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Abstract

In this memory we studied the weak positive
solutions for a class of semilinear elliptic systems
subject to homogeneous Dirichlet conditions on the
bord. The technique used is the method sub- and
Super solutions.
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Introduction

Partial differential equations are of crucial importance in modelization and description of a
wide variety of phenomena such as fluid dynamics, quantum physics, sound, heat, electrostat-
ics, diffusion, gravitation, chemistry, biology, simulation of airplane, calculator charts and time
prediction.

PDEs are equations involving functions of several variables and their derivatives and model
multidimensional systems generalizing ODEs (ordinary differential equations), which deal
with functions of a single variable and their derivatives.

The non-linearity is essential and depends on one phenomenon to another and is closely
linked to its exact to its exact description.

Problems involving the p-Laplacian arise from many branches of pure mathematics as in
the theory of quasiregular and quasiconformal mapping as well as from various problems in
mathematical physics notably the flow of non-Newtonian fluids.

Hai, Shivaji [5] studied the existence of positive solution for the p-Laplacian system

[ Ayju=A\f(v) inQ,

—A,v = Ag (u) in €2, (D)

| u=v =0 on Jf,

which f (s), g (s) are the increasing functions in [0, co) and satisfy

lim
s—+00 sp—1

=0,M>0

the authors showed that the problem (1) has at least one positive solution provided that A > 0
is large enough.

In [3] , the existence and nonexistence of positive weak solutions to the following quasilin-



ear elliptic system:
(

—Apu = Au*v” in Q,

—Ayu = Mu’v? in Q, (2)

| u=v= 0 on 012,

has been considered where the first eigenfunction of the operator —A, has been used to
construct the subsolution of problem (2) and the following results were obtained:

DIfa,p>0,75>00=(p—1—a)(¢q—1—)—~0 >0, then problem (2) has a positive
weak solution for each A > 0.

(i) If 0 = 0 and py = ¢(p— 1 — «), then there exists A\g > 0 such that for 0 < A < Ag
problem (2) has nonontrivial nonnegative weak solution.

In this Chapter 1 of this thesis reviews some useful preliminary notions as Sobolev spaces
and p-Laplace operator.

In chapter 2 we present study the existence and multiplicity of positive weak solutions for

a new class of (p, ¢) Laplacian nonlinear elliptic system

(

—Apu — |’ u = Ma(x) f (v) + g (@) h(u) in Q,
—Agv — [0 = Aob (x) g (u) + puf () 7 (v) in Q, 3

u=wv =0 on Jf2,

\

where

Ngz=div (|Vz["?Vz),s > 1,Q C RY (N >3)

is a bounded domain with smooth boundary 09, a (z),b(z), a(z),8(z) € C(Q), A1, Aa, pq,
and u., are nonnegative parameters.

The study of (p,q) Laplacian nonlinear elliptic system is a new and interesting topic. It
arises from nonlinear elasticity theory, electrorheological fluids, etc. Many existence results

have been obtained on this kind of problems, see for example.These problems arise in some



Contents

physical models and are interesting in applications at combustion, mathematical biology, chem-

ical reactions. Our approach is based on the method of sub- and supersolutions .

K. AKROUT and R. Guefaifia [16] have studied the existence and nonexistence of positive
weak solution for a generalized elliptic systems involving (p1, ..., p,)-Laplacian operator with
zero Dirichlet boundary condition in bounded domain 2 C R™ by using sub-super solutions

method of the following form

—Apiui = )\le (Ul, ,Um) dans Q, 1<:<m
4)

u; = 0sur 0, Vi, 1 <i<m

In Chapter 3 we study the existence and nonexistence of positive weak solution to the

quasilinear elliptic system

—Ap,ui — ’Uz‘|pi_2 u; = Nifi (U1, uy) N1 <0 <m

u; = 00n 0, Vi, 1 <i<m

Our results are natural generalization and extension of previous studies.

Contents



Chapter 1

Preliminary

1- Continuous function spaces.
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Chapter 1. Preliminary

1.1 Continuous function spaces

We start this work by giving some useful notations and conventions

Let x = (x1, z9, ..., x,) denote the generic point of an open set (2 of R". Let u be a function
Ou (x)
A

to z; (1 <i <n).Let's also define the gradient and the p—Laplacian from u, respectively as

defined from Q) to R, we designate by Du (z) = the partial derivative of u with respect

following

2

ou  Ou au)Tand |Vu|2:§:

Ox1 Oxs’ 7 Oxyy i=1

ou
al’i

Vu = (

Ayu(z) = div (|Vu’> Vu) (z),p > 2.
Note by C(€2) the space of continuous functions from 2 to R, (C(2),R™) the space of
continuous functions from  to R™ and C, (Q2) the space of all continuous and bounded
functions on €, , it is equipped with the norm ||.||__;

[uf| o = sup [u (z)]
e

For k > 1 integer, C* (Q) is the space of functions u which are k times derivable and whose
derivation of order k is continuous on ).

Ck (9) is the set of functions of C* (€2) , whose support is compact and contained in §2.

We also define C* (Q), as the set of restrictions to € of elements from C* (R") or as being
the set of functions of C* (), ), such that for all 0 < j < k, and for all z, € 99, the limit
mlL%ODj u (z) exists and depends only on .

Cs () or © (), is the space of the infinitely differentiable functions, with compact supports

called test function space.

1.1. Continuous function spaces



Chapter 1. Preliminary

1.2 [P Space

Let ) be an open set of R", equipped with the Lebesgue measure dz. We denote by L' (Q2) the

space of integrable functions on 2 with values in R, it is provided with the norm
fulls = | (o] do
Q
Let p € Rwith 1 < p < 400, we define the space L” (2) by
LP(Q) = {f : Q — R, f measurable and / |f ()P dx < +oo}
Q

equipped with norm

SIS

el = ( / u(az)pdm)

Q
We also define the space L> (2) by

L>(Q) ={f:Q — R, f measurable, 3¢ > 0, so that |f (z)| < ca.e. on 2}
it will be equipped with the essential-sup norm

|ul| oo = esssup|u(z)| =inf{¢; |u(z)] <c a.eonQ}

e

We say that a function f : 2 — R belongs to L} (Q) if f1x € L? (Q) for any compact K C Q.

