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RESUME

L’objectif principal de cette thése est d’étudier I'existence globale, la décroissance générale et
le résultat d’explosion de solutions & certaines équations d’évolutions non linéaires avec différents

types de conditions aux limites et de termes de retard. Ce travail se compose de trois chapitres:

Dans le chapitre [I| nous donnons quelques notations, présentons nos hypothéses et principaux

résultats et quelques théorémes principaux en analyse fonctionnelle.

Chapitre [2] est consacré a I’étude d’un probléme aux limites initial pour une équation de type

Kirchhoff avec retard aux limites non linéaire et termes sources.

Dans le chapitre [3| nous étudions une équation de plaque viscoélastique de Kirchhoff avec des

conditions aux limites dynamiques, un retard et des termes sources agissant sur la frontiére.

L’existence globale de solutions a été obtenue par la théorie des puits de potentiel, le résultat
de décroissance général de I’énergie a été établi en introduisant une énergie appropriée et des
fonctionnelles de Lyapunov et le résultat d’explosion de solutions basées sur la méthode de Georgiev

et Todorova.

Mots clés

Equation de type Kirchhoff, conditions aux limites non linéaires, conditions aux limites dynamiques,

terme de retard, existence globale, décroissance générale, explosion.



ABSTRACT

The main goal of this thesis is to study the global existence, general decay, and blow-up results
of solutions for some nonlinear evolutions equations with different types of boundary conditions

and delay terms. This work consists of three chapters:

In chapter [I, we give some notations, present our assumptions and main results and some main

theorems in functional analysis.

Chapter [2| is devoted to study an initial boundary value problem for a Kirchhoff-type equation

with nonlinear boundary delay and source terms.

In chapter [3| we study a viscoelastic Kirchhoff plate equation with dynamic boundary condi-

tions, delay and source terms acting on the boundary.

The global existence of solutions has been obtained by potential well theory, the general decay
result of energy has been established by introducing suitable energy and Lyapunov functionals,

and the blow up result of solutions based on the method of Georgiev and Todorova.

Key words

Kirchhoff type-equation, nonlinear boundary conditions, dynamic boundary conditions, delay term,

global existence, general decay, blow up.
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INTRODUCTION

A great number of processes of the applied sciences can be modeled by means of evolution equations
or systems. Nonlinear partial differential equations and systems exhibit a number of properties
which are absent from the linear theories ; these nonlinear properties are often related to important
features of the real world phenomena which the mathematical model is supposed to describe; at the
same time these new properties are closely connected with essential new difficulties of the mathe-
matical treatment. The study of nonlinear processes has been a continuous source of new problems
and it has motivated the introduction of new methods in the areas of mathematical analysis, partial
differential equations and other disciplines, becoming a most active area of mathematical research.

The Kirchhoff-type equation was introduced by Kirchhoff [36] in order to study nonlinear
vibrations of an elastic string. Kirchhoff was the first one who study the oscillations of stretched
strings and plates. The existence, decay, and blow-up of solutions in this case have been discussed

by many authors. For example, the following Kirchhoff-type equation
e — M (| Vull3) Au+ g(ur) = f(w). (0.1

Equation (0.1) with M = 1, is reduces to a nonlinear wave equation, which has been extensively
studied, see for instance [37, 38, 21}, 3] and the references therein. When M # 1. Matsuyama
and Ikehata [41] studied for g(u;) = d|w|Puy and f(u) = &|u[Pu. They proved existence of the
global solutions by using Faedo-Galerkin’s method and the decay of energy based on the method
of Nakao [49]. Ono [52] studied with M (s) = bs, g(u;) = —Au, and f(u) = £|u[Pu. They



Introduction

showed that the solutions blow up in finite time with negative initial energy. Later, Wu and Tsai
[59] studied with different damping terms (ug, Auy, and |u;|™?u;), they obtained unique local
solution and finite time blow up of solutions, we also refer the interested reader to [6l, 53], 62] and
the references therein.

In the matter of the study of plates, plate equations have been investigated for many years
due to their importance in various physical areas such as vibration and elasticity theories of solid
mechanics. The viscoelastic plate equations have been studied by many authors and several sta-
bility results have been established. Rivera et al. [48] studied an initial-boundary problem for the

following viscoelastic plate equation,
t
Uy — VAU + A%u — / g(t — s)Au(s)ds = 0, (0.2)
0

together with initial and dynamical boundary conditions and proved that the sum of the first
and second energies decays exponentially (respectively polynomially) if the kernel g decays ex-
ponentially (respectively polynomially). Alabau-Boussouira et al. [62] studied with v = 0
and semilinear source terms f(u). They established exponential and polynomial decay results for
sufficiently small initial data. Recently, Messaoudi and Mukiawa [45] [62] studied in the
bounded domain © = (0,7) x (—¢,¢) C R? with non traditional boundary conditions and v = 0,
they established the well-posedness and the decay rate of the energy. Yang et al. [61] studied the

following plate equation with velocity-dependent density and memory term effects

t
|| Pug — Augy + A%u — M (/ |Au]2dx> Ay — / g(t — s)A%u(s)ds = 0, (0.3)
Q 0

and established the decay rate of energy by exploring only the memory. For more results related
to the plate equation, we refer the reader to [47, 3], 31, 39] and the references therein.

