n}\right)$ of components $\Phi_{1}, \ldots, \Phi_{n}$. Given a point in \mathbb{R}^{n}, we set $K=\Phi^{-1}(a)$ which we assume not empty, if at a point $u_{0} \in K$

$$
J\left(u_{0}\right)=\inf _{x \in K} J(u),
$$

and if moreover the differential $\Phi^{\prime}\left(u_{0}\right) \in L\left(E, \mathbb{R}^{n}\right)$ is surjective then there exist real numbers $\lambda_{1}, \ldots, \lambda_{n}$ for which

$$
J^{\prime}\left(u_{0}\right)=\sum_{i=1}^{n} \lambda_{i} \Phi_{i}^{\prime}\left(u_{0}\right) .
$$

2.1.2 Palais-Smale condition

Definition 2.5 A Plais-Smale sequence for the funcational I is a sequence $\left(x_{n}\right)_{n \in N}$ satisfying

- $I_{X_{0}}\left(x_{n}\right)_{n \in N}$ is Bounded.
- $I_{X_{0}}^{\prime}\left(x_{n}\right)$ goes to zero in X^{\prime}.

Definition 2.6 [32] the Palais-Smale condition is a compactness property related to functional defined on a Banach space. It states as follows: Let $I: E \rightarrow F$ be a C^{1} functional defined on the Banach space E. and $c \in \mathbb{R}$.
If for any given sequence $\left(x_{n}\right)_{n}$ in E such that $I\left(x_{n}\right) \rightarrow c$ and $I^{\prime}\left(x_{n}\right) \rightarrow 0$ there exist a converging subsequence of $\left(x_{n}\right)_{n}$, we say that I satifies the Palais-Smale at level c.

Remark 2.1 If $I\left(x_{n}\right)$ is bounded, $I^{\prime}\left(x_{n}\right) \rightarrow 0$ in E^{\prime} and $\left\|x_{n}\right\|_{F}$ is bounded we say that I satisfies a weak Palais-Smale condition.

2.2 The Nehari Manifold

Nehari has introduced a variational method very useful in critical point theory and eventually came to bear his name. He considered a boundary value problem for a certain nonlinear second-order ordinary differential equation in an interval $[a, b]$ and proved that it has a nontrivial solution which may be obtained by constrained minimization. To describe Nehari'S method in an abstract setting, let E be a Banach space and $J \in C^{1}(E, \mathbb{R})$ a functional. The

Frechet derivative of J at $u, J^{\prime}(u)$, is an element of the dual space E^{\prime}. Suppose $u \neq 0$ is a critical point of J, i.e., $J^{\prime}(u)=0$. Then necessarily u is contained in the set

$$
\mathcal{N}=\left\{u \in E \backslash\{0\}:\left\langle J^{\prime}(u), u\right\rangle=0\right\}
$$

So \mathcal{N} is a natural constraint for the problem of finding nontrivial critical points of $J(u)$ by minimizing the energy functional J on the constraint \mathcal{N} is called the Nehari manifold. Set

$$
c:=\inf _{u \in \mathcal{N}} J(u) .
$$

Under appropriate conditions on J one hopes that c is attained at some $u_{0} \in \mathcal{N}$ and that u_{0} is a critical point.

2.3 Fibering method

At the end of the 1990s, the fibering method or the decomposition method introduced by Pohozaev for investigating some variational problems, and its applications to nonlinear elliptic equations. Let X and Y be Banach spaces, and let A be a nonlinear operator acting from X to Y. We consider the equation

$$
\begin{equation*}
A(u)=h . \tag{2.1}
\end{equation*}
$$

The fibering method is based on the representation of the solutions of the equation in the form

$$
u=t v .
$$

Where t is a real parameter, $t \neq 0$ in some open $J \subseteq \mathbb{R}$. Now, we give a complete description of the fibering method, we begin by defining the fibre map of the following

$$
\phi(t): \mathbb{R}^{+} \rightarrow \mathbb{R} \text { such that } \phi(t)=J(t u),
$$

then, we calculate $\phi^{\prime}(t), \phi^{\prime \prime}(t)$ the first and second derivative of $\phi(t)$. We decompose \mathcal{N} into three parts $\mathcal{N}^{+}, \mathcal{N}^{-}$, and \mathcal{N}^{0} corresponding respectively, to local minima, local maxima and points of inflection of ϕ defined as follows

$$
\begin{aligned}
& \mathcal{N}^{+}=\left\{u \in \mathcal{N}: \phi^{\prime \prime}(1)>0\right\} \\
& \mathcal{N}^{-}=\left\{u \in \mathcal{N}: \phi^{\prime \prime}(1)<1\right\}, \\
& \mathcal{N}^{0}=\left\{u \in \mathcal{N}: \phi^{\prime \prime}(1)=0\right\},
\end{aligned}
$$

and it is $\phi^{\prime \prime}(1)$ which is used for these definitions, since it is clear that if u is a local minimum for J, then u has a local minimum at $t=1$. The method of decomposition (F.M) makes it possible to find solutions to the non-coercive problems and in the absence of the continuity of the operator A.

2.3.1 Example of application

We consider the following problem:

$$
\left\{\begin{array}{l}
-\Delta u(x)=f(x, u(x)) \text { in } \Omega \tag{P}\\
u(x)=0 \text { on } x \in \partial \Omega
\end{array}\right.
$$

Let $E=W_{0}^{1,2}(\Omega)$ be the Banach space. The energy functional $J: E \rightarrow \mathbb{R}$ corresponding to the problem (P) defined as follows

$$
J(u)=\frac{1}{2} \int_{\Omega}|\nabla u(x)|^{2} d x-\int_{\Omega} F(x, u(x)) d x
$$

Where $F(x, u(x))=\int_{0}^{u} f(x, s) d x$. Obviously, the functional J may not be bounded on all the space but can be on some parts of E (called the Nehari manifold \mathcal{N}) defined as follows

$$
\mathcal{N}=\left\{u \in E:\left\langle J^{\prime}(u), u\right\rangle=0\right\} .
$$

Theorem 2.2 Let $u \in E \backslash\{0\}$ and $t>0$. Then $t u \in \mathcal{N}$ if and only if $\phi_{u}^{\prime}(t)=0$ where

$$
\phi_{u}(t)=J(t u) .
$$

Proof By definition, one has

$$
\phi_{u}(t)=J(t u) .
$$

Therefore

$$
\phi_{u}^{\prime}(t)=\left\langle J^{\prime}(u), u\right\rangle=\frac{1}{t}\left\langle J^{\prime}(t u), t u\right\rangle .
$$

If $\phi_{u}^{\prime}(t)=0$, then $\left\langle J^{\prime}(t u), t u\right\rangle=0$ i.e $t u \in \mathcal{N}$. In other terms, the points of the manifold \mathcal{N} correspond to the stationary points of the maps $\phi_{u}(t)$.

On the other hand, we decompose \mathcal{N} into three parts $\mathcal{N}^{+}, \mathcal{N}^{-}, \mathcal{N}^{0}$ corresponding to local minima, local maxima and points of inflection of $\phi_{u}(t)$. For that, we calculate the second derivative of $\phi_{u}(t)$

$$
\begin{aligned}
\phi_{u}^{\prime}(t) & =\left\langle J^{\prime}(t u), u\right\rangle \\
& =\int_{\Omega}|\nabla(t u)||\nabla u| d x-\lambda \int_{\Omega} f(x, t u) u d x \\
& =t \int_{\Omega}|\nabla u|^{2} d x-\lambda \int_{\Omega} f(x, t u) u d x .
\end{aligned}
$$

So

$$
\begin{aligned}
\phi_{u}^{\prime \prime}(t) & =\int_{\Omega}|\nabla u|^{2} d x-\lambda \int_{\Omega}\left(f_{u}^{\prime}(x, t u) u\right) u d x \\
& =\int_{\Omega}|\nabla u|^{2} d x-\lambda \int_{\Omega} f_{u}^{\prime}(x, t u) u^{2} d x .
\end{aligned}
$$

Thus, we conclude $\mathcal{N}^{+}, \mathcal{N}^{-}$, and \mathcal{N}^{0} defined as follows

$$
\begin{aligned}
& \mathcal{N}^{0}=\left\{u \in \mathcal{N}, \phi_{u}^{\prime \prime}(1)=0\right\}, \\
& \mathcal{N}^{+}=\left\{u \in \mathcal{N}, \phi_{u}^{\prime \prime}(1)>0\right\}, \\
& \mathcal{N}^{-}=\left\{u \in \mathcal{N}, \phi_{u}^{\prime \prime}(1)<0\right\} .
\end{aligned}
$$

Since it is clear that if u is a local minimum for J, then u has a local minimum at $t=1$.
Theorem 2.3 Let $u \in \mathcal{N}$. Then

- $(i) \phi_{u}^{\prime}(1)=0 .$,
- (ii)

$$
\left\{\begin{array}{l}
u \in \mathcal{N}^{+} \text {if } \phi_{u}^{\prime \prime}(1)>0 \\
u \in \mathcal{N}^{-} \text {if } \phi_{u}^{\prime \prime}(1)<0 \\
u \in \mathcal{N}^{0} \text { if } \phi_{u}^{\prime \prime}(1)=0
\end{array}\right.
$$

Proof Let $u \in \mathcal{N}$ if and only if

$$
\left\langle J^{\prime}(u), u\right\rangle=0
$$

which is equivalent to : $\phi_{u}^{\prime}(1)=0$ hence (i).
For ($i i$), there are three cases:
case 1: $u \in \mathcal{N}^{+}$, then

$$
\int_{\Omega}\left(|\nabla u|^{2}-\lambda f_{u}^{\prime}(x, u) u^{2}\right) d x>0
$$

which is equivalent to $\phi_{u}^{\prime \prime}(1)>0$.
case 2: $u \in \mathcal{N}^{-}$, then

$$
\int_{\Omega}\left(|\nabla u|^{2}-\lambda f_{u}^{\prime}(x, u) u^{2}\right) d x<0
$$

which is equivalent to $\phi_{u}^{\prime \prime}(1)<0$.
case $3: u \in \mathcal{N}^{0}$, then

$$
\int_{\Omega}\left(|\nabla u|^{2}-\lambda f_{u}^{\prime}(x, u) u^{2}\right) d x=0
$$

which is equivalent to $\phi_{u}^{\prime \prime}(1)=0$.

The following theorem attests that the minimizers of J on the manifold \mathcal{N} are true, in general, critical points of J.

Theorem 2.4 Suppose u_{0} is a local minimizer for J on \mathcal{N} and $u_{0} \notin \mathcal{N}^{0}$.
Then

$$
J^{\prime}\left(u_{0}\right)=0 .
$$

Proof According to Lagrange's multiplier theorem

$$
\exists \eta \in \mathbb{R}: J^{\prime}\left(u_{0}\right)=\eta \xi^{\prime}\left(u_{0}\right),
$$

so

$$
\left\langle J^{\prime}\left(u_{0}\right), u_{0}\right\rangle=\eta\left\langle\xi^{\prime}\left(u_{0}\right), u_{0}\right\rangle .
$$

The constraint ξ defined as follows

$$
\xi(u)=\left\langle J^{\prime}(u), u\right\rangle=\int_{\Omega}\left(|\nabla u|^{2}-\lambda f(x, u) u\right) d x .
$$

For all $u_{0} \in \mathcal{N}$, we have

$$
\left\langle J^{\prime}\left(u_{0}\right), u_{0}\right\rangle=\eta\left\langle\xi^{\prime}\left(u_{0}\right), u_{0}\right\rangle=0
$$

Therefore

$$
\int_{\Omega}\left(\left|\nabla u_{0}\right|^{2}-\lambda f\left(x, u_{0}\right) u_{0}\right) d x=0
$$

then

$$
\int_{\Omega}\left(\left|\nabla u_{0}\right|^{2} d x=\lambda \int_{\Omega} f\left(x, u_{0}\right) u_{0} d x\right.
$$

thus

$$
\begin{aligned}
\left\langle\xi^{\prime}\left(u_{0}\right), u_{0}\right\rangle & =\int_{\Omega}\left(2\left|\nabla u_{0}\right|^{2}-\lambda f_{u}^{\prime}\left(x, u_{0}\right) u_{0}^{2}\right) d x-\lambda \int_{\Omega} f\left(x, u_{0}\right) u_{0} d x \\
& =\int_{\Omega}\left(\left|\nabla u_{0}\right|^{2}-\lambda f_{u}^{\prime}\left(x, u_{0}\right) u_{0}^{2}\right) d x \\
& =\phi_{u_{0}}^{\prime \prime}(1) \neq 0
\end{aligned}
$$

Which implies that $\eta=0$, then $J^{\prime}\left(u_{0}\right)=0$.

2.4 Ekeland's variational principle

In general, it is not clear that a bounded and lower semi-continuous functional E actually attains its infimum. The analytic function $f(x)=\arctan x$, for example, neither attains its infimum nor its supremum on the real line.
A variant due to Ekeland of Dirichlet's principle, however, permits one to construct minimizing sequences for such functionals E whose elements u_{m} each minimize a functional E_{m}, for a sequence of functionals $\left\{E_{m}\right\}$ converging locally uniformly to E.