1.3 Sobolev space

1.3.1 Weak derivative

Definition 1.1 Let € be an open set of R, and 1 < i < n. A function u € L}, (Q) has an i*" weak
(Q) if there exists f; € Li.. () such that for all ¢ € C5° (2) we have

loc

derivative in L}

loc

Juwop @i =~ [ 1@ @
Q

Q

12. I” Space H
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This leads to say that the i'" derivative within the meaning of distributions of u belongs to

Ll

loc

(Q) ,we write
ou

fi

1.3.2 Wlr(Q) space

Let  be a bounded or unbounded open set of R, and p € R, 1 < p < 400, the space W7 (Q)
is defined by

Wh? (Q) = {u e LP (Q); such that Qu € LP (Q),1 < i < n}

where §; is the i'" weak derivative of u € L} ().

loc

Theorem 1.1 [11] There exists a constant C' ( depending only on 2 ) such that

lull e < C ullygrn, Vo€ W(Q),¥1 < p < +oo

In other words, W17 () C L* (Q2) with continuous injection for all 1 < p < +oc .
Further, if 2 is bounded then

the injection W'? () C C () is compact for all, 1 < p < +o0
the injection W't (Q) C L7(R2) is compact for all, 1 < q < 400,

Corollary 1.1 [16] Suppose that Q) is an unbounded interval and v € W (Q) with 1 < p < +oco
.Then

lim u(z)=0
|| —+o0
z€QN

1.3.3 W™P(Q) Space

Let € be an open set of R"”,m > 2 integer number and p real number such that 1 < p < 400,

we define the space W™ (Q2)as following

Wmr(Q) = {u € LP (), such that Qu € LP (), Vo, |a| < m}

1.3. Sobolev space ]
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where oo € N”, |a| = a3 + ... + «,, the length of a and J;u = 97"...05" is the weak derivative of
a function u € L} (2) in the sense of definition (1.1).

The space W™ (Q) is equiped with the norm

[llyyms = llull o + 2 0<iaj<m 105l 1o

For p = 2,The space W™? (Q) is noted H™ (12).

1.3.4 W, " (Q) Space

Definition 1.2 For 1 < p < 400 -we define the space W,” () as being the closure of D (Q) in
Wh? (Q) ,and we write

Wo” (@) =D ()"

1.4 Maximum principle

A large number of results of existence or uniqueness of solutions to boundary problems (elliptic
or parabolic) can be established using the maximum principle. Here we give some variants of

this result.
Let 2 be an open set of R", a(.) = (aj; ()),<; j<, @ matrix, b(.) = (b; (.)),<,<, a vector and c

a function. We consider the second-order symmetric operator L defined by
Lu=— ZZj:l aijaiju + Z?:l bl&u + cu (11)
It is assumed that the square matrix a satisfies the coercive (or elliptic) condition.
Ja >0, VEER", a(2) =" a;()6¢ > alé]’ aeonQ, (1.2)

where |¢| -designates the Euclidean norm of £ in R™.

1.4. Maximum principle
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Theorem 1.2 (Classical maximum principle) [26] Let 2 a bounded and connected open set,
and L as in (1.1). We suppose that ¢ > 0, (1.2) is satisfied and a;;,b, ¢ € C(Q).If u €
C?(Q) N C* (Q) verifies Lu < 0 then we have

supu () < supu™ (o) where v (0) = max (u (o) ,0)
zeQ o€edN

Theorem 1.3 (Hopf maximum principle) [26] Let €2 a bounded and connected open set, and L
as in (1.1). We suppose that ¢ > 0, (1.2) is satisfied and a;;,b;, c € C () . Ifu € C*(Q) N C* ()
verifies Lu < 0 and if u reaches a non negatif maximum in the interior of ), then u is constant on

Q.

Theorem 1.4 (Aleksandrov maximum principle) [26] Let Q2 a bounded and connected open
set, and L as in (1.1). We suppose that ¢ > 0, (1.2) is satisfied and a;;,b;, ¢ € C (Q)and f €
LY (). There exists C > 0 depending on N, 1] .~ () and the diameter of §) such that; if u €
WY () N C (Q) verifies Lu < f then we have

loc

supu (2) < supu (o) + C'|[ v (q)
e o€

Lemma 1.1 [Boundary Point Lemma] [15] suppose that u is continuous in 2, Lu > 0 (resp. Lu < 0)in
Q, and u attains its maximum (resp; minimum)in point p € 0S). then, all Directional derivativey-

ers the exterior ofu at point p are positive (resp; negative).

1.5 Eigenvalue problems

Definition 1.3 We say that u € W, 7 () ,u # 0, is an eigenfunction of the operator —Apu if:
/ IVul"? Vu.Vods = )\/ luP"? u.pda (1.3)
Q Q

forall p € C§° (R2) . The corresponding real number X is called eigenvalue .

Let \; defined by

/Vu|pdx
A\ = inf x

Jnf e (1.4)
ueWy’ u#0
€Wy ( )7 # /upd:p

Q

1.5. Eigenvalue problems
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equivalent to

A; = inf /|Vu\pd:z:;/\u]pd:c =1LueWy?(Q),u#0
Q Q
A1 is the first eigenvalue of the p—Laplacien operator with null Dirichlet conditions at the edge.