The boundary condition describes the reflection of sound at surfaces of some materials with
memory of interest in engineering practice. It is quite general and covers a fairly large variety of
physical configurations. Such types of boundary conditions are usually called dynamic boundary
conditions. The dynamic boundary conditions represent the Newton’s law for the attached mass,
(for more details [4], 9], 14, 27, 28§]).
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There are so many results concerning the wave equation with boundary conditions. Vitillaro

[58] considered the following wave equation with nonlinear boundary damping and source terms

/

uy — Au =0, inQ x (0,00),
u(x,t) =0, only x (0, 00),
(w,t) 0 % (0,00) (0.4)
Uy, = —|ug | 2uy + |ulP2u, onTy x (0,00),
| w(7,0) = uo(z), w(z,0) =ui(x), €.

He proved local existence of the solutions, global existence when p < m or the initial data was
chosen suitably. Zhang and Hu [63] proved the asymptotic behavior of the solution for problem
(0.4) when the initial data is inside a stable set, and the nonexistence of the solution when p > m
and the initial data is inside an unstable set. nonlinear source and boundary damping terms. Gerbi

and Said-Houair [22] studied the following problem

;

U — Au — aAuy = |ulP~2u, x €N t>0,
u(z,t) =0, xe€Tly, t>0,
ou ou _ (0.5)
u(x,t) = — [5(.1:&) + oza—yt(:z:,t) +y|w |2, €Ty, t>0,
| u(z,0) = uo(z), w(z,0)=w(x), x € (),

and proved the local existence by using the Faedo-Galerkin approximations combined with a con-
traction mapping theorem and showed the exponential growth of the energy. Later Gerbi and
Said-Houair 23] established the global existence and asymptotic stability of solutions starting in
a stable set by combining the potential well method and the energy method. A blow-up result for
the case m = 2 with initial data in the unstable set was also obtained, we also refer other works
[1, 1T, 12] 26] and the references therein.

Recently, many mathematical researchers have been studying partial differential equations with
time delay effects, and established so many results concerning the global well-posedness of these
systems. It is well known that time delay effects often appear in many chemical, physical, and
economical phenomena because these phenomena depend not only on the present state but also
on the past history of the system. The presence of delay can be a source of instability and an

arbitrarily small delay may destabilize a system that is uniformly asymptotically stable in the
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absence of delay unless additional control terms are added. Nicaise and Pignotti [50] considered

the following wave equation with a delay term
Uy — Au+ pug + pou(t — 1) = 0. (0.6)

They obtained some stability results in the case 0 < py < p1. Then, they extended the result to the
time-dependent delay case in the work of Nicaise and Pignotti[51]. Kafini et al. [32] investigated

the following nonlinear wave equation with delay
Uy — div ([Vu|" V) + g + prug(t — 7) = blufPu. (0.7)

They proved the blow-up result of solutions with negative initial energy and p > m. Later, Kafini
et al. [33] considered the blow up of solutions with negative initial energy for the second-order
abstract evolution system with delay. For the plate equation with time delay term, Park [54]

considered a weak viscoelastic plate equation with a time-varying delay
t
uy + N*u— M (| Vul]?) Au+ o(t) / g(t — s)Au(s)ds + agus + ayu(t — 7(t)) =0, (0.8)
0

and proved a general decay result of energy under the assumption |a;| < /1 — dag. Feng [17]
considered the following plate equation with a memory term and a time delay term in the internal

feedback:
t
Uy + A*u — M (|| Vul]?) Au+ o(t) / g(t — s)Au(s)ds + pyug + pouy(t — 7(t)), (0.9)
0

and obtained the global well-posedness with |us| < u; and decay rate of energy under the assump-
tion |pe| < p1. Yang [60] studied with M = 1 and proved the existence of global solution
under suitable assumptions on the relaxation function g. Moreover, under some restrictions on
(1 and us, exponential decay results of the energy for the concerned problem are obtained via an
appropriate Lyapunov function. For the related works of equations with delay term, we also refer
other works [7], 25 [15] [34], 35, 42] and the references therein.
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In recent years, the study of partial differential equations with delay term acting in the boundary
have has been considered by numerous authors, see for example [8, 24] 18| 19, 40]. Gerbi and Said-
Houari [24] considered the damped wave equation with dynamic boundary conditions and a delay

boundary term

;

Uy — Au — alAuy = 0, xr e, t>0,
u(z,t) =0, x €y, t>0,
ou ouy
Uy = — (@(ZL‘,If) + aw(x, t) + (e, t) + poug(x, t — 7'))7 rely, t>0, (0.10)
u(,0) = ug(x). w(z,0) = ur(x), req,
u(x,t —7) = folz —7), rely, te|0,7),

\

and proved the global existence of the solutions and the exponential stability of the system. Ferhat
and Hakem [I8] considered the following wave equation with dynamic boundary conditions and

nonlinear delay term

e t
Uy — Au+ §Au, — o(t) / g(t — s)Au(s)ds = |u[P~?u, inf) x (0, 00),
0
u(z,t) =0, onl'y x (0, 00),
ou ouy t ou
gy = —a[a(x,t) 5 () - a(t)/o 9(t = $)Au(s)ds (.1 011)
ey g ™ g (e, t) + polug(x, t — )" g (w, t — 7)} : onT'; x (0, 00),
u(z,0) = ug(x), u(z,0) = uy(x), x € ),
ui(xz, t —7(0)) = fo(z — 7(0)), onI'; x (0, 00).