Theorem 2.5 [26] Let E be a reflexive Banach space with norm $\|\cdot\|$, and $J: E \rightarrow \mathbb{R}$ is coercive and weakly lower semi-continuous on E, that is, suppose the following conditions are fullfilled:

- $J(u, v) \rightarrow \infty$ as $\|(u, v)\| \rightarrow \infty,(u, v) \in E$.
- For any $(u, v) \in E$, any sequence $\left(u_{n}, v_{n}\right)$ in E such that $\left(u_{n}, v_{n}\right) \rightharpoondown(u, v)$ weakly in E there holds $J(u, v) \leq \liminf _{n \rightarrow \infty} J\left(u_{n}, v_{n}\right)$. Then J is bounded from below on E and attains its infimum in E such that

$$
J\left(u_{0}, v_{0}\right)=\inf _{E} J .
$$

Theorem 2.6 [21] Let M be a complete metric space with metric d, and let $J: M \rightarrow \mathbb{R} \cup\{+\infty\}$ be lower semi-continuous, bounded from below, and $\neq \infty$. Then for any $\epsilon, \delta>0$, any $u \in M$ with

$$
J(u) \leq \inf _{M} J(u)+\epsilon
$$

there is an element $v \in M$ strictly minimizing the functional

$$
J_{v}(w) \leq J(w)+\frac{\epsilon}{\delta} d(v, w)
$$

Moreover, we have

$$
J(v) \leq J(u), d(u, v) \leq \delta
$$

Existence result for sub-critical and critical p-fractional elliptic equations via Nehari manifold method

Contents

3.1 Introduction . 31
3.2 Nehari manifold and fibering maps analysis34
3.3 Proof of Theorem (3.1) 39
3.4 Proof of Theorem (3.2) 42

3.1 Introduction

In this chapter we study the fractional p-Laplacian problem (E), using fibering maps and Nehari manifold, we obtain existence result for either, subcritical and critical cases see [3]. This chapter is organized as follows : in first and second sections, we introduce our problem, and we give some preliminaries (spaces, definitions, fibering maps...). In the third section we give a first result of existence, and in the fourth section we establish the second existence result.

We consider the p-fractional Laplacian problem (E), where $\Omega \subset \mathbb{R}^{n}(n>p s)$, is a bounded smooth domain, $s \in(0,1), \lambda, \mu$ are positive parameters, the functions $f, g: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}_{+}$, are continuous and positively homogeneous of degrees q and r respectively, that is, for all $t>0$ and $(x, u) \in \Omega \times \mathbb{R}$, we have

$$
\left\{\begin{array}{l}
f(x, t u)=t^{q} f(x, u), \tag{3.1}\\
g(x, t u)=t^{r} g(x, u)
\end{array}\right.
$$

for some constants q, r satisfying

$$
\begin{equation*}
1<r+1<p<q+1 \leq p_{s}^{*}:=\frac{n p}{n-s p} . \tag{3.2}
\end{equation*}
$$

Note that, the primitive functions

$$
\left\{\begin{array}{l}
F(x, u)=\int_{0}^{u} f(x, s) d s \\
G(x, u)=\int_{0}^{u} g(x, s) d s
\end{array}\right.
$$

are in $C^{1}(\bar{\Omega} \times \mathbb{R}, \mathbb{R})$, and they are positively homogeneous of degrees $q+1$ and $r+1$ respectively. Moreover, the so-called Euler identities hold, that is

$$
\left\{\begin{array}{l}
(q+1) F(x, u)=u f(x, u) \tag{3.3}\\
(r+1) G(x, u)=u G(x, u)
\end{array}\right.
$$

We can easily prove the existance of two positive constants γ_{1}, γ_{2}, such that, for all $(x, u) \in$ $\Omega \times \mathbb{R}$, we have

$$
\begin{equation*}
F(x, u) \leq \gamma_{1}|u|^{q+1}, \text { and } G(x, u) \leq \gamma_{2}|u|^{r+1} . \tag{3.4}
\end{equation*}
$$

Put

$$
\Omega^{c}=\mathbb{R}^{n} \backslash \Omega, \text { and } Q=\mathbb{R}^{2 n} \backslash\left(\Omega^{c} \times \Omega^{c}\right) .
$$

We introduce the functional space

$$
X=\left\{u: \mathbb{R}^{n} \longrightarrow \mathbb{R} \text { measurable: } u \in L^{p}(\Omega) \text { and } \frac{u(x)-u(y)}{|x-y|^{\frac{n+p s}{p}}} \in L^{p}(Q)\right\}
$$

Endowed with the norm

$$
\|u\|_{X}=\left(\|u\|_{L^{p}(\Omega)}^{p}+\int_{Q} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+p s}} d x d y .\right)^{\frac{1}{p}}
$$

Also, we define the space

$$
\begin{equation*}
X_{0}=\left\{u \in X: u=0 \text { in } \mathbb{R}^{n} \backslash \Omega\right\}, \tag{3.5}
\end{equation*}
$$

Equipped with the norm

$$
\begin{equation*}
\|u\|_{X_{0}}=\left(\int_{Q} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+p s}} d x d y\right)^{\frac{1}{p}} \tag{3.6}
\end{equation*}
$$

It is well known that X_{0} is a separable Banach space. Moreover, for all $u, v \in X_{0}$, we have the duality product

$$
\begin{equation*}
\mathcal{T}(u, v)=\left\langle(-\Delta)_{p}^{s} u, v\right\rangle_{X_{0}}=\int_{Q} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))(v(x)-v(y))}{|x-y|^{n+p s}} d x d y \tag{3.7}
\end{equation*}
$$

Definition 3.1 We say that $u \in X_{0}$, is a weak solution of problem (E), if for all $v \in X_{0}$, we have the following weak formulation

$$
\mathcal{T}(u, v)=\lambda\|u\|_{p}^{p}+\int_{\Omega} f(x, u) v(x) d x+\mu \int_{\Omega} g(x, u) v(x) d x
$$

Associated to the problem (E), we define the functional $J_{\lambda, \mu}: X_{0} \rightarrow \mathbb{R}$, as

$$
\begin{equation*}
J_{\lambda, \mu}(u)=\frac{1}{p} A(u)-B(u)-\mu C(u), \tag{3.8}
\end{equation*}
$$

where

$$
\begin{gathered}
A(u)=\|u\|_{X_{0}}^{p}-\lambda\|u\|_{p}^{p} \\
B(u)=\int_{\Omega} F(x, u) d x,
\end{gathered}
$$

and

$$
C(u)=\int_{\Omega} G(x, u) d x
$$

Note that, $J_{\lambda, \mu} \in C^{1}\left(X_{0}, \mathbb{R}\right)$, and $J_{\lambda, \mu}^{\prime}: X_{0} \rightarrow X_{0}^{\prime}$ is given by

$$
\begin{equation*}
\left\langle J_{\lambda, \mu}^{\prime}(u), u\right\rangle=A(u)-(q+1) B(u)-\mu(r+1) C(u), \tag{3.9}
\end{equation*}
$$

where X_{0}^{\prime}, is the dual space of X_{0}.
Let λ_{1} be the first eigenvalue of the fractional p-Laplacian equation subject to homogeneous Dirichlet boundary conditions. Then, our first result (about the sub-critical and concave case) is the following.

Theorem 3.1 Let $s \in(0,1)$. Assume that the nonlinearities f, g are continuous satisfying (3.1). If

$$
1<r+1<p<q+1<p_{s}^{*} \text {, and } n>p s .
$$

Then, for all $\lambda \in\left(0, \lambda_{1}\right)$, there exists $\mu_{*}(\lambda)>0$, such that, for all $\mu \in\left(0, \mu_{*}(\lambda)\right)$, problem (E) has at least two nontrivial solutions.

The second main result of this chapter is devoted to the critical case ($q=p_{s}^{*}-1$). Since the embedding $X_{0} \hookrightarrow L^{p_{s}^{*}}\left(\mathbb{R}^{n}\right)$, is not compact, then the energy functional does not satisfy the Palais-Smale condition globally, but it is true for the energy functional in a suitable range related to the best fractional critical Sobolev constant, that we can defined by the following expression

$$
\begin{equation*}
S_{p}=\inf _{v \in X_{0} \backslash\{0\}} \frac{\|v\|_{X_{0}}^{p}}{\|v\|_{L^{p_{s}^{*}}}^{p}} . \tag{3.10}
\end{equation*}
$$

Theorem 3.2 Assume that $s \in(0,1), n>p s$ and $0<r<1<p<q=p_{s}^{*}-1$. If there exist $t_{0}>0$ and $u_{0} \in X_{0} \backslash\{0\}$, with $u_{0}>0$ in \mathbb{R}^{n}, such that

$$
\begin{equation*}
\frac{1}{p} A\left(u_{0}\right) t_{0}^{p}-t_{0}^{p_{s}^{*}} B\left(u_{0}\right)=\frac{s}{n}\left(p_{s}^{*} \gamma_{1}\right)^{\frac{-n}{s_{s}^{*}}} S_{p}^{\frac{n}{s p}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{s p}} \tag{3.11}
\end{equation*}
$$

Then, for all $\lambda \in\left(0, \lambda_{1}\right)$, there exists $\mu^{*}(\lambda)>0$, such that, for all $\mu \in\left(0, \mu^{*}(\lambda)\right)$, problem (E) has at least two nontrivial solutions.

Remark 3.1 The condition (3.11), can be guaranteed by the following Lamma.

Lemma 3.1 If $s \in(0,1), n>p s$ and $0<r<1<p<q=p_{s}^{*}-1$. Then, there exist $t_{0}>0$ and $u_{0} \in X_{0} \backslash\{0\}$, with $u_{0}>0$ in \mathbb{R}^{n}, such that

$$
\left(\frac{1}{p} A\left(u_{0}\right) t_{0}^{p}-t_{0}^{p_{s}^{*}} B\left(u_{0}\right)\right)<\frac{s}{n}\left(p_{s}^{*} \gamma_{1}\right)^{\frac{-n}{s p_{s}^{*}}} S_{p}^{\frac{n}{s p}} .
$$

Proof For all $u \in X_{0} \backslash\{0\}$, we define the function $\zeta_{u}:(0, \infty) \rightarrow \mathbb{R}$, as follows:

$$
\zeta_{u}(t):=\frac{1}{p} A(t u)-B(t u)=\frac{A(u)}{p} t^{p}-B(u) t^{p_{s}^{*}} .
$$

It is easy to see that ζ is of class C^{1}, moreover, for all $t>0$, we have

$$
\zeta_{u}^{\prime}(t)=t^{p-1}\left(A(u)-p_{s}^{*} B(u) t^{p_{s}^{*}-p}\right) .
$$

Since $\lim _{t \rightarrow 0} \zeta_{u}(t)=0$ and $\lim _{t \rightarrow \infty} \zeta_{u}(t)=-\infty$. Then, ζ atteinds its global maximum at

$$
t_{*}=\left(\frac{A(u)}{p_{s}^{*} B(u)}\right)^{\frac{1}{p_{s}^{*}-p}}
$$

Moreover, from (2.11) (2.12) and the fact that $q=p_{s}^{*}-1$, we obtain

$$
\begin{aligned}
\sup _{t>0} \zeta(t) & =\zeta\left(t_{*}\right) \\
& =\frac{A(u)}{p}\left(\frac{A(u)}{p_{s}^{*} B(u)}\right)^{\frac{p}{p_{s}^{*}-p}}-B(u)\left(\frac{A(u)}{p_{s}^{*} B(u)}\right)^{\frac{p_{s}^{*}}{p_{s}^{*}-p}} \\
& =\left(p_{s}^{*}\right)^{-\frac{p}{p_{s}^{*}-p}}\left(\frac{1}{p}-\frac{1}{p_{s}^{*}}\right) A(u)^{\frac{p_{s}^{*}}{p_{s}^{*}-p}} B(u)^{-\frac{p}{p_{s}^{*}-p}} \\
& =\frac{s}{n}\left(p_{s}^{*}\right)^{-\frac{n}{s p_{s}^{*}}} A(u)^{\frac{n}{s p}} B(u)^{-\frac{n}{s p_{s}^{*}}} \\
& \geq \frac{s}{n}\left(\gamma_{1} p_{s}^{*}\right)^{-\frac{n}{s p_{s}^{*}}} S_{p}^{\frac{n}{s p}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{s p}}>0 .
\end{aligned}
$$

Therefore, from the variations of the function ζ, we deduce the existence of $0<\tilde{t}_{1}<t_{*}<\tilde{t}_{2}$, such that

$$
\zeta\left(\tilde{t}_{1}\right)=\zeta\left(\tilde{t}_{2}\right)=\frac{s}{n}\left(\gamma_{1} p_{s}^{*}\right)^{-\frac{n}{s p_{s}^{*}}} S_{p}^{\frac{n}{s p}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-\frac{n}{s p}}
$$

This ends the proof.

3.2 Nehari manifold and fibering maps analysis

In this section, we collect some basic results that will be used in the forthcoming sections. As the energy functional $J_{\lambda, \mu}$ is not bounded below on X_{0}, it is useful to show that $J_{\lambda, \mu}$ is bounded on some suitable subset of X_{0}. A good candidate is the so-called Nehari manifold defined by

$$
\mathcal{N}_{\lambda, \mu}=\left\{u \in X_{0} \backslash\{0\},\left\langle J_{\lambda, \mu}^{\prime}(u), u\right\rangle_{X_{0}}=0\right\} .
$$

It is easy to see that $u \in \mathcal{N}_{\lambda, \mu}$ if and only if

$$
\begin{equation*}
A(u)-(q+1) B(u)-\mu(r+1) C(u)=0 \tag{3.12}
\end{equation*}
$$

Hence, from (3.9), we see that $\mathcal{N}_{\lambda, \mu}$ contain all nontrivial critical points which are solutions of problem (E). It is useful to understand $\mathcal{N}_{\lambda, \mu}$ in terms of the stationary points of mapping $\varphi_{u}:(0, \infty) \rightarrow \mathbb{R}$, much known as fiber maps, as

$$
\varphi_{u}(t)=J_{\lambda, \mu}(t u) .
$$

For more details and properties about these maps, we refer the reader to [10,17,18]. Taking derivative with respect to the variablet, we get

$$
\varphi_{u}^{\prime}(t)=\left\langle J_{\lambda, \mu}^{\prime}(t u), u\right\rangle_{X_{0}}=\frac{1}{t}\left\langle J_{\lambda, \mu}^{\prime}(t u), t u\right\rangle_{X_{0}} .
$$

So $t u \in \mathcal{N}_{\lambda, \mu}$, if and only if $\varphi_{u}^{\prime}(t)=0$, in particular, $u \in \mathcal{N}_{\lambda, \mu}$, if and only if $\varphi_{u}^{\prime}(1)=0$. In order to obtain multiplicity of solutions, we split $\mathcal{N}_{\lambda, \mu}$ into the following three parts

$$
\begin{aligned}
& \mathcal{N}_{\lambda, \mu}^{+}=\left\{u \in \mathcal{N}_{\lambda, \mu}: \varphi_{u}^{\prime \prime}(1)>0\right\}=\left\{u \in X_{0}: \varphi_{u}^{\prime}(1)=0 \text { and } \varphi_{u}^{\prime \prime}(1)>0\right\} \\
& \mathcal{N}_{\lambda, \mu}^{-}=\left\{u \in \mathcal{N}_{\lambda, \mu}: \varphi_{u}^{\prime \prime}(1)<0\right\}=\left\{u \in X_{0}: \varphi_{u}^{\prime}(1)=0 \text { and } \varphi_{u}^{\prime \prime}(1)<0\right\} \\
& \mathcal{N}_{\lambda, \mu}^{0}=\left\{u \in \mathcal{N}_{\lambda, \mu}: \varphi_{u}^{\prime \prime}(1)=0\right\}=\left\{u \in X_{0}: \varphi_{u}^{\prime}(1)=0 \text { and } \varphi_{u}^{\prime \prime}(1)=0\right\}
\end{aligned}
$$

Note that, from (3.12), we obtain

$$
\begin{align*}
\varphi_{u}^{\prime \prime}(1) & =(p-1) A(u)-q(q+1) B(u)-\mu r(r+1) C(u) \\
& =(p-q-1)(q+1) B(u)+\mu(r+1)(p-r-1) C(u) \\
& =(p-q-1) A(u)+\mu(r+1)(q-r) C(u) \\
& =(p-r-1) A(u)-(q+1)(r-q) B(u) . \tag{3.13}
\end{align*}
$$

Lemma 3.2 If u_{0} is a local minimizer for $J_{\lambda, \mu}$ on $\mathcal{N}_{\lambda, \mu}$, such that $u_{0} \notin \mathcal{N}_{\lambda, \mu}^{0}$, then u_{0} is a critical point of $J_{\lambda, \mu}$.