Lemma 1.2 [27] A, isisolated, i.e : there exists 6 > 0 such that in the interval (A1, A + J) , there

is no other eigenvalues of (1.3).
Lemma 1.3 [27] a) let p > 2, then for all £;,&, € R™

’fé‘p > ‘51’17 +p ‘fl‘p_2 (1,8 — &) +C(p) & — 52‘1);

b)let p < 2, then for all £,,&, € R”

|§1 - §2|p
(B

|52‘p > |§1’p +p ‘51’;7—2 (€1, — &) +C(p)

whereC (p) is a component dependent only on p.

Lemma 1.4 [27] The first eigenvalue \ i.e : if u.v are two eigenfunctions associated with \; ,

then, there exists k € R such that u = kv.

Lemma 1.5 [27] Let u be an eigenfunction associated with the eigenvalue )i, then u does not

change sign on ), Further if u € C4%,then u (x) # 0,Vz € Q.

Proof By the lemma (1.4), we can assume that u, v are positive on €2, and by taking

Spl - Up_l )
(v" — w)
P2 = o1

two test functions in the weak formulation (1.3), one obtains

- R
IVul"~? VuV T2 ) ar = ul’ " u i (1.5)
up~t up~1

Q Q
p _ P D _ 4P
/|Vv|p2 VoV (U “ ) de = )\/ P2 (U “ ) dx
(s (s
0 Q

1.5. Eigenvalue problems
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The addition of these two formulas gives
P __ P p_ P
0 :/|Vu|p2 Vuv (“ v )d$+/|VU|p2 Vov (“ ! )da: (1.6)
up 1 VP 1
Q Q

And using the identities :

D _ P p—1 D
V(u U) = Vu—p Vv+(p—1)UVu,

up~1

vP — uP uP~ U
\Y ( = ) = Vov-— P Vu+ (p—1) EVU, (1.7)

we get the first term of (1.6)

up~1 U

P __ 4P p—1
/ V"2 Vuv (“ ! )dw - / Vul? dz — p / [Vl VoVuds (1.8)
Q Q

Q

VP »
+/(p—1)J\Vu| dx

Q

= /]Vlnu|pupdx—p/v”|Vlnu|p_2 (Vinu,Vinv)dz
Q Q

+/ (p—1)|VInulf vPdx
0

We have an analogous expression for the second term of (1.6), where formula (1.6) then

becomes

0 = /(up—vp)(|V1nu|p— 'V Inol”)dz (1.9
Q

—p/vp (IVInuf~?(Vinu, Vinv — Vinu)) do

—p [w (|[VInvf?(VInv, Vinu — Vino)) do

50\10

Choisissans ¢; = VInu and &, = VInv and we use the lemma (1.3) we will have, for p > 2

02/C’(p)|V1nu—Vlnv|(up+vp)dz (1.10)

Q

1.5. Eigenvalue problems
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or

0=|VInu— Vinv| (1.1D

then u = kv.

For p < 2 ,we use the second part of the lemma (1.3) as above. m

Theorem 1.5 (dominated convergence theorem, Lebesgue) [26] Let {f.},-, be a sequence of
functions of L (Q2)converging almost everywhere to a measurable function f. It is assumed that

there exists g € L' () such that for all n > 1, we get

fl <g aeon®

then: f e L'(Q)and

n—-+4o0o

i 4= Flp =0, and [ f@)de= 1 [, (@) do
Q Q

Definition 1.4 [26] Let w be a part of a Banach space X and F': w — R. if u € w, we say that F’
is Gateaux differentiable ( G-differentiable) at u, if there exists | € X' such that in each direction
z € X where F (u + tz) exists for t > 0 small enough, the directional derivative F (u) exists and

we have
lim Fu+tz)—F(u)

t—0t t

=(l,z2).

We write F' (u) = .

Theorem 1.6 [26] Let 2 C R" an open set n > 3,, For p € (1,+00) we define a functional
J:Wy?(Q) — R by
J<u):/|vuypdx
0

then .J is Gateaux differentiable in W," (Q) and

J' (u) (v) = p/ \Vu|p—2 Vu.Vude, Yo € Wol,p ()
Q

1.5. Eigenvalue problems
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Proof We consider the function ¢ : R" — R, defined by: ¢ (z) = |z|” it is a class function

CYand Vo = p x|z,

then for all z,y € R™,
i P&+ ty) — o ()
t—0 t

=plzf 2y

as a result

lim |Vu (x) +tVo (2)[° — |[Vu (z)]?

t—0 t

= p|Vu ()" Vu () . Vv (z)

by the finite increase theorem, for almost everything x € {2 and for ¢ > 0, there is a function

¢ with values in |0, 1] such that one can write:

IV (2) + tVo (@) — |Vu (@) = tp |Vu (2)P% Vu (z) . Vo (2) (1.12)
= tp|Vu(z)+0(t,z)tVo ()P (Vu (z) + 6 (t, ) tVv (z)) . Vo (z)
—tp|Vu ()" Vu (z) . Vo ()

Dividing by ¢,we get for almost all x

lim IV (u+ tv) ()" — |Vu (2)]P — tp|Vu (2)]P > Vu (z) Vo (x)

t—0 t

=0.

On the other hand, we can increase the second member of the equality (1.12) divided by ¢
by
h(z) = 2|Vo ()] (|Vu (2)] + Vo (2)])"

Using HOlder’s inequality we obtain:

< Cvoll, (I9ull™ + [9l)

We may now apply dominated convergence theorem and conclude that:

J (u) (v) =p / IVulP 2 Vu.Vudz, Yo € WP ()

Q

then J is Gateaux differentiable. m

1.5. Eigenvalue problems
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Lemma 1.6 (Comparison lemma) [8] Let u,v € W, (Q) satisfying

/ V| > Vu.Veds < / IVolP~* Vu.Veds (1.13)
Q Q

forall p € Wy (Q), ¢ > 0,then u < v a.e in Q.