By using the Faedo-Galerkin approximation combined with a contraction mapping theorem and
the concept of stable sets, they showed the local and global existence of solutions. Also, they proved
the general decay results by exploiting the perturbed Lyapunov functionals. For the related works

of equations with delay boundary term.

10



Introduction

This thesis is composed of three chapters divided as follows:
Chapter 1 : Preliminaries
This Chapter contends to present some notations and preliminaries, especially we recall some basic

knowledge in functional analysis.

Chapter 2 : Global existence, asymptotic behavior and blow up of solutions for a Kirchhoff-type
equation with nonlinear boundary delay and source terms
In this party, we are concerned with the global existence, decay, and blow up of solutions to the
initial boundary value problem for a Kirchhoff-type equation with nonlinear boundary delay and
source terms
uy — M (|| Vul3) Au+u, = 0.

Chapter 3 : General Decay and blow up of Solutions for the Kirchhoff plate equation with
dynamic boundary conditions, delay and source terms
In this party, we investigate the global existence, decay, and blow up of solutions to the following
initial boundary value problem for a Kirchhoff-type equation with nonlinear boundary delay and

source terms

t
uy + A%u — M(|Vu|*)Au — o(t) / g(t — s)A*u(s)ds = 0.
0

11



CHAPTER 1

PRELIMINARIES

1.1 Function analysis

1.1.1 Banach spaces

Definition 1.1. Let X be a vector space over R, a real-valued function ||.|| defined on X and

satisfying the following conditions is called a norm:
e |[ul]| >0, ||ul]]| =0 if and only if u = 0.
o || Aul| = |A|||lu|| ; for allu € X and X\ € R.
o Jutoll < ul + ol ¥ v,ue X,
Lemma 1.1. (X, ||.||), vector space X equipped with ||.|| is called a normed space.

Definition 1.2. (Equivalent norms). We say that two norms ||.||1 and ||.||2 of a normed space X

are equivalent, if there exist constants «, B > 0 such that

alll < Ille < Bll-lhs Ve € X.

12



1.1. FUNCTION ANALYSIS

Definition 1.3. (Cauchy sequences). Let X be a normed space, and let (x,)nen be a sequence of

elements of X. (x,)nen is a Cauchy sequence if

Ve >0; AN > 0,Vn,m > N, |ju, — unl| <e.
Definition 1.4. (complet spaces). Normed spaces in which every Cauchy sequence is convergent
are called complet normed spaces.

Definition 1.5. Let X be a Banach space, and let (uy,)nen be a sequence in X. Then u,, converges
strongly to u in X if and only if

lim ||u, —u|lx =0

and this 1s denoted by u,, — uw or lim,_,, u, = u

1.1.2 Hilbert spaces

Definition 1.6. A Hilbert space H is a vectorial space supplied with inner product (u,v) such that
|lu|| = v/{u,u) is the norm which let H complete.

Theorem 1.1. (Riesz [10]). If (H;(.,.)) is a Hilbert space,(.,.) being a scalar product on H, then
H' = H in the following sense: to each f € H' there corresponds a unique x € H such that

f=(x,.) and ||flla = ||=[lu

Theorem 1.2. ([10[). Let (un)nen is a bounded sequence in the Hilbert space H, it posses a

subsequence which converges in the weak topology of H.

Theorem 1.3. ([I0)]). In the Hilbert space, all sequence which converges in the weak topology is
bounded.

Theorem 1.4. ([10]). Let (uy)nen be a sequence which converges to u, in the weak topology and

(Un)nen 1S an other sequence which converge weakly to v, then

n11_>r20<una Un) = (u,v)

13



1.1. FUNCTION ANALYSIS

1.1.3 The L?(12) spaces

Definition 1.7. Let 1 < p < oo and let Q be an open domain in R"™, (n € IN). Define the standard
Lebesque space LP(2) by

LP(Q) = {f : Q@ = Rismeasurable and/ | f(2)||Pdx < oo} .
Q

Definition 1.8. Forp € R and 1 < p < oo, denote by

1oy = (/Q ||f<x>||pdx)’l’.

Definition 1.9. If p = oo, we have
L>®(Q) = {f : Q — Rismeasurable and there exists a constant C' suchthat|f(x)| < C a.ein2},

and

| fllLoe() = inf {C, |f(z)| < C a.einQ}.
Theorem 1.5. ([10]). L? is a vectorial space and || - ||, is a norm for all 1 < p < co.