Proof Let u_{0} be a local minimizer for $J_{\lambda, \mu}$ on $\mathcal{N}_{\lambda, \mu}$, then u_{0} is a solution of the minimization problem

$$
\left\{\begin{array}{l}
\min _{u \in \mathcal{N}_{\lambda, \mu}} J_{\lambda, \mu}(u)=J_{\lambda, \mu}\left(u_{0}\right), \\
\beta\left(u_{0}\right)=0
\end{array}\right.
$$

where

$$
\beta(u)=A(u)-(q+1) B(u)-\mu(r+1) C(u) .
$$

From Lagrangian multipliers theorem, there exists $\delta \in \mathbb{R}$, such that

$$
\begin{equation*}
J_{\lambda, \mu}^{\prime}\left(u_{0}\right)=\delta \beta^{\prime}\left(u_{0}\right) \tag{3.14}
\end{equation*}
$$

Since $u_{0} \in \mathcal{N}_{\lambda, \mu}$, then, we have

$$
\begin{equation*}
\delta\left\langle\beta^{\prime}\left(u_{0}\right), u_{0}\right\rangle_{X_{0}}=\left\langle J_{\lambda, \mu}^{\prime}\left(u_{0}\right), u_{0}\right\rangle_{X_{0}}=0 . \tag{3.15}
\end{equation*}
$$

On the other hand, from (3.12) and the contraint $\beta\left(u_{0}\right)=0$, we get

$$
\begin{equation*}
\left\langle\beta^{\prime}\left(u_{0}\right), u_{0}\right\rangle_{X_{0}}=(p-1) A\left(u_{0}\right)-q(q+1) B\left(u_{0}\right)-\mu r(r+1) C\left(u_{0}\right)=\varphi_{u_{0}}^{\prime \prime}(1) \tag{3.16}
\end{equation*}
$$

By combining equations (3.15), (3.16) with the fact that $u_{0} \notin \mathcal{N}_{\lambda, \mu}^{0}$, we get $\delta=0$. Finally, by substitution of δ in equation (3.14), we obtain $J_{\lambda, \mu}^{\prime}\left(u_{0}\right)=0$.

In order to understand the Nehari manifold and fibering maps, let us consider the function $\psi_{u}:(0, \infty) \rightarrow \mathbb{R}$, defined by

$$
\begin{equation*}
\psi_{u}(t)=t^{p-r-1} A(u)-(q+1) t^{q-r} B(u) \tag{3.17}
\end{equation*}
$$

From (3.12), we see that $t u \in \mathcal{N}_{\lambda, \mu}$, if and only if

$$
\begin{equation*}
\psi_{u}(t)=\mu(r+1) C \tag{3.18}
\end{equation*}
$$

Moreover, from the fact that

$$
\begin{equation*}
\psi_{u}^{\prime}(t)=(p-r-1) t^{p-r-2} A(u)-(q+1)(q-r) t^{q-r-1} B(u) \tag{3.19}
\end{equation*}
$$

we see that, if $t u \in \mathcal{N}_{\lambda, \mu}$, then

$$
\begin{equation*}
t^{r} \psi_{u}^{\prime}(t)=\varphi_{u}^{\prime \prime}(t) \tag{3.20}
\end{equation*}
$$

Therefore, $t u \in \mathcal{N}_{\lambda, \mu}^{+}$, (respectively, $\left.t u \in \mathcal{N}_{\lambda, \mu}^{-}\right)$if and only if $\psi_{u}^{\prime}(t)>0$ (respectively, $\left.\psi_{u}^{\prime}(t)<0\right)$. By simple calculation we can prove the following result.

Lemma 3.3 Let $u \in X_{0}$ such that, $u \neq 0$. Then, we have
(i) ψ_{u} has a unique critical point at

$$
t_{\max }(u)=\left[\frac{(p-r-1)}{(q+1)(q-r)} \frac{A(u)}{B(u)}\right]^{\frac{1}{q+1-p}} .
$$

Moreover

$$
\begin{equation*}
\psi_{u}\left(t_{\max }\right)=\left(\frac{p-r-1}{(q+1)(q-r)}\right)^{\frac{p-r-1}{q+1-p}}\left(\frac{q+1-p}{q-r}\right) A(u)^{\frac{q-r}{q+1-p}} B(u)^{-\frac{p-r-1}{q+1-p}} . \tag{3.21}
\end{equation*}
$$

(ii) $\lim _{t \rightarrow \infty} \psi_{u}(t)=-\infty$.
(iii) ψ_{u} is strictly increasing on $\left(0, t_{\max }(u)\right)$ and strictly decreasing on $\left(t_{\max }(u),+\infty\right)$.

In the rest of this chapter, we assume that $\lambda \in\left(0, \lambda_{1}\right)$ and $\mu \in\left(0, \mu_{*}(\lambda)\right)$, where

$$
\mu_{*}(\lambda)=\frac{1}{\gamma_{2}}\left(\frac{q+1-p}{(q-r)(r+1)}\right)\left(\frac{p-r-1}{(q+1)(q-r) \gamma_{1}}\right)^{\frac{p-r-1}{q+1-p}}\left(S_{p}|\Omega|^{\frac{p-p_{s}^{*}}{p_{s}^{s}}}\left(1-\frac{\lambda}{\lambda_{1}}\right)\right)^{\frac{q-r}{q+1-p}} .
$$

Lemma 3.4 For all $u \in \mathcal{N}_{\lambda, \mu}$, there exist unique $0<t_{1}<t_{\max }(u)<t_{2}$, such that $t_{1} u \in \mathcal{N}_{\lambda, \mu}^{+}$and $t_{2} u \in \mathcal{N}_{\lambda, \mu}^{-}$.

Proof Let $u \in \mathcal{N}_{\lambda, \mu}$, then, from (3.4), (3.10) and the Hõlder inequality, we get

$$
\begin{gather*}
\left(1-\frac{\lambda}{\lambda_{1}}\right)\|u\|_{X_{0}}^{p} \leq A(u) \leq\|u\|_{X_{0}}^{p} \tag{3.22}\\
B(u) \leq \gamma_{1}|\Omega|^{\frac{p_{s}^{*}-q-1}{p_{S}^{*}}}\|u\|_{L^{p}}^{q+1} \leq \gamma_{1} S_{p}^{-\frac{q+1}{p}}|\Omega|^{\frac{p_{s}^{*}-q-1}{p_{s}^{*}}}\|u\|_{X_{0}}^{q+1}, \tag{3.23}
\end{gather*}
$$

and

$$
\begin{equation*}
C(u) \leq \gamma_{2} S_{p}^{-\frac{r+1}{p}}|\Omega|^{\frac{p_{s}^{*}-r-1}{p_{s}^{*}}}\|u\|_{X_{0}}^{r+1} . \tag{3.24}
\end{equation*}
$$

By combining (3.22), (3.23) and (3.24) with (3.21), we obtain

$$
\begin{align*}
& \psi_{u}\left(t_{\max }\right)-\mu(r+1) C(u) \\
= & \left(\frac{p-r-1}{(q+1)(q-r)}\right)^{\frac{p-r-1}{q+1-p}}\left(\frac{q+1-p}{q-r}\right) A^{\frac{q-r}{q+1-p}} B^{-\frac{p-r-1}{q+1-p}}-\mu(r+1) C(u) \tag{3.25}\\
\geq & \left(\frac{p-r-1}{(q+1)(q-r)}\right)^{\frac{p-r-1}{q+1-p}}\left(\frac{q+1-p}{q-r}\right) \gamma_{1}^{-\frac{p-r-1}{q+1-p}} S_{p}^{\frac{(q+1)(p-r-1)}{p(q+1-p)}}|\Omega|^{-\frac{(p-r-1)\left(p_{s}^{*}-q-1\right)}{p_{s}^{*}(q+1-p)}} \\
& \left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{q-r}{q+1-p}}\|u\|_{X_{0}}^{r+1}-\mu(r+1) \gamma_{2} S_{p}^{-\frac{r+1}{p}}|\Omega|^{\frac{p_{s}^{*}-r-1}{p_{S}^{*}}}\|u\|_{X_{0}}^{r+1} \\
\geq & \left(\mu_{*}(\lambda)-\mu\right)(r+1) \gamma_{2} S_{p}^{-\frac{r+1}{p}}|\Omega|^{\frac{p_{s}^{*}-r-1}{p_{s}^{*}}}\|u\|_{X_{0}}^{r+1}>0 . \tag{3.26}
\end{align*}
$$

Hence, from the variation of ψ, there exist unique $0<t_{1}<t_{\max }(u)<t_{2}$, such that $\psi_{u}^{\prime}\left(t_{1}\right)>0$, $\psi_{u}^{\prime}\left(t_{2}\right)<0$, moreover

$$
\psi_{u}\left(t_{1}\right)=\mu(r+1) C(u)=\psi_{u}\left(t_{2}\right) .
$$

Finally, equations (3.18) and (3.19), implies that $t_{1} u \in \mathcal{N}_{\lambda, \mu}^{+}$and $t_{2} u \in \mathcal{N}_{\lambda, \mu}^{-}$.
Lemma 3.5 For all $(\lambda, \mu) \in\left(0, \lambda_{1}\right) \times\left(0, \mu_{*}(\lambda)\right)$, we have $\mathcal{N}_{\lambda, \mu}^{0}=\emptyset$.
Proof Suppose otherwise. Let $u_{0} \in \mathcal{N}_{\lambda, \mu}^{0}$. Since $\varphi_{u_{0}}^{\prime \prime}(1)=0$, then, from (3.13) we have

$$
(p-r-1) A\left(u_{0}\right)-(q+1)(q-r) B\left(u_{0}\right)=0
$$

Therefore

$$
\begin{equation*}
B\left(u_{0}\right)=\frac{(p-r-1)}{(q+1)(q-r)} A\left(u_{0}\right) . \tag{3.27}
\end{equation*}
$$

On the other hand

$$
\begin{aligned}
0=\varphi_{u_{0}}^{\prime}(1) & =A\left(u_{0}\right)-(q+1) B\left(u_{0}\right)-\mu(r+1) C\left(u_{0}\right) \\
& =A\left(u_{0}\right)-\frac{p-r-1}{q-r} A\left(u_{0}\right)-\mu(r+1) C\left(u_{0}\right) \\
& =\frac{q-p+1}{q-r} A\left(u_{0}\right)-\mu(r+1) C\left(u_{0}\right),
\end{aligned}
$$

which implies that

$$
\begin{equation*}
C\left(u_{0}\right)=\frac{(q-p+1)}{\mu(q-r)(r+1)} A\left(u_{0}\right) . \tag{3.28}
\end{equation*}
$$

Consequently, from (3.21) and (3.27), we get

$$
\begin{align*}
& \psi_{u_{0}}\left(t_{\max }\right)-\mu(r+1) C\left(u_{0}\right)= \tag{3.29}\\
& =\left(\frac{p-r-1}{(q+1)(q-r)}\right)^{\frac{p-r-1}{q-p+1}}\left(\frac{q-p+1}{q-r}\right)\left(\frac{A\left(u_{0}\right)^{q-r}}{B\left(u_{0}\right)^{p-r-1}}\right)^{\frac{1}{q-p+1}}-\mu(r+1) C\left(u_{0}\right) \\
& =\left(\frac{p-r-1}{(q+1)(q-r)}\right)^{\frac{p-r-1}{q-p+1}}\left(\frac{q-p+1}{q-r}\right)\left(\frac{p-r-1}{(q+1)(q-r)}\right)^{-\frac{p-r-1}{q-p+1}} A\left(u_{0}\right)-\left(\frac{p-q-1}{r-q}\right) A\left(u_{0}\right)=0 .
\end{align*}
$$

So $\psi_{u_{0}}\left(t_{\max }\right)-\mu(r+1) C\left(u_{0}\right)=0$ which is a contradiction with (3.25). So $\mathcal{N}_{\lambda, \mu}^{0}=\emptyset$.
Lemma 3.6 $J_{\lambda, \mu}$ is coercive and bounded from below on $\mathcal{N}_{\lambda, \mu}$.
Proof Let $u \in \mathcal{N}_{\lambda, \mu}$. Then, from (3.12), we get

$$
B(u)=\frac{1}{q+1}(A(u)-\mu(r+1) C(u)),
$$

which implies that

$$
J_{\lambda, \mu}(u)=\left(\frac{1}{p}-\frac{1}{q+1}\right) A(u)-\mu\left(\frac{q-r}{q+1}\right) C(u) .
$$

So using (3.12), we obtain

$$
J_{\lambda, \mu}(u) \geq\left(\frac{1}{p}-\frac{1}{q+1}\right)\left(1-\frac{\lambda}{\lambda_{1}}\right)\|u\|_{X_{0}}^{p}-\gamma_{2} S_{p}^{-\frac{r+1}{p}}|\Omega|^{\frac{p^{*}-r-1}{p_{s}^{*}}}\|u\|_{X_{0}}^{r+1} .
$$

Since $\lambda<\lambda_{1}$ and $r+1<p<q$, then, we conclude that the functional $J_{\lambda, \mu}$ is coercive and bounded from below on $\mathcal{N}_{\lambda, \mu}$.