Proof This proof is based on the arguments presented in [12] and [4]. We start by defining
the function .J : W,” (Q) — R by the formula

J(u) = ]%/|Vu|p dx (1.14)
Q

It is clear that the functional J is Gateaux differentiable and continuous and its derivative at

u € Wy (Q) is the function J' (u) € W, 7P (Q) i.e

J' (u) (p) = / \Vul""* Vu.Veds, o € Wy (Q). (1.15)
Q

J' (u) is continuous and bounded. We will show that .’ (u) is strictly monotonic in W, * (Q).

Indeed, for all u,v € W, ” () ,u # v without loss of generality, we can suppose that

/|Vu|pdx > /|Vv|pd93
Q 0

Using the Cauchy inequality we have
1 2 2
Vu.Vu < |Vu| V| < 5 (IVul™ + |Vo|7) (1.16)
From formula (1.14) we deduce

1
/|Vu|p dr — / \VulP? Vu.Vods > 3 / IVulP~? (Vul? — |[Vol?) da (1.17)
Q Q Q

1
/]Vv|p dx — / \Vo|" ™ Vo.Vudz > 5 / Vol (|VU|2 - |Vu|2) dx (1.18)
0 Q Q

1.5. Eigenvalue problems
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If [Vu| > |Vv|, by using (1.14) — (1.16) we get .
Li(u) = J"(u) (u) = J" (u) (v) = J"(v) (u) + J" (v) (v)
= (/Vupdx —/|Vu|p2 Vu.Vvdm)
Q Q
— (/ V|’ Vo.Vudz — / |Vol? d:v)
Q Q
> /% IVulP~? (Vul? — |Vol?) da (1.19)
Q

—%/ |Vu|p*2 (|Vu|2 — |VU|2) dx
)

=3 / (IVul”™ = 1Vol™) (IVul* = [Vol) da
Q

> %/ (IVulP~? — |Vo]P2) (|Vul]? — |Vo|?) da
Q

1.5. Eigenvalue problems
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If [Vu| > |Vu|, by changing the role of v and v in (1.14) — (1.16) we have
Iy (v) = J (v)(v) = J" (v) (u) = J' (u) (v) + J" (u) (u)

= (/vadx/VUPQVU.Vudx)
Q Q

— (/Vu|p2 Vu.Vudz /Vupdm>
0 Q

/|W|p—2 (IVo)? = |Vul?) do
Q

1
23

—%/ |V1}|p_2 (|VU|2 — |Vu|2) dx
Q

= %/ (|Vvlp_2 — |Vu\p_2) (|VU|2 — |Vu\2) dx
Q

> %/ (IVoP~2 = |[Vul’~?) (Vo] = [Vul?) dz
Q
From (1.17) and (1.18), we have

(J' (u) = J' () (u—v) = I, = Iy > 0,Vu,v € Wr (Q)
In addition, if u # v and (J' (u) — J' (v)) (u — v) = 0, then we have

/ (|Vu|p_2 — |Vv|p_2) (|Vu|2 — |Vv|2) dr =0,
Q
If [Vu| = |[Vv] in 2, we deduce that

(J' (u) = J (0) (u=v) = J"(u)(u—=v)=J (v)(u=-0)

(1.20)

(1.21)

1.5. Eigenvalue problems
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i.e. u — v is a constant. Given v = v = 0 on Jf2 we are getting u = v , which is contrary with
u # v. Then (J' (u) — J' (v)) (u —v) > 0 and J’ (u) is strictly monotonic in W, ' (Q). Let u,v
two functions such that (1.15) is satisfied, let’s take ¢ = (u — v)", the positive part of u — v as

a test function in (1.15), we get

(J' (u) — J (v) (p) = / \VulP 2 Vu.Vds — / IVolP~2 Vou.Veds < 0. (1.22)
0 Q

Relationships (1.20) and (1.21) imply that u < v. m

1.5. Eigenvalue problems
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Chapter 2. Existence and multiplicity of positive weak solutions for a new class of (p, q) Laplacian

nonlinear elliptic system

2.1

Introduction

In this chapter, we study the existence and multiplicity of positive weak solutions for a new

class of (p, q) Laplacian nonlinear elliptic system

where

;

—Opu— [u"?u = Na(2) f (v) + (@) h(u) inQ,

— B0 = 0" v = Agb () g (u) + 8 () 7 (v) In €2, 2.1)

u=v=0on 0df,

\

Nz = div (|Vz]s_2 Vz),s>1,QCRY (N >3)

is a bounded domain with smooth boundary 0, a (z),b(z), a(z),8(z) € C(Q), A1, Aa, g,

and p, are nonnegative parameters.

2.2 Definitions and notations

First, we make the following assumptions:
(H1) Leta(z), b(z), a(z), B(z) € C(Q) such that a(z) > a1 > 0,b(z) > by > 0,a(z) >
ar >0,6(z) 2B, >0

(H2) f, g, h, v € C*(]0,00)) be monotone functions such that

(H3) lim,
(H4) lim

(3177 )

lim f(s)= lim g(s)= lim h(s)= lim ~(s)= +oc.

S$——+00 S$——+400 S$——+00 S§——+00

2L =0, VM > 0.
e ME) —im, 28 =

We give the following two definitions before we give our main result

Definition 2.1 Let (u,v) € W (Q) N C (Q) x W (Q) N C (), (u,v) is said a weak solution

2.1. Introduction
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of (2.1) if it satisfies
[V’ Vu.Vede — [ |ulP?uéde =
Q Q

M [a(z) f(v)&de + py [ a(z)h(u)édein Q,

Q Q

f]Vv|q_2 Vou.V{dz — f\v\q_2v.(daz’:
0

)\be Cdx—l—,ugfﬁ v) {dx in Q
forall (£,¢) € Wy (Q) x Wy (Q).