Theorem 1.6. (Fischer-Riesz [10]). L? is a Banach space for all 1 < p < oo.

1.1.4 The LP(0,T; X) spaces

Definition 1.10. Let X be a Banach space, 1 < p < oo, denote by LP(0,T; X) the space of

measurable functions
T
LP(0,T;X) = {f 10, T[— X is mesurable and / I f15dt < oo},
0
if p= 00
L>=(0,T;X) = {f 10, T[— X, fis measurable and thereis a constant C suchthat sup ess|| f|lx < C’},

te[0,7

14



1.1. FUNCTION ANALYSIS

Lemma 1.2. The space L*(0,T; X) equipped with the norm

r .
| llroir) = ( / Hf(w)!l%d:v> R —
0

and

| fllzro.rx) = sup ess|| f(2)|x, forp= oo,
te[0,T

1s a Banach space.

1.1.5 The W™P(Q) spaces

Definition 1.11. (Weak derivatives). Let Q0 be an open set in R™. Let f, g € L'°(Q) and
i € {1,n}. We say that g is the weak partial derivative of f in the direction i if

/f@iwdm‘ = —/ggodx, Vo e C5° (),
Q Q

and we write 0;f := g.
Let o € N" be a multi-index. We say that g is the weak a-th partial derivative of f and we write

Oof =00 .. 9o f =g if
/fai“---aﬁ”wdx:(—l)"‘/gwdfc, Vo e Cg° (),
Q Q

where |a| == a; + ...+ ay.
Lemma 1.3. Let f € L'°°(Q). If f has a weak a-th partial derivative, then it is uniquely defined.

Definition 1.12. Let m € N and p € [0,00]. The W™P(Q) is the space of all f € LP(QY), defined

as

WmP(Q) = {f € LP(Q), suchthat 0°f € LP(Q) foralla € N™ suchthat|o| = Zozj < m},
j=1

where 0% = 07" 05*...05™.

15



1.1. FUNCTION ANALYSIS

Theorem 1.7. W™?(Q) is a Banach space with their usual norm

| fllwme@) = Z 10%fllre, 1 < p < oo, for all f € W™P(Q).

la)<m
Definition 1.13. We denote by Wy (Q2) the closure of D(S2) in W™P(Q).

Remark 1.1. If p = 2, we usually write
H™Q) = W™3Q) and HJ'(Q) = W (),

supplied with the norm

11|y = < > HaafHL2)2,

|o]<m

with usual scalar product

(U, v) pm(Q) = Z /ao‘u@avdm.
Q

la|<m

Theorem 1.8. 1. H™(QQ) supplied with inner product (., .)gm(q) is Hilbert space.
2. If m>m/, H"(Q) < H™(Q).

Theorem 1.9. (Rellich-Kondrachov [46]). Assume that Q) is an open domain in R" (n > 1), with
smooth boundary 0S2. Then,

np
n—p

1. If1 < p<n, we have WP C L1(Q), for every q € [p, px|, where px =

2. If p=n, we have WP C L1(Q), for every q € [p,00).

3. If p>n, we have WH C L>(Q) N C%(Q), where a = p—n

Proposition 1.1. (Green’s formula [10]). For alluw € H*(Q), v € H'(Q), we have

—/Auvdx:/VuVde—/ @Udd,
Q Q oz ON

where — 1is a normal derivation of u at I'.

on

16



1.2. SOME INEQUALITIES AND LEMMAS USED

1.2 Some inequalities and lemmas used

1 1
Notation. for p € R and 1 < p < oo, we denote by ¢ the conjugate of pie. —+— =1
b q

Theorem 1.10. (Algebrique Young’s inequality). For all u,v € RY, we have
[vf?

luv| < aul® + L

where a is any positive constant.
Theorem 1.11. (Young’s inequality [10]) For u,v > 0, the following inequality holds

ul e
u < — + —.
p q

Theorem 1.12. (Hélder’s inequality [10]). Let 1 < p < oo. Assume that u € LP(Q)) and v €
LY(Q), then uwv € L'(Q) and

[uvll iy < flullpllvll:

when p = q = 2 one finds the Cauchy-Schwarz inequality.

1.3 Existence and asymptotic behavior of solution

The study of local existence and uniqueness of solutions of partial differential equations is based

on the existence theory for abstract semilinear differential equations (see [20, 30, 55]).

Definition 1.14. Let A : D(A) € X — X be a linear operator on a Banach space (X,| - ),
F: X — X. We consider the following nonhomogeneous Cauchy problem

dz;i“ + Au(t) = F(u(t)), t>0, -
u(0) = up.

A local solution of is a solution define in a interval [0,T) fort <T.

17



1.3. EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTION

Maximal existence time

Definition 1.15. Let u(t) be a weak solution of (]ED We define the mazimal existence time T of

u(z,t) as follows:
1. If u(t) exists for all 0 <t < oo, then T = oco.