Note that by Lemma 3.5, we can write $\mathcal{N}_{\lambda, \mu}=\mathcal{N}_{\lambda, \mu}^{+} \cup \mathcal{N}_{\lambda, \mu}^{-}$, and by Lemma 3.6, we can define

$$
\alpha_{\lambda, \mu}^{-}=\inf _{u \in \mathcal{N}_{\lambda, \mu}^{-}} J_{\lambda, \mu}(u) \text { and } \alpha_{\lambda, \mu}^{+}=\inf _{u \in \mathcal{N}_{\lambda, \mu}^{+}} J_{\lambda, \mu}(u) .
$$

3.3 Proof of Theorem (3.1)

In order to prove Theorem 3.1, we need to present several results.
Proposition 3.1 There exists a minimizer $u_{\lambda, \mu}$ in $\mathcal{N}_{\lambda, \mu}^{+}$for $J_{\lambda, \mu}$ satisfying:
(1) $J_{\lambda, \mu}\left(u_{\lambda, \mu}\right)=\alpha_{\lambda, \mu}^{+}<0$.
(2) $u_{\lambda, \mu}$ is a solution of problem (E).

Proof Since $J_{\lambda, \mu}$ is bounded from below on $\mathcal{N}_{\lambda, \mu}^{+}$, then, there exists a minimizing sequence $\left\{u_{k}\right\} \subset \mathcal{N}_{\lambda, \mu}^{+}$. That is

$$
\begin{equation*}
\lim _{k \rightarrow \infty} J_{\lambda, \mu}\left(u_{k}\right)=\inf _{u \in \mathcal{N}_{\lambda, \mu}^{+}} J_{\lambda, \mu}(u) . \tag{3.30}
\end{equation*}
$$

From (3.30) and Lemma (3.6), the sequence $\left\{u_{k}\right\}$ is bounded in X_{0}, So, up to a subsequence, there exists $u_{\lambda, \mu} \in X_{0}$, such that

$$
u_{k} \rightharpoonup u_{\lambda, \mu}, \text { weakly in } X_{0} .
$$

On the other hand, by Lemma 1.3 , up to a subsequence still denoted $\left\{u_{k}\right\}$, we have

$$
u_{k} \rightarrow u_{\lambda, \mu} \text { in } L^{\sigma}\left(\mathbb{R}^{n}\right), u_{k} \rightarrow u_{\lambda, \mu} \text { a.e. in } \mathbb{R}^{n} \text { as } k \rightarrow \infty .
$$

By [15] [Theorem IV-9], there exists $l \in L^{\sigma}\left(\mathbb{R}^{n}\right)$, such that

$$
\left|u_{k}(x)\right| \leq l(x) \text { in } \mathbb{R}^{n} .
$$

A simple calculation shows that

$$
B\left(u_{k}\right)<\gamma_{1}\left\|u_{k}\right\|_{L^{q+1}}^{q+1} \text { and } C\left(u_{k}\right)<\gamma_{2}\left\|u_{k}\right\|_{L^{r+1}}^{r+1} .
$$

Therefore, by the dominated convergence theorem, as k tends to infinity, we have

$$
\begin{equation*}
B\left(u_{k}\right) \rightarrow B\left(u_{\lambda, \mu}\right) \text { and } C\left(u_{k}\right) \rightarrow C\left(u_{\lambda, \mu}\right), \tag{3.31}
\end{equation*}
$$

From Lemma (3.4) there exists $t_{1}>0$, such that

$$
t_{1} u_{\lambda, \mu} \in \mathcal{N}_{\lambda, \mu}^{+} \text {and } J_{\lambda, \mu}\left(t_{1} u_{\lambda, \mu}\right)<0
$$

Hence, we get

$$
\alpha_{\lambda, \mu}^{+}=\inf _{u \in \mathbb{N}_{\lambda, \mu}^{+}} J_{, \mu}(u)<0
$$

Next, we show that $u_{k} \rightarrow u_{\lambda, \mu}$ strongly in X_{0}. We proceed by contradiction and we assume that $\left\|u_{\lambda, \mu}\right\|_{X_{0}}<\liminf _{k \rightarrow \infty}\left\|u_{k}\right\|_{X_{0}}$. This implies that

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \varphi_{u_{k}}^{\prime}\left(t_{1}\right) & =\lim _{k \rightarrow \infty}\left[t_{1}^{p-1} A\left(u_{k}\right)-(q+1) t_{1}^{q} B\left(u_{k}\right)-\mu(r+1) t_{1}^{r} C\left(u_{k}\right)\right] \\
& >t_{1}^{p-1} A\left(u_{\lambda, \mu}\right)-(q+1) t_{1}^{q} B\left(u_{\lambda, \mu}\right)-\mu(r+1) t_{1}^{r} C\left(u_{\lambda, \mu}\right) \\
& =\varphi_{u_{\lambda, \mu}}^{\prime}\left(t_{1}\right)=0 .
\end{aligned}
$$

So $\varphi_{u_{k}}^{\prime}\left(t_{1}\right)>0$ for k large enough. Since $u_{k} \in \mathcal{N}_{\lambda, \mu^{\prime}}^{+}$, then, $\varphi_{u_{k}}^{\prime}(t)<0$, for $t \in\left(0, t_{1}\right)$ and $\varphi_{u_{k}}^{\prime}(1)=0$. This yields to $t_{1}>1$. Now, the fact that $\varphi_{u_{\lambda, \mu}}$ is decreasing on $\left(0, t_{1}\right)$, implies that

$$
J_{\lambda, \mu}\left(t_{1} u_{\lambda, \mu}\right) \leq J_{\lambda, \mu}\left(u_{\lambda, \mu}\right)<\lim _{k \rightarrow \infty} J_{\lambda, \mu}\left(u_{k}\right)=\inf _{u \in \mathcal{N}_{\lambda, \mu}^{+}} J_{\lambda, \mu}(u),
$$

which is a contradiction. Hence, $u_{k} \rightarrow u_{\lambda, \mu}$ strongly in X_{0}. Moreover, as k tends to infinity, we have

$$
J_{\lambda, \mu}\left(u_{k}\right) \rightarrow J_{\lambda, \mu}\left(u_{\lambda, \mu}\right)=\inf _{u \in \mathbb{N}_{\lambda, \mu}^{+}} J_{\lambda, \mu}(u) .
$$

Namely, $u_{\lambda, \mu}$ is a minimizer of $J_{\lambda, \mu}$ on $\mathcal{N}_{\lambda, \mu}^{+}$. Finally, from Lemma 3.3, we see that $u_{\lambda, \mu}$ is a solution of $((E))$.

Proposition 3.2 If $0<r<1<q<p_{s}^{*}-1$. Then, $J_{\lambda, \mu}$ has a minimizer $v_{\lambda, \mu}$ in $\mathcal{N}_{\lambda, \mu}^{-}$satisfying
(1) $J_{\lambda, \mu}\left(v_{\lambda, \mu}\right)=\alpha_{\lambda, \mu}^{-}>0$.
(2) $v_{\lambda, \mu}$ is a solution of problem (E).

Proof Since $J_{\lambda, \mu}$ is bounded from below on $\mathcal{N}_{\lambda, \mu^{\prime}}^{-}$, then, there exists a minimizing sequence $\left\{u_{k}\right\} \subset \mathcal{N}_{\lambda, \mu}^{-}$satisfying

$$
\lim _{k \rightarrow \infty} J_{\lambda, \mu}\left(u_{k}\right)=\inf _{u \in \mathcal{N}_{\lambda, \mu}^{-}} J_{\lambda, \mu}(u) .
$$

By the same argument given in the proof of Proposition 3.1, there exists $v_{\lambda, \mu} \in X_{0}$ such that, up to a subsequence,

$$
A\left(u_{k}\right) \rightarrow A\left(v_{\lambda, \mu}\right), B\left(u_{k}\right) \rightarrow B\left(v_{\lambda, \mu}\right) \text { and } C\left(u_{k}\right) \rightarrow C\left(v_{\lambda, \mu}\right), \text { as } k \rightarrow \infty
$$

Moreover, from the analysis of the fibering maps φ_{u}, we know that there exists $t_{2}>t_{\max }(u)$ such that $t_{2} v_{\lambda, \mu} \in \mathcal{N}_{\lambda, \mu}^{-}$. Now, we prove that $u_{k} \rightarrow v_{\lambda, \mu}$, strongly in $\mathcal{N}_{\lambda, \mu}^{-}$. If not, then, we have

$$
\left\|v_{\lambda, \mu}\right\|_{X_{0}}<\liminf _{k \rightarrow \infty}\left\|u_{k}\right\|_{X_{0}} .
$$

Since $\left\{u_{k}\right\} \subset \mathcal{N}_{\lambda, \mu}^{-}$, then, we get $J_{\lambda, \mu}\left(u_{k}\right)>J_{\lambda, \mu}\left(t u_{k}\right)$ for all $t>t_{\text {max }}$.
On the other hand, using the fact that $t_{2} v_{\lambda, \mu} \in \mathcal{N}_{\lambda, \mu^{\prime}}^{-}$, we obtain

$$
\begin{aligned}
J_{\lambda, \mu}\left(t_{2} v_{\lambda, \mu}\right) & =\frac{t_{2}^{p}}{p} A\left(v_{\lambda, \mu}\right)-t_{2}^{q+1} B\left(v_{\lambda, \mu}\right)-\mu t_{2}^{r+1} C\left(v_{\lambda, \mu}\right) \\
& <\lim _{k \rightarrow \infty} \inf _{p}\left(\frac{t_{2}^{p}}{p} A\left(u_{k}\right)-t_{2}^{q+1} B\left(u_{k}\right)-\mu t_{2}^{r+1} C\left(u_{k}\right)\right) \\
& =\lim _{k \rightarrow \infty} J_{\lambda, \mu}\left(t_{2} u_{k}\right) \\
& \leq \liminf J_{\lambda, \mu}\left(u_{k}\right)=\alpha_{\lambda, \mu}^{-},
\end{aligned}
$$

which is a contradiction. We conclude that $u_{k} \rightarrow v_{\lambda, \mu}$ strongly in X_{0}. So

$$
J_{\lambda, \mu}\left(u_{k}\right) \rightarrow J_{\lambda, \mu}\left(v_{\lambda, \mu}\right)=\inf _{u \in \mathcal{N}_{\lambda, \mu}^{-}} J_{\lambda, \mu}(u), k \rightarrow \infty .
$$

Namely, $v_{\lambda, \mu}$ is a minimizer of $J_{\lambda, \mu}$ on $\mathcal{N}_{\lambda, \mu}^{-}$. Finally, from Lemma 2, we get that $v_{\lambda, \mu}$ is a solution of $((E))$.

Proof of Theorem (3.1) By Propositions 3.1, 3.2 and Lemma 3.3, we get that problem ((E)) has two solutions $u_{\lambda, \mu} \in \mathcal{N}_{\lambda, \mu}^{+}$and $v_{\lambda, \mu} \in \mathcal{N}_{\lambda, \mu}^{-}$on X_{0}. Since $\mathcal{N}_{\lambda, \mu}^{+} \cap \mathcal{N}_{\lambda, \mu}^{-}=\emptyset$, then, $u_{\lambda, \mu}$ and $v_{\lambda, \mu}$ are distinct. This completes the proof of Theorem 1.1.

3.4 Proof of Theorem (3.2)

Put

$$
\begin{equation*}
M=\left(\frac{p-r-1}{p}\right)\left(\frac{n(r+1)}{s p_{s}^{*}}\right)^{\frac{r+1}{p-r-1}}\left(\frac{p_{s}^{*}-r-1}{p}\right)^{\frac{p}{p-r-1}}\left(\gamma_{2} S_{p}^{-\frac{r+1}{p}}|\Omega|^{\frac{p_{s}^{*}-r-1}{p_{s}^{*}}}\right)^{\frac{p}{p-r-1}} . \tag{3.32}
\end{equation*}
$$

Proposition 3.3 Assume that $0<r<1<q=p_{s}^{*}-1$. Then, every Palais-Smale sequence $\left\{u_{k}\right\}$ $\subset X_{0}$ for $J_{\lambda, \mu}$ at level c, with

$$
\begin{equation*}
c<\frac{s}{n}\left(p_{s}^{*} \gamma_{1}\right)^{\frac{-n}{s p_{s}^{*}}} S_{p}^{\frac{n}{p s}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}}-M\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-\frac{r+1}{p-r-1}} \mu^{\frac{p}{p-r-1}} \tag{3.33}
\end{equation*}
$$

has a convergent subsequence, where S_{p} is given by equation (3.10) .