Definition 2.2 A pair of nonnegative functions (u, v) , (@,v) in W» (Q)NC () x W (Q)NC (Q)
are called a weak subsolution and supersolution of (2.1) if they satisfy (u,v), (uw,v) = (0,0) on
o0

[Vul"? Vu.Vede — [ |uf’? uédr <
Q Q

M [ (@) f () Ede+py [ olx)h(w)Edein Q)

Q Q

f |Vo|'? Vu.V(ds — f 0|7 % v.Cda <
)\be Cdx—l—uzfﬁ v) (dz in

and

[|Val’*vVa.Vede — [ [al’*u.cde >
Q Q

M [a(x) f @) &de+ py [ o(z)h (@) Eda in Q,

Q Q

f \Vo|'? Vo.V(dr — f 7" 0.¢de >
)\be Cdx—l—,uzfﬁ v) (dx in

forall (£,¢) € Wy (Q) x Wy ().
We shall establish the following result.

2.2. Definitions and notations
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2.3 Existence result

Theorem 2.1 [14] Assume that the conditions (H1)—(H4) hold, then problem (2.1) has a positive

weak solution for each provided A\, + 11, and A\ + ., are large.

Proof We shall establish Theorem 2.1 by constructing a positive weak subsolution. (u,v) €
WP (Q)NC (Q) x W () N C (Q) and a supersolution (u,v) € WP (Q)NC (Q) x Wh(Q)N
C (Q) of (2.1) such that u < @, v <. That is, (u,v), (w,?) satisfy (u,v) = (0,0) = (@, V) on .

Let o, the first eigenvalue of —A, with Dirichlet boundary conditions and ¢, the corre-
sponding eigenfunction with ¢, > 0 in Q and ||¢,|| = 1 for r = p,q. Let m,n,0 > 0 be such
that

Vo,|" — 0,0, > mon Qs = {z € Q,d(z,00) < §} and ¢, > 1 on Q\Qs for r = p, ¢.Taking
ko > 0 such that a; f (t), a1h (t), big (t), 517 (t) > —ko.

We shall verify that

r 11/p—1
-1
U = m (p_> gbg/p—l’ 2.1
m p
and Dt
i koY fg—1
o =[R2t i)k (—q ) ¢, (2.2)
m q

is a subsolution of (2.1) for A\; -+, and \y+ 11, are large. Let the test function & (z) € W, ” (Q)
with £ (x) > 0. Thus, from (H1) we have

/|V@|‘n_2 Vg.Vfdw—/Mp_ngdx < IVul""* Vu.Veda
Q Q

/
= <A1+’”“ ) {000) — |V, |"} €da
(B

(A + 1q) ) {Jp¢p }Vgép‘p} cdr

Qs

+(W) / {ov0) = [V, |} €da.

O\Ts

2.3. Existence result
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Note that on Qs we have |V¢,|” — 0,6 > m for r = p, q.Also on Q\Qs ¢, > n for r = p,q. If

A1 + py and s + p, are large in the definition of u, v, so by (H2)

af (2) anh () bug (1), By (0) 2 2 mass oy} @3)
Hence
/|Vy|p_2 Vu-de—/lmp_Qu-édx < (W) /{Upcﬁ?— Vo,|"} €d
Q Q Qs
# (PR ] o0~ 90,1 e
0,
LY | 5dx+<%) | otis
Qs O\Qs
< [ e @)+ ma@h ]
Qs
[ @) £ @+ ma ) bl) Jéds
O\,
— [ o) F @)+ ma@)h(w o
Q
Similarly,

/ V" Vo Vede — / 0" v.Cda < / Nab (2) g (1) + o8 (2) 7 ()] Gl

Q Q Q
Therefore (u,v) is subsolution of problem (2.1).

Next,we construct a supersolution of (2.1). Let w, be a unique positive solution of

—/Ayw, = 11in €,
w, = 0 on of).
for r = p, q. We denote
C 1 \71
T= — [ ——— 2.
- (o) e 2.4

2.3. Existence result
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1 _1

_ Ao [|B)] +HNBH) ( 1 )wlql
v = e 0 C e —— Wy. 25
( 11—t g 1—uvb! I (2.5)

where v, = ||w,||, 7 =p,qand C > 0 is a large number to be chosen later, We shall verify
that (u, ) is a supersolution of (2.1) such that (u,7) > (u,v) . By (H3) — (H4) we can choose C'

large enough so that

o\ Do ||Blle + 12 18] 1\
() = s (| (APt (0 (=) | @6

1 =
+h [l P [ _ 1 Wy

Hence
o\
/ \Val’* Va.Veds — / [af’*utde = (_> / ¢dx
14
Q Q P Q
Using (2.6)
/ \Va|"~? Va.Veds — / @’ u.tda 2.7
Q Q
N\ aT
)\ b + 1 p—1
> il f ( dl ”1°° Vfi”m'"")g(c* (W) ) Wy /&zgg
— —

1\t
+,LL1 ”OéHoo /h (C <1 _ Vp—l) ) gdl’
0 p

> [ o) £ @)+ ma (o) h (@) €de

Q

Next

2.3. Existence result
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/ \Vo|'? Vo.V(dr — / 1|9 v.¢da (2.8)
Q

- {(Az P+ 12 1810 (o (5 _1)>}w Jes
[A2||b||oog(c(1%ﬁl>pll>+M2||6||oog<c(1_ )" )]/sdx

By (H4) choose C' large so that

1 = o 1D 1 o T
g(o<1—y§1) )>7([(2 ||1m_+ygaglllﬁlloo)g<c(1_yg1) ) }Mm)

Then from (2.7) we have

v

/ \Vo|'? Vo.V(dr — / 0|7 % 7.Cda (2.9)

Q Q

1\
> A2||b||oog(c(1_ygl) )
Ao (1Bl =+ 12 118l 1 \#m1) """
+ht Ww({( | Hl_,/qi” H )9(0 (m) )} wqoo)
q p

> / b(2) g (@) + 1o () 7 (0)] Cdl.