2. If there exists a ty € (0,00) such that u(t) exists for 0 <t < ty, but doesn’t exist at t = to,
then T = t,.

Remark 1.2. If 1 is satisfied, we say that the solution u(t) is global.

Stabilization

The purpose of stabilization is to attenuate the vibrations by feedback, thus it consists in guar-
anteeing the decrease of energy of the solutions to 0 in a more or less fast way by a mechanism
of dissipation. More precisely, the problem of stabilization consists in determining the asymptotic
behaviour of the energy by E(t), to study its limits in order to determine if this limits null or not
and if this limits null, to give an estimate of the decay rate of the energy to zero.

They are several type of stabilization:

Strong stabilization: F(t) — 0.
— o0

Uniform stabilization: E(t) < Ke™, k, ¢>0, Vit > 0.

Polynomial stabilization: E(t) < Kt=¢, k, ¢ >0, ¥t > 0.

Logarithmic stabilization: F(t) < K (log(t))™“, k, ¢>0, VYt > 0.

Blow-up

Definition 1.16. (Finite time blow-up). Let u(t) be a weak solution of (P)). We call u(t) blows

up in finite time if the maximal existence time T is finite and

lim [|u(t)|| = +oo.

t—=T

18



CHAPTER 2

GLOBAL EXISTENCE, ASYMPTOTIC
BEHAVIOR AND BLOW UP OF SOLUTIONS
FOR A KIRCHHOFF-TYPE EQUATION WITH
NONLINEAR BOUNDARY DELAY AND
SOURCE TERMS

This chapter is devoted to prove the global existence, decay, and the blow up of solutions to a

Kirchhoff-type equation with nonlinear boundary delay and source terms.

19



2.1. THE PROBLEM STATEMENT

2.1 The problem statement

We consider the following initial boundary value problem for a Kirchhoff-type equation with non-

linear boundary delay and source terms

;

utt—M(HVuH%) AU+Ut:O, LCGQ,t>0,
u(z,t) =0, x €Dy, t>0,
ou
M ([Vullz) 5 + g™ Py 4 pofug(t — )" Pug(t = 7) = [ulf TP, €Ty >0, (21)
u(z,0) = up(z), u(x,0)=ui(x), z €,
u(z,t — 1) = folx, t — 1), xel, t>0,

\

where Q@ C R" (n > 1), 9Q =Ty UT, mes(I'g) > 0, [y NIy = 0, ¢ denotes the unit outer normal
derivative, M(s) is a positive C'-function satisfying M(s) = a+bs?, v >0,a > 0,0>0, s > 0,
p, m > 2, j; are positive constants, po is a real number, 7 > 0 represents the time delay, and

ug, uy, fo are given functions belonging to suitable spaces.

2.2 Preliminary results

In this section, we will give some notations, assumptions, and some preliminary lemmas needed in
the proof of our main results.

Throughout this thesis, to simplify the notations, we denote

lully = llullze@),  Nullpr, = lullzewy,  1Vullz = llulla,

1
P
[ullzeery) = (/ |U|pdl“>
Iy

Next, assume the following assumptions:
2
(A)p>2v+2, ifn=1,2 2y+2<p< n_—i—2 it n >3
n JE—
(A2) |pa| < pa.

where
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2.2. PRELIMINARY RESULTS

Lemma 2.1. (General Poincaré’s Inequality). If then there is an optimal constant ¢, such that

2
2<p<——.n>=3 orp=2n=12

n—
then
ull, < ¢p||Vulla, ¥V ue Hy(Q). (2.2)

Moreover, using the trace theorem, we have

lullpr, < ellVulla, Yu € Hy (), (2.3)
where
Hp, (Q) = {u € H'(Q)|urr, = 0}.
Proof. The proof can be found in |2, [16] O

To deal with the time delay term, motivated by Nicaise and Pignotti [50], we introduce a new
variable

2(z,p,t) =w(r,t —7p), ve€l'y, pe(0,1),t>0, (2.4)

which gives us
Tz (z, p,t) + 2,(z, p,t) =0, in 'y x (0,1) x (0, 00). (2.5)

Then, problem ({2.1)) is equivalent to

4

ug — M (|Vul|3) Au+ up = 0, re t>0,
u(z,t) =0, xely t>0,
M (||Vul|3) % 4 g w7y pol2(1,8)|™22(1,t) = uP?u, x €Ty, t >0,
T2(p,t) + 2,(p,t) = 0, xely, pe(0,1),t>0,
2(p,0) = fo(=7p), z el pe(0,1),

[ w(x,0) = up(x), w(z,0)=ui(x), x €,

(2.6)
We first state a local existence theorem that can be established by Faedo-Galerkin Method, see
for instance [5, 18|, 29, [57].
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2.2. PRELIMINARY RESULTS

Theorem 2.1. (Local existence). Assume that (A1) — (Az) hold. Then, for any (ug,uq, fo) €
H () x LA(Q) N L™(Ty) x L*(Ty x (0,1)) be given. Then, there exists a unique local solution u
of problem (2.1)) such that

ue L®(0,T; Hp (), u € L ([0,T]; L*(Q)) N L™([0,T] x I'y),

for some T > 0.