Proof From Lemma 3.6, we see that $\left\{u_{k}\right\}$ is bounded in X_{0}. So up to a sequence, still denoted by $\left\{u_{k}\right\}$, there exists $u_{*} \in X_{0}$ such that $u_{k} \rightharpoonup u_{*}$ weakly in X_{0}. Therefore

$$
A\left(u_{k}\right) \rightarrow A\left(u_{*}\right), \text { as } k \rightarrow \infty
$$

Moreover, by [34], [lemma 8], we have that

$$
u_{k} \rightharpoonup u_{*} \text { weakly in } L^{p_{s}^{*}}\left(\mathbb{R}^{n}\right), u_{k} \rightarrow u_{*} \text { in } L^{r+1}\left(\mathbb{R}^{n}\right), u_{k} \rightarrow u_{*} \text { in } \mathbb{R}^{n}
$$

Since $1 \leq r+1<p_{s}^{*}$. then, from [15] Theorem IV-9, there exists $l \in L^{r+1}\left(\mathbb{R}^{n}\right)$ such that:

$$
\left|u_{k}(x)\right| \leq l(x) \text { in } \mathbb{R}^{n} .
$$

So the dominated convergence theorem, implies that

$$
C\left(u_{k}\right) \longrightarrow C\left(u_{*}\right), \text { as } k \rightarrow \infty .
$$

On the other hand, from Brezis-Lieb Lemma 1.2, we get

$$
A\left(u_{k}\right)=A\left(u_{k}-u_{*}\right)+A\left(u_{*}\right)+o(1),
$$

and

$$
B\left(u_{k}\right)=B\left(u_{k}-u_{*}\right)+B\left(u_{*}\right)+o(1) .
$$

Consequently,

$$
\begin{aligned}
\left\langle J_{\lambda, \mu}^{\prime}\left(u_{k}\right), u_{k}\right\rangle_{X_{0}} & =A\left(u_{k}\right)-p_{s}^{*} B\left(u_{k}\right)-\mu(r+1) C\left(u_{k}\right) \\
& =A\left(u_{k}-u_{*}\right)+A\left(u_{*}\right)-p_{s}^{*}\left[B\left(u_{k}-u_{*}\right)+B\left(u_{*}\right)\right]-\mu(r+1) C\left(u_{k}\right)+o(1) \\
& =\left\langle J_{\lambda, \mu}^{\prime}\left(u_{*}\right), u_{*}\right\rangle_{X_{0}}+A\left(u_{k}-u_{*}\right)-p_{s}^{*} B\left(u_{k}-u_{*}\right) .
\end{aligned}
$$

Since

$$
\left\langle J_{\lambda, \mu}^{\prime}\left(u_{*}\right), u_{*}\right\rangle_{X_{0}}=0 \text { and } \lim _{k \rightarrow \infty}\left\langle J_{\lambda, \mu}^{\prime}\left(u_{k}\right), u_{k}\right\rangle_{X_{0}} \longrightarrow 0,
$$

then, we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} A\left(u_{k}-u_{*}\right)=\lim _{k \rightarrow \infty} p_{s}^{*} B\left(u_{k}-u_{*}\right) . \tag{3.34}
\end{equation*}
$$

We aim to prove that $b:=\lim _{k \rightarrow \infty} A\left(u_{k}-u_{*}\right)=0$. By contradiction, we assume that $b>0$. So from (3.22), we get

$$
p_{s}^{*} B\left(u_{k}-u_{*}\right) \leq p_{s}^{*} \gamma_{1} S_{p}^{-\frac{p_{s}^{*}}{p}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-\frac{p_{s}^{*}}{p}}\left(A\left(u_{k}-u_{*}\right)\right)^{\frac{p_{s}^{*}}{p}},
$$

which yields to

$$
\begin{equation*}
b \geq\left(p_{s}^{*} \gamma_{1}\right)^{\frac{-n}{s_{s}^{*}}} S_{p}^{\frac{n}{p s}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{s p}} . \tag{3.35}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
c & =\lim _{k \rightarrow \infty}\left(\frac{1}{p} A\left(u_{k}\right)-B\left(u_{k}\right)-\mu C\left(u_{k}\right)\right) \\
& =\lim _{k \rightarrow \infty}\left(\frac{1}{p} A\left(u_{k}-u_{*}\right)-B\left(u_{k}-u_{*}\right)-\frac{1}{p} A\left(u_{*}\right)-B\left(u_{*}\right)-\mu C\left(u_{k}\right)\right)+o(1) \\
& =J_{\lambda, \mu}\left(u_{*}\right)+b\left(\frac{1}{p}-\frac{1}{p_{s}^{*}}\right) \\
& \geq J_{\lambda, \mu}\left(u_{*}\right)+\frac{s}{n}\left(p_{s}^{*} \gamma_{1}\right)^{\frac{-n}{s p_{s}^{*}}} S_{p}^{\frac{n}{p s}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{s p}} \\
& >J_{\lambda, \mu}\left(u_{*}\right)+c .
\end{aligned}
$$

Therefore, $J_{\lambda, \mu}\left(u_{*}\right)<0$. In particular, $u_{*} \neq 0$, and

$$
\begin{equation*}
B\left(u_{*}\right)>\frac{1}{p} A\left(u_{*}\right)-\mu C\left(u_{*}\right) . \tag{3.36}
\end{equation*}
$$

So from (3.35), we obtain

$$
\begin{aligned}
c=\lim _{k \longrightarrow \infty} J_{\lambda, \mu}\left(u_{k}\right) & =\lim _{k \longrightarrow \infty}\left(J_{\lambda, \mu}\left(u_{k}\right)-\frac{1}{p}\left\langle J_{\lambda, \mu}^{\prime}\left(u_{k}\right), u_{k}\right\rangle_{X_{0}}\right) \\
& =\lim _{k \longrightarrow \infty}\left[\left(\frac{p_{s}^{*}}{p}-1\right)\left(B\left(u_{k}-u_{*}\right)\right)+B\left(u_{*}\right)-\mu\left(\frac{p-r-1}{p}\right) C\left(u_{k}\right)\right] \\
& =\frac{s}{n} b+\frac{s p_{s}^{*}}{n} B\left(u_{*}\right)-\mu\left(\frac{p-r-1}{p}\right) C\left(u_{*}\right) \\
& \geq \frac{s}{n}\left(p_{s}^{*} \gamma_{1}\right)^{\frac{-n}{s p_{s}^{*}}} S_{p}^{\frac{n}{p s}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}}+\frac{s p_{s}^{*}}{n} B\left(u_{*}\right)-\mu\left(\frac{p-r-1}{p}\right) C\left(u_{*}\right) .
\end{aligned}
$$

Using (3.22), (3.24) and (3.36), we obtain

$$
\begin{align*}
& c> \frac{s}{n}\left(p_{s}^{*} \gamma_{1}\right)^{\frac{-n}{s p_{s}^{s}}} S_{p}^{\frac{n}{p s}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}}+\frac{s p_{s}^{*}}{n}\left(\frac{1}{p} A\left(u_{*}\right)-\mu C\left(u_{*}\right)\right)-\mu\left(\frac{p-r-1}{p}\right) C\left(u_{*}\right) . \\
&= \frac{s}{n}\left(p_{s}^{*} \gamma_{1}\right)^{\frac{-n}{s p_{s}^{s}}} S_{p}^{\frac{n}{p s}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}}+\frac{s p_{s}^{*}}{n p} A\left(u_{*}\right)-\mu\left(\frac{p-r-1}{p}+\frac{s p_{s}^{*}}{n}\right) C\left(u_{*}\right) \\
&= \frac{s}{n}\left(p_{s}^{*} \gamma_{1}\right)^{\frac{-n}{s p_{s}^{s}}} S_{p}^{\frac{n}{p s}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}}+\frac{s p_{s}^{*}}{n p} A\left(u_{*}\right)-\mu\left(\frac{p_{s}^{*}-r-1}{p}\right) C\left(u_{*}\right) \\
&> \frac{s}{n}\left(p_{s}^{*} \gamma_{1}\right)^{\frac{-n}{s p_{s}^{s}}} S_{p}^{\frac{n}{p s}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}}+\frac{s p_{s}^{*}}{n p} A\left(u_{*}\right) \\
&-\mu \gamma_{2} S_{p}^{-\frac{r+1}{p}}|\Omega|^{p_{s}^{*}-r-1} p_{s}^{p_{s}^{*}} \\
&= \frac{s}{n}\left(p_{s}^{*} \gamma_{1}^{*}-r-1\right. \tag{3.37}\\
&)^{\frac{-n}{s p_{s}^{s}}} S_{p}^{\frac{n}{p s}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}}-h\left(\left(A\left(u_{*}\right)\right)^{\frac{1}{p}}\right),
\end{align*}
$$

where h is defined by

$$
h(\xi)=\mu \gamma_{2} S_{p}^{-\frac{r+1}{p}}|\Omega|^{\frac{p_{s}^{*}-r-1}{p_{s}^{*}}}\left(\frac{p_{s}^{*}-r-1}{p}\right)\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-\frac{r+1}{p}} \xi^{r+1}-\frac{s p_{s}^{*}}{n p} \xi^{p} .
$$

A simple calculation shows that h attaints its maximum at

$$
\xi_{0}=\left(\mu n(r+1) \gamma_{2} S_{p}^{-\frac{r+1}{p}}|\Omega|^{\frac{p_{s}^{*}-r-1}{p_{s}^{*}}}\left(\frac{p_{s}^{*}-r-1}{s p p_{s}^{*}}\right)\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-\frac{r+1}{p}}\right)^{\frac{1}{p-r-1}},
$$

and

$$
\begin{equation*}
\sup _{\xi>0} h(\xi)=h\left(\xi_{0}\right)=M\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-\frac{r+1}{p-r-1}} \mu^{\frac{p}{p-r-1}} \tag{3.38}
\end{equation*}
$$

where M is defined in (3.32)
By combing equations (3.37) and (3.38), we obtain

$$
c \geq \frac{s}{n}\left(p_{s}^{*} \gamma_{1}\right)^{\frac{-n}{s p_{s}^{*}}} S_{p}^{\frac{n}{p s}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}}-M\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-\frac{r+1}{p-r-1}} \mu^{\frac{p}{p-r-1}} .
$$

Which is a contradiction. Hence, $b=0$. So $u_{k} \rightarrow u_{*}$ strongly in X_{0}. This completes the proof.

Proposition 3.4 There exist $\mu^{*}(\lambda)>0, t_{0}>0$ and $u_{0} \in X_{0}$, such that, for all $(\lambda, \mu) \in\left(0, \lambda_{1}\right) \times$ $\left(0, \mu^{*}(\lambda)\right)$, we have

$$
\begin{equation*}
J_{\lambda, \mu}\left(t_{0} u_{0}\right) \leq \frac{s}{n}\left(p_{s}^{*} \gamma_{1}\right)^{-\frac{n}{s p_{s}^{*}}} S_{p}^{\frac{n}{p s}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}}-M\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-\frac{r+1}{p-r-1}} \mu^{\frac{p}{p-r-1}} . \tag{3.39}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\alpha_{\lambda, \mu}^{-}<\frac{s}{n}\left(p_{s}^{*} \gamma_{1}\right)^{-\frac{n}{s p_{s}^{*}}} S_{p}^{\frac{n}{p s}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}}-M\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-\frac{r+1}{p-r-1}} \mu^{\frac{p}{p-r-1}} . \tag{3.40}
\end{equation*}
$$

Proof Put

$$
\mu_{1}(\lambda)=\left(\frac{s}{n M}\left(p_{s}^{*} \gamma_{1}\right)^{\frac{-n}{s p_{s}^{*}}} S_{p}^{\frac{n}{p s}}\right)^{\frac{p-r-1}{p}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{p_{s}^{*} *-r-1}{p_{s}^{s}-p}} .
$$

Then, for $0<\mu<\mu_{1}(\lambda)$, we have

$$
\begin{equation*}
\frac{s}{n}\left(p_{s}^{*} \gamma_{1}\right)^{\frac{-n}{p_{s}^{*}}} S_{p}^{\frac{n}{p s}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}}-M\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-\frac{r+1}{p+r-1}} \mu^{\frac{p}{p-r-1}}>0 . \tag{3.41}
\end{equation*}
$$

By condition (3.11), there exists t_{0} and $u_{0} \in X_{0} \backslash\{0\}$ such that

$$
\begin{aligned}
J_{\lambda, \mu}\left(t_{0} u_{0}\right) & =\frac{1}{p} A\left(u_{0}\right) t_{0}^{p}-t_{0}^{q} B\left(u_{0}\right)-\mu t_{0}^{r+1} C\left(u_{0}\right) \\
& =\frac{s}{n}\left(p_{s}^{*} \gamma_{1}\right)^{\frac{-n}{s p_{s}^{*}}} S_{p}^{\frac{n}{p s}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}}-\mu t_{0}^{r+1} C\left(u_{0}\right) .
\end{aligned}
$$

Put

$$
\mu_{2}(\lambda)=\left(\frac{t_{0}^{r+1} C\left(u_{0}\right)}{M}\right)^{\frac{p-r-1}{r+1}}\left(1-\frac{\lambda}{\lambda_{1}}\right) .
$$

Then, for all $\mu \in\left(0, \mu_{2}(\lambda)\right)$ we have

$$
-\mu t_{0}^{r+1} C\left(u_{0}\right)<-M\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-\frac{r+1}{p-r-1}} \mu^{\frac{p}{p-r-1}}
$$

So from (3.42), we get

$$
J_{\lambda, \mu}\left(t_{0} u_{0}\right)<\frac{s}{n}\left(p_{s}^{*} \gamma_{1}\right)^{\frac{-n}{s_{p}^{*}}} S_{p}^{\frac{n}{p s}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}}-M\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-\frac{r+1}{p-r-1}} \mu^{\frac{p}{p-r-1}} .
$$

Therefore,(3.39) hold true.
Finally, if we put

$$
\mu^{*}(\lambda)=\min _{0<\lambda<\lambda_{1}}\left(\mu_{*}(\lambda), \mu_{1}(\lambda), \mu_{2}(\lambda)\right) .
$$

Then, for all $0<\mu<\mu^{*}(\lambda)$ and using the analysis of fibering maps $\varphi_{u}(t)=J_{\lambda, \mu}(t u)$, we get

$$
\alpha_{\lambda, \mu}^{-}<\frac{s}{n}\left(p_{s}^{*} \gamma_{1}\right)^{\frac{-n}{p_{s}^{*}}} S_{p}^{\frac{n}{p s}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}}-M\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-\frac{r+1}{p-r-1}} \mu^{\frac{p}{p-r-1}} .
$$

This completes the proof.