Q

According to (2.7) and (2.8), we can conclude that (@, v) is a supersolution of (2.1). Further
u>uandv > v for C large, Thus, there exists a solution (u,v) € W'? (Q)NC (Q) x W (Q)N
C (©) of (2.1) with u <wu <7, and v < v < v. This completes the proof of Theorem 2.1. m

Now we show that the more general system (2.1) has also at least distinct three positive

solutions.

Theorem 2.2 [14] Let (H1)— (H4) hold. Further let f, g, h, and v be sufficiently smooth functions
in the neighborhood of zero with f(0) = h(0) = ¢g(0) = v(0) = 0 = f®(0) = ™ (0) =
gV (0) =D (0) for k =1,2,....[p—1],1 = 1,2, ....[¢ — 1], where [s] denotes the integer part of

s. Then (2.1) has at least two positive solutions provided \; + u,; are large; i = 1,2.

2.3. Existence result
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Proof we will construct a subsolution (¢,,), a strict supersolution ((;, (,), a strict sub-
solution (wy,ws), and a supersolution (z1, z9) for (2.1) such that (¢, 1,) < ((1,¢y) < (21, 22),
(V1,15) < (w1,wa) < (21,22), and (w1, ws) £ (¢4,(,). Then (2.1) has at least three distinct
solutions (u;,v;), @ = 1,2,3, such that (u1,v1) € [(¥1,%), ((1,(5)] s (ug,v2) € [(w1,w2), (21, 22)],
and (us, v3) € [(¥1, %), (21, 22)] \ ([(¥1, 1), (C1, G)] U (w1, w2) , (21, 22)) -

We first note that (¢,,%,) = (0,0) is a solution (hence a subsolution). we can always

construct a large supersolution (z1, z3) = (u,7) . We next consider

( ~ ~
—Dpwr — w1 P wr = Aia () f (ws) + pya () b (wi) in Q,

A\ gws — ]2 ws = dab (2)§ (w1) + 1o (1) 7 (w2) in 2, (2.10)

\ w1 = wy = 0 on 012,
where f(s) = f(s)—1,h(s)=h(s)—1,G(s) = g(s)—1,7 (s) = 7 (s) — 1. Then by Theorem
2.1, (2.10) has a positive solution (w;,ws) when \; + pu, are large; i = 1,2. Clearly this (w;,ws)
is a strict subsolution of (2.1). Finally we construct the strict supersolution ({;, (,) -
Let ¢,, ¢, the corresponding eigenfunction with operator —A, and —A,. We first note that

there exist positive constants C; and C; such that
¢, < Ci¢, and ¢, < (a9, (2.11)

Let (¢, ¢o) = (po,, po,) ;where p > 0. Let

Gp(z) = =(op—1)2" ' = A f (Com) — pyh ()
and
Gy(x) = =(0g—1) a7 = Ag (Cr) — pyy ().

Observe that G, (0) = G,(0) = 0, G¥ (0) = GV (0) = 0 for k = 1,2,....[p— 1] and | =
1,2,...[¢g—1]. G¥™

(0) > 0 and Gl (0) > 0 if p,q are integers, while lim, ., G},[”D (r) =
+oo = lim, ., G (r) if p, ¢ are not integers. Thus there exists § such that G, () > 0 and

Gy (x )>Ofor:c€( ,0]. Hence for 0 < p < 6 we have

2.3. Existence result
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(0p = 1) = (0, — 1) (p8,)" " > M f (Caps,) — ph (pdy) ,

By (2.11) and f is monotone functions, we have

(0, =" = (0= 1) (p8,)"" > Mf (Copt,) — b (p9,) (2.12)
> S (po,) — b (po,)
= Mf(C) —mh(¢y), €,

and similarly we get

(0, —1)¢5" = (0,-1) (p8,)" " > a9 (C1p0,) — a7 (p0,) (2.13)
> Xog (po,) — 19y (pd,)
= Xg((y) — v (¢y), x€Q,

Using the inequalities (2.12) and (2.13), we have

/ VC Ve, Veds - / P2, Edn
Q Q

_ p”l{ Vo, Vo, Vedr - Isbp”%fdw}
/ /

{O’p (p%)p_l — (P%)ZF1 } &dz, because ¢, > 0,
{00 =1) (p0,)" } e

(0 — 1) ¢V ¢da

I
O O O~

> M| () &dr —py | h((y) Lda,
e
Similarly we have

/ VGl Ve, Veds — / Calt2 ¢, £
Q Q

> e 9 ede— [ 4(G)¢de

Q Q

2.3. Existence result
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Thus (¢, (,) is a strict supersolution. Here we can choose p small so that (wy,ws) £ ((;, ().
Hence there exist solutions (u1,v1) € [(¢1,%),(C1,Cs)], (u2,v2) € [(w1,wa), (#1,22)], and

(uz; vs) € [(¥1,¥2), (21, 22)] N ([(¥1,92) 5 (€1, G)] U (w1, w2) , (21, 22)) -
Since (¢, 1,) = (0,0) is a solution it may turn out that (u;,v1) = (¢,1,) = (0,0). In any

case we have two positive solutions (us, v9) and (ug, v3). Hence Theorem 2.2 holds. =

2.4 Example 1

Example 2.1 [14] Let
f(x) = Z a;x? — ¢y, g(z) = Z bj:c(” —
i=1 j=1

h (ZL’) - Z@kka —C3, 7 (ZE) - Zﬁll‘dl — C4,
k=1 =1

where ai7bjaak7/6l7pi7qj7rkadj7cla62703764 > 07 Diq; < (p_ ]-) (q_ ]-)7 Ty < (p_ ]-)7 dj <

(¢g—1).
Then it is easy to see that f, g, h and ~ satisfy the hypotheses of Theorem 2.1.