Now, we define the energy associated with problem ({2.6]) by

1 a 5
E(t) = Sllull; + S1Vull; + IVull2 + || 2(p, )l r, dp —IIUIlprl, (2.7)
2 2

2fy+2

where £ be a positive constant satisfying
T(m = Dlpa| <& < 7(my — |pa]). (2.8)
Lemma 2.2. Let u be a solution of problem . Then,
E'(t) < =lluellz = mo (luellmr, + 12(1 Ol ) < 0. (2.9)

Proof. Multiplying the first equation in (2.6) by u; and integrating over €2, we obtain

2’y+2

drl
(5wl + S 97ull3 + 5

= llr,

(2.10)
= —llwlls = mllwllmr, = p2 | 12107221, Huda.
I

Multiplying the second equation in (2.6) by £2™~! and integrating over T'; x (0,1), we obtain

L / .0 dpde =~ [ / 5ol 0" dpds
mat Jr, ry (2.11)

T(Hutllmrl Iz O, ) -
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2.3. GLOBAL EXISTENCE

Using Young’s inequality, we have

m— (m — 1)|pa| | 12|
— M2 A 2(1, )2 2(1, t)updz < ] 12(1, )| r, +—|| || 1y - (2.12)
1

Combining (2.10)), (2.11)), and (2.12)), we obtain

E'(t) < —lluellz = mo (luellimr, + 121010 r,) (2.13)
. §  pel & (m—1)|ps e
h = - —— hich tive by ([2.8]). O
where my = min {,ul - ol Beopn = , which is positive by

Similar to the result in [43], we can prove the following lemma.

Lemma 2.3. There exists a positive constant C, > 1 depending on I'y only such that

lullpr, < Co (IVullz + llulpr,) -

for anyu e Hi (Q),2<s<p.

2.3 Global Existence

In this section, we will prove that the solutions established in Theorem are global in time. For

this purpose, we define the functionals

I(t) = I(u(t) = al| Vull + bl Va7 — ||ul; (2.14)

p,I'1?

and

a i3
J(t) = J(u(®)) = S IVul; + Va7 + /H 2(p: Ol dp = — HUHprl- (2.15)

2y +2

Then, it is obvious that
1
E(t) = 5Hutug +J(1). (2.16)
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2.3. GLOBAL EXISTENCE

In order to show our result, we first establish the following lemma.

Lemma 2.4. Assume that (Ay) — (As) hold and for any (ug, 1, fo) € Hp () x L*(Q) N L™(I'y) x
L*(Ty x (0,1)), such that

100)> 0 and a = % L(pzf Q)E(O)} T (2.17)

then,
I(t) >0, Vt > 0. (2.18)

Proof. Since I(0) > 0, then by continuity of u, there exist a time T, < T such that

I(t) >0, YVt € [0,T.]. (2.19)

Using (2.14)), (2.15), (2.16), and (2.9)), we see that

1 a(p —2) s  b(p—2y-2) 2y+2 5/1
J(t) = =I(t)+ ——2|Vul]? + =————Z||Vu|| 7+ = | |lz(p, )|, dp
0 = S0+ TRV S I, [ et
alp —2) o blp—2y-2) 2v+2 '
> Vulls + ———%||Vu||5" ",
oIVl + 2 vl
and
2p 2p 2p
Vul; < ———J(t) < ———E(t) < E(0). 2.21
IVully < s (0) € s B() < o Es () (221)
Exploiting @3), @17, and €21), we get
p P C{: 2p % 2 2 2
lullpr, < IVl < — o= Q)E(O) a||Vull; = aa||Vullz < al[Vull3, Vt € [0,T.]. (2.22)
Therefore, we have
I(t) >0, Vt € [0,T.]. (2.23)
By repeating the procedure, T, is extended to T. The proof is completed. O

Theorem 2.2. Assume that the conditions of Lemma hold, then the solution of problem (2.1)
18 global and bounded.
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2.4. GENERAL DECAY

Proof. 1t is sufficient to show that
el + ([ Vull3,

is bounded independently of ¢. By using (2.9)), (2.16)), and ([2.20]), we have

1 1 a(p — 2)
B(O) 2 B(0) = 3llull + () = 5l + 2Vl (224)
which means,
luell3 + [ Vullz < CE(0), (2.25)
where C' is a positive constant. O]

2.4 General decay

In this section, we state and prove the decay result of solution to problem ({2.1]). For this goal, we
set
F(t) = E(t) + g/ wude -+ 5 ull (2.26)
Q

where ¢ is a positive constant to be specified later.