Proof of Theorem 3.2 By Propositions 3.3 and 3.4, there exists two sequences $\left\{u_{k}^{+}\right\}$and $\left\{u_{k}^{-}\right\}$in X_{0}, such that

$$
\begin{aligned}
J_{\lambda, \mu}\left(u_{k}^{+}\right) \longrightarrow & \alpha_{\lambda, \mu}^{+}, J_{\lambda, \mu}^{\prime}\left(u_{k}^{+}\right) \longrightarrow 0 \\
& \text { and } \\
J_{\lambda, \mu}\left(u_{k}^{-}\right) \longrightarrow & \alpha_{\lambda, \mu}^{-}, J_{\lambda, \mu}^{\prime}\left(u_{k}^{-}\right) \longrightarrow 0 .
\end{aligned}
$$

as $k \longrightarrow \infty$. We observe that from the analysis of fibering maps $\varphi_{u}(t)$, we have $\alpha_{\lambda, \mu}^{+}<0$. Similar to the proof of Propositions 3.1 and 3.2 and Theorem 3.1, problem ((E)) has two solutions $u_{\lambda, \mu} \in \mathcal{N}_{\lambda, \mu}^{+}$and $v_{\lambda, \mu} \in \mathcal{N}_{\lambda, \mu}^{-}$in X_{0}.Since $\mathcal{N}_{\lambda, \mu}^{+} \cap \mathcal{N}_{\lambda, \mu}^{-}=\emptyset$, then these two solutions are distinct. This finishes the proof.

Multiple solutions for the p-fracional laplacian problem with critical growth

Contents
4.1 Introduction . 48
4.2 Functional settings . 49
4.3 Proof of the main result . 55

4.1 Introduction

In this chapter we study the same fractional p-Laplacian problem (E) with different assumptions on the non-linearities for the critical case, using Ekeland's variational principal with the mountain pass theorem see [6]. The first section is devoted to some basic notions, in the second section, we prove several lemmas to be used in the third section for the purpose of obtaining our main existence result [2].

We consider the problem (E), where Ω is a smooth bounded domain in $\mathbb{R}^{n}, n>p s, s \in(0,1), \lambda$ and μ are positive parameters, the functions $f, g: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}_{+}$, are positive continuous differentiable with respect to the second argument where $f(x, 0)=0, g(x, 0)=0$, and satisifying the following conditions:

There exist positive constants α_{i} and β_{i} for $i=1,2,3,4$ such that

$$
\min \left(\alpha_{1}, \beta_{1}\right) \leq \max \left(\alpha_{1}, \beta_{1}\right)<\frac{1}{p-1}<p<\min \left(\alpha_{2}, \beta_{2}\right) \leq \max \left(\alpha_{2}, \beta_{2}\right)<\min \left(p_{s}^{*}, \alpha_{4}, \beta_{4}\right) .
$$

Moreover, for any $u \in L^{p_{s}^{*}}(\Omega)$, we have

$$
\begin{equation*}
\alpha_{3}\|u\|_{L^{p_{s}^{*}}(\Omega)}^{p_{s}^{*}} \leq \alpha_{2} \int_{\Omega} F(x, u) d x \leq \int_{\Omega} f(x, u) u d x \leq \alpha_{1} \int_{\Omega} f_{u}(x, u) u^{2} d x \leq \alpha_{4}\|u\|_{L^{p_{s}^{*}}(\Omega)}^{p_{s}^{*}} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{3}\|u\|_{L^{q}(\Omega)}^{q} \leq \beta_{2} \int_{\Omega} G(x, u) d x \leq \int_{\Omega} g(x, u) u d x \leq \beta_{1} \int_{\Omega} g_{u}(x, u) u^{2} d x \leq \beta_{4}\|u\|_{L^{q}(\Omega)}^{q} \tag{4.2}
\end{equation*}
$$

for some q with $p<q<p_{s}^{*}$. Where

$$
p_{s}^{*}=\frac{n p}{n-s p} .
$$

and F, G are defined by

$$
\left\{\begin{array}{l}
F(x, u)=\int_{0}^{u} f(x, s) d s \\
G(x, u)=\int_{0}^{u} g(x, s) d s
\end{array}\right.
$$

Our main result of this paper is the following theorem.
Theorem 4.1 If Equations (4.1), and (4.2) hold, then there exists $\mu^{*}>0$, such that for every $\lambda \in\left(0, \lambda_{1}\right)$ and $\mu>\mu^{*}$, problem (1) admits three different nontrivial solutions. Moreover, these solutions are, one negative, one positive and the other has non-constant sign.

4.2 Functional settings

we will use in this proof the same approach as in [37]. That is, we will construct three disjoint sets K_{1}, K_{2} and K_{3} not containing 0 such that Φ has a critical point in K_{i}. These sets will be subsets of C^{1} - manifolds $M_{i} \in X$ that will be constructed by imposing a sign restriction and a normalizing condition. Let,

$$
\begin{gathered}
M_{1}=\left\{u \in X_{0}: \int_{\Omega} u_{+}>0 \text { and } A\left(u_{+}\right)-\int_{\Omega} f(x, u) u_{+}-\mu \int_{\Omega} g(x, u) u_{+}=0\right\}, \\
M_{2}=\left\{u \in X_{0}: \int_{\Omega} u_{-}>0 \text { and } A\left(u_{-}\right)-\int_{\Omega} f(x, u) u_{-}-\mu \int_{\Omega} g(x, u) u_{-}=0\right\}, \\
M_{3}=M_{1} \cap M_{2},
\end{gathered}
$$

where $u_{+}=\max \{u, o\}, u_{-}=\max \{-u, 0\}$ are the negative and positive part of u, Finally we define

$$
\begin{gathered}
K_{1}=\left\{u \in M_{1}: u \geq 0\right\}, \\
K_{2}=\left\{u \in M_{2}: u \leq 0\right\}, \\
K_{3}=M_{3} .
\end{gathered}
$$

Lemma 4.1 For every $w_{0} \in X_{0}, w_{0}>0, \quad\left(w_{0}<0\right)$, there exists $t_{\mu}>0$ such that $t_{\mu} w_{0} \in$ $M_{1},\left(t_{\mu} w_{0} \in M_{2}\right)$. Moreover, $\lim _{\mu \rightarrow \infty} t_{\mu}=0$.

As consequences of this lemma, if $w_{0}, w_{1} \in X_{0}$, where $w_{0}>0$ and $w_{1}<0$, with disjoint supports, there exist $t_{\mu}^{\prime}, t_{\mu}>0$ such that $t_{\mu}^{\prime} w_{0}+t_{\mu} w_{1} \in M_{3}$. Moreover $t_{\mu}^{\prime}, t_{\mu} \rightarrow 0$ as $\mu \rightarrow \infty$.

Proof For $w \in X_{0}, w \geq 0$ we consider the functional

$$
\phi(w)=A(w)-\int_{\Omega} f(x, w) w d x-\mu \int_{\Omega} g(x, w) w d x
$$

Given $w_{0} \geq 0$, we will prove that $\phi\left(t_{\mu} w_{0}\right)=0$ for some $t_{\mu}>0$. Using conditions 4.1,4.2 we get

$$
\begin{aligned}
\phi\left(t w_{0}\right) & =A\left(t w_{0}\right)-\int_{\Omega} f\left(x, t w_{0}\right) t w_{0} d x-\mu \int_{\Omega} g\left(x, t w_{0}\right) t w_{0} d x \\
& \geqslant t^{p} A\left(w_{0}\right)-\alpha_{4} t^{p_{s}^{*}}\left\|w_{0}\right\|_{L^{p_{s}^{*}}(\Omega)}^{p_{s}^{*}}-\mu \beta_{4} t^{q}\left\|w_{0}\right\|_{L^{q}(\Omega)}^{q},
\end{aligned}
$$

and

$$
\phi\left(t w_{0}\right) \leqslant t^{p} A\left(w_{0}\right)-\alpha_{3} t^{p_{s}^{*}}\left\|w_{0}\right\|_{L^{p_{s}^{*}}(\Omega)}^{p_{*}^{*}}-\mu \beta_{3} t^{q}\left\|w_{0}\right\|_{L^{q}(\Omega)}^{q} .
$$

Since $p<q<p_{s}^{*}$ we have that $\phi\left(t w_{0}\right)$ is negative for t large enough, and positive for t small enough. we can explicitly give an upper bound t_{μ}, We note that

$$
\phi\left(t w_{0}\right) \leqslant t^{p} A\left(w_{0}\right)-\mu \beta_{3} t^{q}\left\|w_{0}\right\|_{L^{q}(\Omega)}^{q}
$$

so its enough to choose t_{1} such that

$$
t_{1}^{p} A\left(w_{0}\right)-\mu \beta_{3} t_{1}^{q}\left\|w_{0}\right\|_{L^{q}(\Omega)}^{q}=0
$$

i.e.,

$$
t_{1}=\left(\frac{A\left(v_{0}\right)}{\mu \beta_{3}\left\|w_{0}\right\|_{L^{q}(\Omega)}^{q}}\right)^{\frac{1}{q-p}}
$$

Hence by Bolzano's theorem 1.8, we can choose $t_{\mu} \in\left[0, t_{1}\right]$, and we can see that $t_{\mu} \rightarrow 0$ as $\mu \rightarrow+\infty$.

Lemma 4.2 For every $u \in K_{i}, i=1,2,3$, we have

$$
\begin{aligned}
\|u\|_{X_{0}}^{p} & \leqslant\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-1}\left(\int_{\Omega} f(x, u) u d x+\mu \int_{\Omega} g(x, u) u d x\right) \\
& \leqslant\left(\frac{1}{p}-\frac{1}{\min \left(\alpha_{2}, \beta_{2}\right)}\right) \Phi(u) \leqslant\left(\frac{1}{p}+\frac{1}{\min \left(\alpha_{2}, \beta_{2}\right)}\right)\|u\|_{X_{0}}^{p}
\end{aligned}
$$

Proof Let $u \in K_{i}$, we have that

$$
\begin{equation*}
A(u)=\int_{\Omega} f(x, u) u d x+\mu \int_{\Omega} g(x, u) u d x \tag{4.3}
\end{equation*}
$$

and by 3.22 we get

$$
\|u\|_{X_{0}}^{p} \leq\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-1}\left(\int_{\Omega} f(x, u) u d x+\mu \int_{\Omega} g(x, u) u d x\right) .
$$

This establishes the first inequality.
Further more we have from conditions 4.1, 4.2 and 4.3

$$
(B(u)+\mu C(u)) \leqslant \frac{1}{\min \left(\alpha_{2}, \beta_{2}\right)}\left(\int_{\Omega} f(x, u) u d x+\mu \int_{\Omega} g(x, u) u d x\right)
$$

and therefore

$$
\begin{aligned}
\Phi(u) & =\frac{1}{p} A(u)-(B(u)+\mu C(u)) \\
& =\left(\frac{1}{p}-\frac{1}{\min \left(\alpha_{2}, \beta_{2}\right)}\right)\left(\int_{\Omega} f(x, u) u d x+\mu \int_{\Omega} g(x, u) u d x\right) .
\end{aligned}
$$

This proves the middle inequality. Now, we will prove the third inequality as follows

$$
|\Phi(u)| \leq \frac{1}{p} A(u)+B(u)+\mu C(u)
$$

by 4.1, 4.2 we get

$$
\begin{aligned}
\Phi(u) & \leq \frac{1}{p} A(u)+\frac{1}{\alpha_{2}} \int_{\Omega} f(x, u) u d x+\frac{\mu}{\beta_{2}} \int_{\Omega} g(x, u) u d x, \\
& \leq \frac{1}{p} A(u)+\max \left(\frac{1}{\alpha_{2}}, \frac{1}{\beta_{2}}\right)\left(\int_{\Omega} f(x, u) u d x+\mu \int_{\Omega} g(x, u) u d x\right), \\
& =\frac{1}{p} A(u)+\frac{1}{\min \left(\alpha_{2}, \beta_{2}\right)}\left(\int_{\Omega} f(x, u) u d x+\mu \int_{\Omega} g(x, u) u d x\right),
\end{aligned}
$$

and by 4.3, 3.22 we find

$$
\Phi(u) \leq\left(\frac{1}{p}+\frac{1}{\min \left(\alpha_{2}, \beta_{2}\right)}\right) A(u) \leq\left(\frac{1}{p}+\frac{1}{\min \left(\alpha_{2}, \beta_{2}\right)}\right)\|u\|_{X_{0}}^{p} .
$$

This finishes the proof

Lemma 4.3 There exists $c>0$ such that,

$$
\begin{aligned}
\left\|u_{-}\right\|_{X_{0}} & \geq c \text { for all } u \in K_{2}, \\
\left\|u_{+}\right\|_{X_{0}} & \geq c \text { for all } u \in K_{1}, \\
\left\|u_{-}\right\|_{X_{0}},\left\|u_{+}\right\|_{X_{0}} & \geq c \text { for all } u \in K_{3} .
\end{aligned}
$$

Proof Using the fact that X_{0} injects in $L^{r}(\Omega)$, for $\left.r \in\right] 0, p_{s}^{*}$] and the conditions 4.1, 4.2 and by the definition of K_{i}. we have that

$$
\begin{aligned}
A\left(u_{ \pm}\right) & =\int_{\Omega} f\left(x, u_{ \pm}\right) u_{ \pm} d x+\mu \int_{\Omega} g\left(x, u_{ \pm}\right) u_{ \pm} d x \leq \alpha_{4}\left\|u_{ \pm}\right\|_{L^{p_{s}^{*}}(\Omega)}^{p_{*}^{*}}+\beta_{4} \mu\left\|u_{ \pm}\right\|_{L^{q}(\Omega)}^{q}, \\
& \leq \alpha_{4} c_{1}\left\|u_{ \pm}\right\|_{X_{0}}^{p_{s}^{*}}+\beta_{4} c_{2}\left\|u_{ \pm}\right\|_{X_{0}}^{q},
\end{aligned}
$$

and by 3.22 we get for some positive constantes c_{1} and c_{2}

$$
\left\|u_{ \pm}\right\|_{X_{0}}^{p} \leq\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-1}\left(\alpha_{4} c_{1}\left\|u_{ \pm}\right\|_{X_{0}}^{p_{s}^{*}}+\beta_{4} c_{2}\left\|u_{ \pm}\right\|_{X_{0}}^{q}\right) .
$$

As $p<q<p_{s}^{*}$, this finishes the proof.