2.5 Example 2

Example 2.2 [14] Let

Pt r <1, P3 r <1,
@) = h@={ " ) :

ﬂx”2+<1—ﬂ>, x> 1, —3xp4+(1——3), x> 1,

P2 P2 P4

zh r<1 B, r <1,

93 .4 _ %
. L —i—(l q4), x> 1.

q—lz‘I?—|—<1—q—1> x> 1
q2 ’ ’

Here we assume py,p3 > p— 1 if p is an integer, p1,p3 > [p| if p is not an integer;q1,q3 > q— 1 if
q is an integer; q1,q3 > [q] if q is not an integer, pago < (p—1) (¢ — 1) ,pa <p—1land g4 < ¢ — 1.

Then it is easy to see that f, g, h and ~y satisfy the hypotheses of Theorem 2.2.

2.4. Example 1
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3.1 Introduction
In this chapter, we are concerned with the existence and nonexistence of positive weak solution
to the quasilinear elliptic system

—Apiui — ’Uz pi=2 U; = )\zfz (Ul, ,um) in Q, 1 < 1 <m

3.1

u; =00n 0N, Vi, 1 <i<m

where A,z = div (|V2"?Vz),p > 1,\;,1 < i < m are a positive parameter, and (2 is a
bounded domain in RY with smooth boundary 9. We prove the existence of a positive weak

solution for \; > A7, 1 < ¢ < m when

3.2 Definitions and notations

Let
WP (Q) = {u e LP (Q) : |Vu| € L7 (Q)}

with the norm

iy = | [ (P +19u) do

Q
then W' (Q) is a Banach space. We denote by 1, () the closure of C° (Q) in W' ().

Throughout this paper, we let X be the Cartesian product of m spaces W, (Q) for 1 < i <
m, i.e, X = W™ (Q) x ... x WyP™ (Q) . We give the definition of weak solution and sub-super

solution of (3.1) as follows.

Definition 3.1 We called positive weak solution u = (uy, ..., u,,) € X of (3.1) such that satisfies

Q

pi=? uiV¢idm—/|ui

Q

pi—2 u;Q;dx = Az/fz (U1, ooy Um) Gy,
Q

3.1. Introduction
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forall ¢ = (¢y, ..., d,,,) With ¢; > 0,1 < i < m.

Definition 3.2 We called positive weak subsolution (v, ...,1,,) € X and supersolution (zy, ..., z,) €
X of (3.1) such that v; < z;, V1 < i < m, satisfies

/IWI’” W¢d:c—/|¢|’” by

< )\/f, Wy, s ,)) dyde,

and

/|Vzi|pi_2 zngbdx—/in\pi_z 2ip;dx

Q
> )\/fZ 21y eey Zm) ;AT
forall ¢ = (¢y,...,0,,) with ¢, > 0,1 <i < m.

Lemma 3.1 (See Haghaieghi and Afrouzi [20]). Suppose there exist subsolutions and supersolu-
tions (¢q, ...,1,,) and (z1, ..., z,,) respectively of system (3.1) such that (¢y,...,1,,) < (21, ., Zm)-
Then system (3.1) has a solution (uy, ..., uy,,) such that (uy, ..., uy) € [(V1, s V), (21, o 2m)] -

Lemma 3.2 (generalized Young inequality). Let ay > 0 and 1 < p; < oo for 1 < k < m, numbers

conjugates. Then

m Pk m
a 1
Va, > 0: 7" ay < —_ where - =
! ; Pk Z Pk

Proof We can see that

m m 1 Pk
1

3.2. Definitions and notations
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according to the convexity of the exponential function, Then

m 1 Pk
I a, = exp( n (4 )>

(]

IN
(]
| —
@
>
e
=3
—
w@*d
ES

A
NE
s
=
&
o
]
|
I

We suppose that f; : ([0,00))" — R are in L” (X),p; = 2,1 < i < m, verify the

following assumptions;

;

1) f; are quasi-monotone nondecreasing with respect to ¢

ie; fi(ty, ooty oy tm) < fi (b1, s tay ot Vi < 2.V, 1 <k <m

(H1)
2) ; 1112 fz (th ,tm) - +OO,V]€, 1< k < m,
k—+0o0
L 3) 3460 > 0: f; (tl, ,tm) > —0 ,Vty, ...ty >0,
2 (t .
Wﬂgigm:hmfll:OJ:U,wﬂeRﬂ (H2)
t——+o00 tpl_l | —

m time
Elé-z,] > 07 3 1 S Z?] S m: fl (th 7tm) S Zgz,]t]( " >pj (HS)

7=1

An example:

m
fz‘ (t) = fz (tl, 7tm) = Q; Ht;i’j — Ci7 where 04,55 Qg Cz > 0.
j=1

It is easy to see that f; satisfy (H1) and (H2) if >°7" 0;; < p; —1,1 <4,j < m and satisfy

(Haﬁamzﬁfggajgm.

Let \,, be the first eigenvalue of —A, with Dirichlet boundary conditions and ¢, the corre-

3.2. Definitions and notations
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sponding positive eigenfunction with ||¢;||_ = 1, and M;,0;,d > 0,1 < ¢ < m such that

IV, | — Aol > M, on Qs = {x € Q:d(x,00) <4}

77

Vi, 1<i<m:

©; > o; on Q\Qs,

The assumption (H1) assume that

o\,
Ing = (nis o) o > 00 fum) = 77 Visk, L< ik <m
Pi

3.3 Main results

Theorem 3.1 [10] Let (H1) and (H2) hold. Then for \; > \!,Vi,1 < i < m, the system (3.1) has

a large positive solution u = (uy, ..., u,,) € X, where

* Mpi Di pimt 7 pimt
AN = g (pl. - 1) ()

Proof We shall verify that ¢,, 1 <1i < m, where

1
0)\7, pi—1 pz_l T)_Li
I/J’L:<M ) ( )()021 1)
Di Di

is a subsolution of (3.1) for \;,1 < i < m large. Let ¢, € W, (Q) with ¢, > 0,1 <i < m.A

calculation shows that

_ _ o\ _
[Ivereved - [rved < 3 [o Vel vevods
Q Q piQ
o\, - .
= Vil " “ Vo,V (0i¢) de — [ [Vi|” ¢yda
Mpi
Q Q
O\ . .
= — [ Opl = Vpl™) dyda.
MpiQ P

Now, on ; we have |V, |”" — A\, > M,,, which implies that

7

M, ") = fi Wy ty) 0.