Lemma 2.5. Let u be a solution of problem (2.1). Then, there exist two positive constants oy and
o depending on € such that

a1 E(t) < F(t) < agE(t). (2.27)
Theorem 2.3. Let (ug, uy, fo) € Hp (Q)x L*(Q)NL™(I'y)x L*(Iy % (0,1)). Assume that (A;)—(As)
hold. Then, there exist two positive constant K and k such that

E(t) < Ke™ t>0.
Proof. Differentiate (2.26) with respect to ¢, using (2.6 and (2.9), we obtain

F'(t) :E’(t)—|—5||ut||§—|—5/Quuttdx—|—8/guutdx

m m 2v+2
< —mollully v, = mollz(L, )l p, — (1= &) [[wll3 — ag]|Vull3 — be|| V" (2.28)

m,["1

rellulfe, —em | T Pudr = e [ (101" 5(1 pur
1 1
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2.4. GENERAL DECAY

By using Young’s inequality for n > 0, we get

| fue " PudD < pfllallie, + el e, < pynel[Vullst+ el r,
r (2.29)

< new||Vull3 + el el

and
1 / 2(L, )™ 22(1, Budz < neol| Vall2 + cm)ll=(L O r.. (2.30)

where ¢; and ¢y are positive constants which depend only on m and E(0). Combining (2.29)-(2.30)
with (2.28)), we obtain

F'(t) < —(mo —ec(n)ludlfir, = (mo —ecm)llz(L )l r, — (1= &)lluel3

(2.31)
—e(a—n(er +2))|[Vulls — ebl| Vull + e lully r, -
First, we choose 1 so small satisfying
a—mn(e; +c) > 0.
For any fixed 7, we choose € so small that remain valid and
mo —ec(n) >0, 1—e>0.
Consequently, inequality becomes
F'(t) < —e3E(t), Vt> 0. (2.32)
Using , we obtain
F'(t) < —e3B(t) < ;—ZF(t), vt > 0. (2.33)
A simple integration of , leads to
F(t) < cue™ ¥t > 0. (2.34)
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2.5. BLOWS UP

Again (2.27)), gives
E(t) < Ke™ vt >0.

2.5 Blows up

(2.35)

In this section, we state and prove the finite time blow up of solutions to problem (2.1)) with

E(0) < 0.

Theorem 2.4. Let (Ay) — (A2) and E(0) < 0 holds. Then, the solution of problem (2.1)) blows up

in finite time T and

T < 1 —00
woVT-7(0)
Proof. Set
H(t) = —E(),
then (2.9)) gives

H'(t) = —E'(t) = mo (|luellyr, + 12(L O r,) =0,

and H(t) is an increasing function. From (2.7) and ({2.36]), we see that

p,l'1”

1
0< H(0) < H(t) < ~|jul/®
p

Next, we define

€
wudr + 5“““37

U(t)=H(t)" + 5/

Q

where ¢ is a positive constants to be specified later and
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2.5. BLOWS UP

Taking a derivative of W(¢) and using (2.6)), we have

vt =(1 —a)H’(t)H(t)‘”—|—5HutH§—|—5/uuttdx—l—a/uutdx
Q 0

= (1= o)H'()H ()™ + ellull3 — cal| Vull3 — bl|Vull +elull} r, (2.41)
—epn [ |ue] ™ Pupudl — epy [ 2(1,8)|™22(1, t)udl .
Fl 1_‘1
Applying Young’s inequality for n > 0, we have
m— wtn™ m—=1__w
|ug| " ugudl < 1m l|ullm T Tn =T Jug ||,
Fl X (2.42)
Nl n" m— - /
M= w5 1 4).
< B sy, + e
Similarly, we have
|M2|m " m—1 _ m
(1, )[™22(1, tyudl < ——— ——n mTH'(1). 2.43
[ 120,01 20,0 Jullsr, + () (2.43)
A substitution of (2.42))-(12.43)) into (2.41)), we have
/ -0 m —1 / 2v+2
V(t) 2 =0)H() —e——n T ¢ H'(t) + elludll3 — cal| Vull; — eb]| Vullz
: " ; (2.44)
tellulfr, ——— [l r, -

Using ([2.7) and (22.36)), for a constant p > 0, we see that

V() > {(1 — o) ()™ — e 177#“1} H(t) + (1+5) Il +ea (5 = 1) IVul3

mmgo

M 2942 | (uy" +’H2’ "
rob (s = 1) IVal™ e (1= 2l - Julr,

pé [t
L / l=p I o dp + peH (2).
m Jo

(2.45)
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2.5. BLOWS UP

Therefore, by taking n = (k;H(zf)_")_mT where k > 0 to be specified later, we see that

V() > {(1 — o) —ck (:’;;101) } H(t) " H'(t) + ¢ (1 + H) w3 + ea (g - 1) Vw2

H 2742
b — 1] [|Vuly? 1—= ,
reb (g =) vl e (1= ) i, + 2 [0 o

M+ 1H20™) v o
V) o gy gy g, + ),

Exploiting (2.38)), we have

HE) ™ D ully r, < CHE ™ ull!