Lemma 4.4 There exists $l>0$ such that $\Phi(u) \geq l\|u\|_{X}^{p}$ for every $u \in X_{0}$ if $\|u\|_{X_{0}}$ is small enough.

Proof By 4.1, 4.2 and 3.22 we have for some positive constantes l_{1} and l_{2}

$$
\begin{aligned}
\Phi(u) & =\frac{1}{p} A(u)-B(u)-\mu C(u) \\
& \geq \frac{1}{p}\left(1-\frac{\lambda}{\lambda_{1}}\right)\|u\|_{X^{p}}^{p}-\left(\frac{\alpha_{4}}{\alpha_{2}}\|u\|_{L^{p_{s}^{*}}(\Omega)}^{p_{3}^{*}}+\frac{\beta_{4}}{\beta_{2}}\|u\|_{L^{q}(\Omega)}^{q}\right) \\
& \geq l_{1}\|u\|_{X_{0}}^{p}-l_{2}\left(\|u\|_{X_{0}}^{p_{X_{0}^{*}}^{*}}+\|u\|_{X_{0}}^{q}\right)
\end{aligned}
$$

As conseqences if $\|u\|_{X_{0}}$ is small enough, as $p<q<p_{s}^{*}$ we get

$$
\Phi(u) \geq l\|u\|_{X_{0}}^{p} .
$$

Now we introduce lemma for describing the properties of the manifolds M_{i}

Lemma 4.5 M_{i}, is a C^{1} sub-manifold of X_{0} of co-dimension $1(i=1,2)$ and of co-dimension 2 for $i=3$. The sets K_{i} are complete. Moreover, for every $u \in M_{i}$ we have the direct decomposition

$$
T_{u} X_{0}=T_{u} M_{i} \bigoplus \operatorname{span}\left\langle u_{-}, u_{+}\right\rangle
$$

where $T_{u} M$ is the tangent space at u of the banach manifold M. Finally, the projection onto the first component in this decomposition is uniformly continuous on bounded sets of M_{i}.

Proof Let us denote

$$
\begin{gathered}
\bar{M}_{1}=\left\{u \in X_{0}: \int_{\Omega} u_{+} d x>0\right\}, \\
\bar{M}_{2}=\left\{u \in X_{0}: \int_{\Omega} u_{-} d x>0\right\}, \\
\bar{M}_{3}=\bar{M}_{1} \cap \bar{M}_{2} .
\end{gathered}
$$

We see that $M_{i} \subset \bar{M}_{i}$.
The set \bar{M}_{i} is open in X_{0}, than it will be enough to prove that M_{i} is C^{1} sub-manifold of \bar{M}_{i}. In order to do this, we have to construct a C^{1}-functions $\phi_{i}: \bar{M}_{i} \rightarrow R^{d}$ with $d=1$ for $i=1,2$ and $d=2$ for $i=3$ and we will get $M_{i}=\phi_{i}^{-1}(0)$, where 0 is regular value of ϕ_{i}. First we define

$$
\begin{aligned}
& \phi_{1}(u)=A\left(u_{+}\right)-\int_{\Omega} f(x, u) u_{+} d x-\mu \int_{\Omega} g(x, u) u_{+} d x \text { for } u \in \bar{M}_{1}, \\
& \phi_{2}(u)=A\left(u_{-}\right)-\int_{\Omega} f(x, u) u_{-} d x-\mu \int_{\Omega} g(x, u) u_{-} d x \text { for } u \in \bar{M}_{2}, \\
& \phi_{3}(u)=\left(\phi_{1}(u), \phi_{2}(u)\right) \text { for } u \in \bar{M}_{3} .
\end{aligned}
$$

We can easly see that $M_{i}=\phi_{i}^{-1}(0)$. From standard arguments see [15], ϕ_{i} is of class C^{1}. Therefore, we just need to prove that 0 is a regular value for ϕ_{i}. To do this we calculate for $u \in M_{1}$,

$$
\begin{aligned}
\left\langle\phi_{1}^{\prime}(u), u_{+}\right\rangle & =p A\left(u_{+}\right)-\int_{\Omega} f(x, u) u_{+} d x-\int_{\Omega} f_{u}(x, u) u_{+}^{2} d x-\mu \int_{\Omega} g(x, u) u_{+} d x-\mu \int_{\Omega} g_{u}(x, u) u_{+}^{2} d x \\
& \leq p A\left(u_{+}\right)-\int_{\Omega}\left(1+\frac{1}{\alpha_{1}}\right) f(x, u) u_{+} d x+\mu\left(1+\frac{1}{\beta_{1}}\right) \int_{\Omega} g(x, u) u_{+} d x \\
& \leq p A\left(u_{+}\right)-\left(1+\frac{1}{\max \left(\alpha_{1}, \beta_{1}\right)}\right)\left(\int_{\Omega} f(x, u) u_{+} d x+\mu \int_{\Omega} g(x, u) u_{+} d x\right) \\
& =\left(p-1-\frac{1}{\max \left(\alpha_{1}, \beta_{1}\right)}\right) A\left(u_{+}\right) .
\end{aligned}
$$

We know that $\alpha_{1}, \beta_{1}<\frac{1}{p-1}$. Hence the last term is strictly negative by lemma 4.3. Therefore, M_{1} is a C^{1} sub-manifold of X. we can argue the same way for M_{2} and M_{3} Since we have

$$
\left\langle\phi_{1}^{\prime}(u), u_{+}\right\rangle=\left\langle\phi_{2}^{\prime}(u), u_{-}\right\rangle=0 .
$$

Now, we will prove that K_{i} is complete,
Let u_{k} be a Cauchy sequence in K_{i}, then $u_{k} \rightarrow u$ in X. Moreover $\left(u_{k}\right)_{\mp} \rightarrow(u)_{\mp}$ in X. and we can deduce by 4.3 and by continuity that $u \in K_{i}$. Finally, we have the deomposition

$$
T_{u} X=T_{u} M_{1} \bigoplus \operatorname{span}\left\langle u_{+}\right\rangle
$$

Where $M_{1}=\left\{u: \phi_{1}(u)=0\right\}$ and $T_{u} M_{1}=\left\{v:\left\langle\phi_{1}^{\prime}(u), v\right\rangle=0\right\}$. Let $v \in T_{u} X_{0}$ be unit tangential vector, then $v=v_{1}+v_{2}$ where $v_{2}=\gamma u_{+}$and $v_{1}=v-v_{2}$. Let us take γ as

$$
\gamma=\frac{\left\langle\phi_{1}^{\prime}(u), v\right\rangle}{\left\langle\phi_{1}^{\prime}(u), u_{+}\right\rangle} .
$$

With this choice, we have that $v_{1} \in T_{u} M_{1}$. then $\left\langle\phi_{1}^{\prime}(u), v_{1}\right\rangle=0$. We use the same argument to show that $T_{u} X=T_{u} M_{2} \bigoplus \operatorname{span}\left\langle u_{-}\right\rangle$, and $T_{u} X=T_{u} M_{3} \bigoplus \operatorname{span}\left\langle u_{-}, u_{+}\right\rangle$. This estabishes the uniform continuity of the projections onto $T_{u} M_{i}$.

Lemma 4.6 The fuctional Φ verifies the palais-Smale condition for energy level

$$
\begin{equation*}
c<\frac{s}{n}\left(\frac{\alpha_{4}}{\alpha_{2}} p_{s}^{*}\right)^{\frac{-n}{s_{p}}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}} S_{p}^{\frac{n}{p s}} . \tag{4.4}
\end{equation*}
$$

where S_{p} is the Sobolev constant given by 3.10.
Let $\left\{u_{k}\right\} \subset X_{0}$ be a $(P S)_{c}$ sequence for $\Phi_{\lambda, \mu}$. Then, there exists a subsequence of $\left\{u_{k}\right\}$, which converges strongly in X_{0}.

Proof From Lemma 4.2, we see that $\left\{u_{k}\right\}$ is bounded in X_{0}. Then, up to a sequence, still denoted by $\left\{u_{k}\right\}$, there exists $u_{*} \in X_{0}$ such that $u_{k} \rightarrow u_{*}$ weakly in X_{0}, that is

$$
A\left(u_{k}\right) \rightarrow A\left(u_{*}\right), \text { as } k \rightarrow \infty .
$$

Moreover, by [34], [lemma 8], we have that

$$
u_{k} \rightarrow u_{*} \text { weakly in } L^{p_{s}^{*}}\left(\mathbb{R}^{n}\right), u_{k} \rightarrow u_{*} \text { in } L^{r+1}\left(\mathbb{R}^{n}\right), u_{k} \rightarrow u_{*} \text { in } \mathbb{R}^{n}
$$

As $k \rightarrow \infty$, and by [15], [theorem IV-9] , there exists $l \in L^{r+1}\left(\mathbb{R}^{n}\right)$ such that:

$$
\left|u_{k}(x)\right| \leq l(x) \text { in } \mathbb{R}^{n},
$$

for any $1 \leq q<p_{s}^{*}$. Therefore, by dominated convergence theorem, we have that

$$
C\left(u_{k}\right) \longrightarrow C\left(u_{*}\right), \text { as } k \rightarrow \infty .
$$

By Brezis-Lieb [38], [Lemma 1.32], we get

$$
\begin{aligned}
& A\left(u_{k}\right)=A\left(u_{k}-u_{*}\right)+A\left(u_{*}\right)+o(1) \\
& B\left(u_{k}\right)=B\left(u_{k}-u_{*}\right)+B\left(u_{*}\right)+o(1) .
\end{aligned}
$$

Then,

$$
\begin{aligned}
\left\langle\Phi_{\lambda, \mu}^{\prime}\left(u_{k}\right), u_{k}\right\rangle_{X_{0}} & =A\left(u_{k}\right)-p_{s}^{*} B\left(u_{k}\right)-\mu q C\left(u_{k}\right) \\
& =A\left(u_{k}-u_{*}\right)+A\left(u_{*}\right)-p_{s}^{*}\left(B\left(u_{k}-u_{*}\right)+B\left(u_{*}\right)\right)-\mu q C\left(u_{k}\right)+o(1) \\
& =\left\langle J_{\lambda, \mu}^{\prime}\left(u_{*}\right), u_{*}\right\rangle_{X_{0}}+A\left(u_{k}-u_{*}\right)-p_{s}^{*} B\left(u_{k}-u_{*}\right) .
\end{aligned}
$$

$\operatorname{By}\left\langle\Phi_{\lambda, \mu}^{\prime}\left(u_{*}\right), u_{*}\right\rangle_{X_{0}}=0$ and $\left\langle\Phi_{\lambda, \mu}^{\prime}\left(u_{k}\right), u_{k}\right\rangle_{X_{0}} \longrightarrow 0$ as $k \longrightarrow \infty$., we know that

$$
\begin{equation*}
A\left(u_{k}-u_{*}\right) \longrightarrow b \text { and } p_{s}^{*} B\left(u_{k}-u_{*}\right) \longrightarrow b . \tag{4.5}
\end{equation*}
$$

If $b=0$, the proof is complete. Assuming $b>0$, by 3.22 , we get

$$
p_{s}^{*} B\left(u_{k}-u_{*}\right) \leq \frac{\alpha_{4}}{\alpha_{2}} p_{s}^{*} S_{p}^{-\frac{p_{s}^{*}}{P}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{-\frac{p_{s}^{*}}{p}}\left(A\left(u_{k}-u_{*}\right)\right)^{\frac{p_{s}^{*}}{p}} .
$$

Then

$$
b \geq\left(\frac{\alpha_{4}}{\alpha_{2}} p_{s}^{*}\right)^{\frac{-n}{s p_{s}^{*}}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}} S_{p}^{\frac{n}{p s}}
$$

On the other hand, we have

$$
\begin{aligned}
c & =\lim _{k \rightarrow \infty}\left(\frac{1}{p} A\left(u_{k}\right)-B\left(u_{k}\right)-\mu C\left(u_{k}\right)\right) \\
& =\lim _{k \rightarrow \infty}\left(\frac{1}{p} A\left(u_{k}-u_{*}\right)-B\left(u_{k}-u_{*}\right)-\frac{1}{p} A\left(u_{*}\right)-B\left(u_{*}\right)-\mu C\left(u_{k}\right)\right)+o(1) \\
& =\Phi_{\lambda, \mu}\left(u_{*}\right)+b\left(\frac{1}{p}-\frac{1}{p_{s}^{*}}\right) \geq \Phi_{\lambda, \mu}\left(u_{*}\right)+\frac{s}{n}\left(\frac{\alpha_{4}}{\alpha_{2}} p_{s}^{*}\right)^{\frac{-n}{p_{s}^{*}}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}} S_{p}^{\frac{n}{p s}} .
\end{aligned}
$$

By the assumption that $c<\frac{s}{n}\left(\frac{\alpha_{4}}{\alpha_{2}} p_{s}^{*}\right)^{\frac{-n}{s p_{s}^{*}}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p_{s}}} S_{p}^{\frac{n}{p s}}$, we obtain $\Phi_{\lambda, \mu}\left(u_{*}\right)<0$. In particular, $u_{*} \neq$ 0 , and

$$
\begin{equation*}
B\left(u_{*}\right)>\frac{1}{p} A\left(u_{*}\right)-\mu C\left(u_{*}\right) . \tag{4.6}
\end{equation*}
$$

Then,

$$
\begin{aligned}
c & =\lim _{k \rightarrow \infty} \Phi_{\lambda, \mu}\left(u_{k}\right)=\lim _{k \rightarrow \infty}\left(\Phi_{\lambda, \mu}\left(u_{k}\right)-\frac{1}{p}\left\langle\Phi_{\lambda, \mu}^{\prime}\left(u_{k}\right), u_{k}\right\rangle_{X_{0}}\right) \\
& =\lim _{k \longrightarrow \infty}\left(\frac{p_{s}^{*}}{p}-1\right)\left(B\left(u_{k}-u_{*}\right)\right)+B\left(u_{*}\right)-\mu\left(\frac{p-q}{p}\right) C\left(u_{k}\right) \\
& =\frac{s p_{s}^{*}}{n}\left(B\left(u_{k}-u_{*}\right)+B\left(u_{*}\right)\right)-\mu\left(\frac{p-q}{p}\right) C\left(u_{*}\right) \\
& \geq \frac{s}{n}\left(\frac{p_{s}^{*} \alpha_{4}}{\alpha_{2}}\right)^{\frac{-n}{s p_{s}^{*}}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}} S_{p}^{\frac{n}{p s}}+\frac{s p_{s}^{*}}{n} B\left(u_{*}\right)+\mu\left(\frac{q-p}{p}\right) C\left(u_{*}\right) .
\end{aligned}
$$

Then,

$$
c \geq \frac{s}{n}\left(\frac{\alpha_{4}}{\alpha_{2}} p_{s}^{*}\right)^{\frac{-n}{s p_{s}^{*}}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p s}} S_{p}^{\frac{n}{p s}} .
$$

Then, we get a contradiction with our hypothesis. Hence, $b=0$ and, we conclude that $u_{k} \rightarrow u_{*}$ strongly in X_{0}. This completes the proof.