()‘pi@fi - |V‘Pi

3.3. Main results
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Hence

P2y bde < / 5 (s oo th,,) rda (3.2)

Qs

[1ve.

Qs

2 %quzdx—/lm
Qs

Next, on Q\Q;, we have ¢, > o, for some o, > 0, and therefore for )\, > A},

1
ON NPT [ — 1) ;2
wkz( ’“) (p’“ >o£’“=(maxnf)2nf, Vik,1<ik<m.

M, pk 1<k<m

then

>

Ap. 0 .
fi (77Z)1a 7¢m> > fl (lel7 777;”) = fl (771) = Mpl > ()‘qupfl - |v901

/ Ve P2 45,V 6 — / P2 i < A / fi Wty drde. (33)
O\ Q\Qs Q\Qs

Finaly, by (3.2) and (3.3) we have

P Vi1 <i < m.

Hence

V[P 2V gidr — | [P gde = | VP T Vgidr — [ [P ¢de

/ / / /
n / VP2 4,V — / P2 e
O\Qs \Qs

IN

/

ie, v = (y,....,v,,) € X is a subsolution of (3.1).

Next, let w; be the solution of

—Apw; =11nQ,
w; = 0 on 0f).

Let

L 1

2z = W (fi (C’)\ll sy OAY )> wi, 1 <i<m,
— lw; oé

where C' > 0 is a large number to be chosen later.We shall verify that z = (21,...,2,,) € X is a

supersolution of (3.1) for \; large. To this end, let ¢, > 0,1 <i < m.

3.3. Main results
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By (H1) and (H2) we can choose C' large enough so that

S\ Ai pioT pisT
(C)\fl ) > Mfi_lﬁfi <O/\f1 s ON )

1

)\i ﬁ ﬁ p;i—1
Z —,1fz C)‘l a"'vC)‘l wil
1— b

>

1 )

where p; = [|w;|, . Then
1

C’)\fl >z, Vi, 1 <i<m,

which imply that
fz(CAflﬁ7 ,OAT)>fi<zl, m) s Vi 1<i<m
Then we have
. . )\ p1—1 P11
/ IV 2|P 72 2,V ,da — / |2 zdda = o fi (C’)\ O\ ) / \Vew; "% w;V,dx
Q Q = Ml Q
Ai PioT _
sz( ; > P Wiy
Q
)\ pl 171‘1*I pi—1
> T (O O ) [ (=8 i)
Q
)\ pP1— p1—1 p]_l—l i —
2 sz (OA - O\ )/(1— lwi[257") ¢y
Q

_ )\Z-/fz- (mf”l,...,c A 1)¢dm
Q

i.e., (z1,...,2m) € X is a supersolution of (3.1) with z; > ¢,, 1 <i < m, for C large. Thus, there
exists a solution u = (uq, ..., u,,) € X of (3.1) with ¢; < u; < z;, 1 < i < m.This completes the

proof. m

Theorem 3.2 [10] If f;, 1 < i < m, verify (H3) the system (3.1) has not nontrivial positive

solutions for 0 < \) < \,,, where

3 (E )

7j=1
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Proof Multiplying Eq. (3.1) by u; and integrating over €2, we obtain

/|Vul-|p" da:—/|ul-|p" dr = /fZ ULy oey Upp) Ui dT
) Q

/Z{U u; 2 uidx

i o

IN

IA
|

Lo J=1

It follows that

Q

k=

in an other hand

Ap; = in W ui € Wy {0}
Then, we have
=1

but this is contradiction if 0 < \) < ). This completes the proof. m

Corollary 3.1 [10] Consider the following system in X

i—2 Bik + . .
—Apui — w7 = A H?:l Uy, Fin Q,Vi, 1 <i <m,

u; =00n 0, Vi, 1 <i<m

1) The system (3.4) has a positive weak solution if

Yo Bip <pi—1LVi,1<i<m

2) The system (3.4) has not positive weak solution if \; < \,, and

ﬁz +5Zk
Zk 1 - =1

Dk

/ 306 ol + (= 1)) | do

Ai “ , m
- (Z 51]) lill; + (pi — 1) qu
L \j=1 j=1

Pi
pq

| A [ Z’" '
Pida < (1 + ]7 ( E fm)) ”Lbl < ) )\kgk,i Hungz )
i j=1

3.4)

(3.5)

(3.6)
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where
/\i =1 + Z;nzl m/\],;;, Wlth 6i,k‘ = f
Dk 0ifi #£k

Proof 1. Using Theorem 3.1, the assumption (3.5) imply the desired result.

2. Under (3.6) and the generalized Young inequality ( Lemma 2) ,we can deduce that

ik T 0 . .
w; I 1uklk < Z %uik, Vi, 1 <i<m. (3.7)
k=1

Multiplying the equation (3.4) by u; and integrating over {2 we obtain by using (3.7)

) X “ i +5i
/|Vui pldx—/]ui Pide < )\i/ZMui’“dx
1 Pk
Q ) )

= Bkt 0k
D el | (78] L
P Pk k

Then

7 +5’L
/\Vuzplda:< 1+)\25k e I k’pk’
Dk
in an other hand
i i “ /Bik+5i,k
A [illyy < IVl < wz-Zp—k larlly

k=1

Then
m m m 67}7 + 61" !
2 Oo Al = 2 [ (1 22 p—AH b=t

=1 =1

which is a contradiction if \; < \,,. This completes the proof. m

Conclusion

The sub and super solution method is a tool to show the existence of at least a weak solution
of semilinear problems thanks to the eigenfunction associated with the p-Laplacian operator,

nevertheless the uniqueness remains open by this method.
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