4.3 Proof of the main result

In this section, we will prove the main result (Theorem4.1). First of all, we begin by remark that if $u \in K_{i}$ is a critical point of the restricted functional $\left.\Phi_{\lambda, \mu}\right|_{K_{i}}$. Then u is also a critical point of the unrestricted functional $\Phi_{\lambda, \mu}$. Which implies that u is a weak solution for problem (1).

Lemma 4.7 If c satisfies (4.4), then the functional $\Phi_{\lambda, \mu}$ defined on K_{i} satifies the Plais-Smale condition at level c.

Proof Let $\left(u_{k}\right) \in K_{i}$ be a sequence such that $\Phi_{\lambda, \mu}\left(u_{k}\right)$ is uniformly bounded and $\Phi_{\lambda, \mu}^{\prime}\left(u_{k}\right) \rightarrow 0$. Let $v_{j} \in T_{u_{j}} X_{0}$, be a unit tangenttial vector such that

$$
\left\langle\Phi_{\lambda, \mu}^{\prime}\left(u_{j}\right), v_{j}\right\rangle=\left\|\Phi_{\lambda, \mu}^{\prime}\left(u_{j}\right)\right\|_{X^{\prime}}
$$

By lemma 4.5, we have that $v_{j}=w_{j}+y_{j}$, for some $w_{j} \in T_{u_{j}} M_{i}$ and $y_{j} \in \operatorname{span}\left\langle\left(u_{j}\right)_{+},\left(u_{j}\right)_{-}\right\rangle$.
Since $\Phi_{\lambda, \mu}\left(u_{j}\right)$ is uniformly bounded then, by lemma 4.2, u_{j} is also uniformly bounded in X_{0}.
So, w_{j} is uniformly bounded in X_{0}. Therefore, as j tends to infinity, we get

$$
\left\|\Phi_{\lambda, \mu}^{\prime}\left(u_{j}\right)\right\|_{X^{\prime}}=\left\langle\Phi_{\lambda, \mu}^{\prime}\left(u_{j}\right), v_{j}\right\rangle=\left\langle\left.\Phi_{\lambda, \mu}^{\prime}\right|_{K_{i}}\left(u_{j}\right), v_{j}\right\rangle \rightarrow 0 .
$$

As a consequences we get

$$
\left.\Phi_{\lambda, \mu}^{\prime}\right|_{K_{i}}\left(u_{k}\right) \rightarrow 0 .
$$

Finally, the result follows immediately from Lemma 4.6.

Now, we need to show that the fuctional $\left.\Phi\right|_{K_{i}}$. satifies the hypothesis of the Ekeland's Variational Principle [26]. We have as a direct consequence of the construction of the manifold K_{i} that Φ is bounded below over K_{i}.

Hence, by Ekeland's Variational Principle, there existe $v_{k} \in K_{i}$ such that

$$
\Phi\left(v_{k}\right) \rightarrow c_{i}:=\inf _{K_{i}} \Phi \text { and }\left(\left.\Phi\right|_{K_{i}}\right)^{\prime}\left(v_{k}\right) \rightarrow 0 .
$$

We have frome lemma 4.1 if we choose μ large, then we get

$$
c_{i}<\frac{s}{n}\left(\frac{\alpha_{4}}{\alpha_{2}} p_{s}^{*}\right)^{\frac{-n}{s p_{s}^{*}}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p_{s}}} S_{p}^{\frac{n}{p_{s}}} .
$$

For instance, for c_{1}, we get the choosing $w_{0} \geq 0$,

$$
c_{1} \leq \Phi\left(t_{\mu} w_{0}\right) \leq \frac{1}{p} t_{\mu}^{p} A\left(w_{0}\right) .
$$

Therefore $c_{1} \rightarrow 0$ as $\mu \rightarrow+\infty$. Moreover, it follows from lemma 4.1 that

$$
c_{i}<\frac{s}{n}\left(\frac{\alpha_{4}}{\alpha_{2}} p_{s}^{*}\right)^{\frac{-n}{\overline{s p}}}\left(1-\frac{\lambda}{\lambda_{1}}\right)^{\frac{n}{p_{s}}} S_{p}^{\frac{n}{p s}} \text { for } \mu>\mu^{*}\left(p, q, n, \alpha_{3}, \beta_{3}\right) .
$$

frome lemma 4.6, there exists a convergent subsequence extracted from v_{k} still denoted v_{k}. Therefore the funcational Φ has a critical point in $K_{i}, i=1,2,3$.

Conclusion

In this thesis we studied a non-local elliptic fractional Laplacian problem with regular nonlinearity using two different variational techniques under different conditions.

In the first work the non-linearities are two continuous functions satisfying homogenous conditions. We proved the existence of two non-trivial positive solutions for the subcritical case by applying fibering maps, the Nehari manifold, and some basic calculations. The second main result obtained concerns the critical case we proceed in the same way depending on some additional convergence criteria with a little more complicated calculations, due to the lack of compacity of the embedding, and as a result of that the energy functional does not satisfy the Palais-Smale condition globally, except in an appropriate condition due to the best critical Sobolev constant.

In the second work the non-linearities functions satisfying different conditions, we proved the existence of three distinct solutions for the critical case, using Ekeland's variational principle. Finally, the results obtained in this thesis concern a fractional p-Laplacian problem using different variational techniques under different assumptions for the critical case, and it can be generalized with $p(x, y)$-fractional operators and other types of nonlinearities.

Bibliography

[1] Abdellaoui, B., Colorado, E., Peral, I., et al. Effect of the boundary conditions in the behavior of the optimal constant of some caffarelli-kohn-nirenberg inequalities. application to some doubly critical nonlinear elliptic problems. Advances in Differential Equations 11, 6 (2006), 667-720.
[2] Abid, D., Akrout, K., And Ghanmi, A. The multiplicity of solutions for the critical problem involving the fracional p-laplacian operator. Boletim da Sociedade Paranaense de Matemática .(To appear).
[3] Abid, D., Akrout, K., And Ghanmi, A. Existence results for sub-critical and critical p-fractional elliptic equations via nehari manifold method. Journal of Elliptic and Parabolic Equations 8, 1 (2022), 293-312.
[4] Alberti, G., Bouchitté, G., AND Seppecher, P. Phase transition with the line-tension effect. Archive for rational mechanics and analysis 144, 1 (1998), 1-46.
[5] Ambrosetti, A., Brezis, H., And Cerami, G. Combined effects of concave and convex nonlinearities in some elliptic problems. Journal of Functional Analysis 122, 2 (1994), 519-543.
[6] Ambrosetti, A., And Rabinowitz, P. H. Dual variational methods in critical point theory and applications. Journal of functional Analysis 14, 4 (1973), 349-381.
[7] Ambrosio, V. Nontrivial solutions for a fractional p-laplacian problem via rabier theorem. Complex Variables and Elliptic Equations 62, 6 (2017), 838-847.
[8] Ambrosio, V. A multiplicity result for a fractional p-Laplacian problem without growth conditions. Riv. Math. Univ. Parma (N.S.) 3-29, 1 (2018), 53-71.
[9] Ambrosio, V. Nonlinear fractional Schrödinger equations in \mathbb{R}^{N}. xvii+662.
[10] Azorero, J. G., And Alonso, I. P. Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Transactions of the American Mathematical Society (1991), 877-895.
[11] Barrios, B., Colorado, E., Servadei, R., and Soria, F. A critical fractional equation with concave-convex power nonlinearities. In Annales de l'Institut Henri Poincaré C, Analyse non linéaire (2015), vol. 32, Elsevier, pp. 875-900.
[12] Bates, P. W. On some nonlocal evolution equations arising in materials science. Nonlinear dynamics and evolution equations 48 (2006), 13-52.
[13] Biler, P., Karch, G., And Woyczyński, W. A. Critical nonlinearity exponent and self-similar asymptotics for lévy conservation laws. In Annales de l'Institut Henri Poincaré C, Analyse non linéaire (2001), vol. 18, Elsevier, pp. 613-637.
[14] Boccardo, L., Escobedo, M., and Peral, I. A dirichlet problem involving critical exponents. Nonlinear Analysis: Theory, Methods \mathcal{E} Applications 24, 11 (1995), 1639-1648.
[15] Brezis, H. Analyse fonctionnelle. théorie et applications. collection mathématiques appliquées pour la matrise, 1983.
[16] Brézis, H., and Lieb, E. A relation between pointwise convergence of functions and convergence of functionals. Proceedings of the American Mathematical Society 88, 3 (1983), 486-490.
[17] Brown, K., and Zhang, Y. The nehari manifold for a semilinear elliptic equation with a sign-changing weight function. Journal of Differential Equations 193, 2 (2003), 481-499.
[18] Brown, K. J., and Wu, T.-F. A fibering map approach to a semilinear elliptic boundary value problem. Electron. J. Differential Equations (2007), No. 69, 9.
[19] Bucur, C., AND Valdinoci, E. Nonlocal diffusion and applications, vol. 20. Springer, 2016.
[20] Colorado, E., and Peral, I. Semilinear elliptic problems with mixed dirichletneumann boundary conditions. Journal of Functional Analysis 199, 2 (2003), 468-507.
[21] Costa, D., and Gonçalves, J. Critical point theory for nondifferentiable functionals and applications. Journal of Mathematical Analysis and Applications 153, 2 (1990), 470-485.
[22] Craig, W., and Nicholls, D. P. Traveling two and three dimensional capillary gravity water waves. SIAM Journal on Mathematical Analysis 32, 2 (2000), 323-359.
[23] Craig, W., Schanz, U., and Sulem, C. The modulational regime of three-dimensional water waves and the davey-stewartson system. In Annales de l'Institut Henri Poincaré C, Analyse non linéaire (1997), vol. 14, Elsevier, pp. 615-667.
[24] Demengel, F., Demengel, G., and Erné, R. Functional spaces for the theory of elliptic partial differential equations. Springer, 2012.
[25] Drábek, P., and Pohozaev, S. I. Positive solutions for the p-laplacian: application of the fibrering method. Proceedings of the Royal Society of Edinburgh Section A: Mathematics 127, 4 (1997), 703-726.
[26] EKELAND, I. On the variational principle. Journal of Mathematical Analysis and Applications 47, 2 (1974), 324-353.
[27] GHANMI, A. Multiplicity of nontrivial solutions of a class of fractional p-laplacian problem. Zeitschrift für Analysis und ihre Anwendungen 34, 3 (2015), 309-319.
[28] Ghanmi, A., and SaOUdi, K. The Nehari manifold for a singular elliptic equation involving the fractional Laplace operator. Fract. Differ. Calc. 6, 2 (2016), 201-217.
[29] HE, J.-H. Variational iteration method-a kind of non-linear analytical technique: some examples. International journal of non-linear mechanics 34, 4 (1999), 699-708.
[30] Kavian, O. Introduction à la théorie des points critiques: et applications aux problèmes elliptiques, vol. 13. Springer, 1993.
[31] Milici, C., DrăGĂnescu, G., and Machado, J. T. Introduction to fractional differential equations, vol. 25. Springer, 2018.
[32] Palais, R. S., and Smale, S. A generalized morse theory. Bulletin of the American Mathematical Society 70, 1 (1964), 165-172.
[33] Saoudi, K., Ghanmi, A., and Horrigue, S. Multiplicity of solutions for elliptic equations involving fractional operator and sign-changing nonlinearity. Journal of PseudoDifferential Operators and Applications 11, 4 (2020), 1743-1756.
[34] Servadei, R., and Valdinoci, E. Mountain pass solutions for non-local elliptic operators. Journal of Mathematical Analysis and Applications 389, 2 (2012), 887-898.
[35] Servadei, R., and Valdinoci, E. Variational methods for non-local operators of elliptic type. Discrete \& Continuous Dynamical Systems 33, 5 (2013), 2105.
[36] Servadei, R., and Valdinoci, E. The brezis-nirenberg result for the fractional laplacian. Transactions of the American Mathematical Society 367, 1 (2015), 67-102.
[37] STRUWE, M. Three non-trival solutions of anticoercive boundary value problems for the pseudo-laplace-operator.
[38] Willem, M. Minimax theorems, vol. 24. Springer Science \& Business Media, 1997.