1)+
&' el U I

pFl— p, 1

Combining (2.46)) and ( - we get

V() > {(1 — o) — ¢k (7:1;&01) } H(t) " H'(t) + ¢ (1 + g) uell2 + ca (g - 1) V)2

K 2942
+eb (27” ) Va3 (1 - —) ul®r, + / 12(p, B)I7" 1, dp

(1 + ™) Gy R
e L Tl e ),

Applying Lemma for s = op(m — 1) + m < p, we get

op(m— 1+m
Jul| R0 < O (| Vull3 + uly, ) -

Combining (2.49) with - we obtain

p —m H
+e (a (5 =1) = k=) [ Vull + b (2%2 - 1) IVullz?

v o ué ! m
+e((1——)—cak1 )n all? .+ 14 / (o, Ol 1. dp + peH (1),
p m Jo

Co(pi® + |p2™) G

m p"'

where ¢, =
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2.5. BLOWS UP

At this point, we choose 2y + 2 < p < p such that

L

—1>0,
2v+2

K —1>0, 1-">o.
2 p

When g is fixed, we choose k large enough such that

a (H — 1) — ¢, k'™ >0, <1 — H) —c kP > 0.
2 p

Once k and p are fixed, we select € > 0 small enough so that

-1
(1—0)— 51{:M >0, U(0)=H(0)"7+ 5/ wupdr + E||uo||§ > 0.
mmo Q 2

Then inequality (2.50)) becomes

V(1) > K (luelly + IVull3 + Vel + llullpr, + H(2)) (2.51)

p,l'1

where K is a positive constant.
On the other hand, we will estimate \Ifﬁ(t) Applying Holder and Youngs inequalities, we

have )

1—0 1 1 © 6
[wds] " < CRET Rl < € (Il + 7). (252)
Q

for /% + 5 = 1. Take § = 2(1 — 0) which gives £~ = 2. Then, (2.52) becomes

/ uudr
Q

It follows from (2.25)) and ([2.38)), we have

_1
<c (Huw ; HutHé) , (2.53)

17220 1320 17220' 1320 1 17220 2 H t
ol < T IVl <G T (CBO) e < o T CEO) T p. (25)
Similar to (2.54)), we have
2 2 L2 L H(t) 2 L ullpr
l1—0o < l1—0o T < -0 f—p < l1—0o E - L1 2
[ull,™ < ;™" (CE(0))7=7 < ¢ (CE(0)) H0) = (CE(0)) D (0) (2.55)
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Combining (2.54)-(2.55) and (2.39)), we get

N _
Ve () < K ([luells + llullyr, + H(E))

where K is a positive constant.

It follows from (2.51) and ([2.56)), we find that

where k is a positive constant.

A simple integration of (2.57)) over (0,t) yields

Consequently, the solution of problem ({2.1]) blows up in finite time 7.
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CHAPTER 3

GENERAL DECAY AND BLOW UP OF
SOLUTIONS FOR THE KIRCHHOFF PLATE
FEQUATION WITH DYNAMIC BOUNDARY
CONDITIONS, DELAY AND SOURCE TERMS

This chapter is devoted to prove the global existence, decay, and the blow up of solutions for a
viscoelastic Kirchhoff plate equation with dynamic boundary conditions, delay and source terms
acting on the boundary. The results of this chapter have been the subject of the international
publication: H. Kamache, N. Boumaza, B. Gheraibia, General decay and blow up of solutions for
the Kirchhoff plate equation with dynamic boundary conditions, delay and source terms. Zeitschrift

fiir angewandte Mathematik und Physik 73 (2) (2022): 76.
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3.1. FORMULATION OF THE PROBLEM

3.1 Formulation of the problem

we investigate the following viscoelastic Kirchhoff plate equation with dynamic boundary condi-

tions, delay and source terms

( t
uy + A%u — M (|| Vul|?)Au — a(t)/ g(t — s)A%u(s)ds = 0, reQ t>0,
0
ou
u(x,t):%(x,t):(), xe€lg, t>0,
0Au 5 OU

el ) = 28 0, ) = MOIVu®) 2,1 .

t 0Au —2
+0(t)/ g(t —s) 5 ds — pug(x,t) — powy(z,t — 7) + |u|P"u, z eIy, t>0,

0
U(Z‘, O) = Uo(l'), ut(xao) = ul('x)v WS Q,
ut($,t—T):f0(l’—p7), xerl’tE[O,T),

\

where Q@ C R" (n > 1), 9Q =Ty UT, mes(I'g) > 0, [y NIy =0, * denotes the unit outer normal
derivative, p > 2, uy, pus are positive functions, 7 > 0 represents the time delay, M, ¢ and g are
functions satisfy some conditions to be specified later, and ug, w1, fy are given functions belonging

to suitable spaces.

3.2 Assumptions preliminary lemmas

In this section, we will give some notations, sufficient conditions, assumptions, and some prelimi-
nary lemmas needed in the proof of our main results.

Throughout this chapter, we denote
[Aully == [ullm>(@),

and

HE () = {u € H*(Q)|ur, = 0}.
Let c, be the smallest positive number satisfying
IVull2 < col|Aullz, Vu e H*(Q). (3-2)
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3.2. ASSUMPTIONS PRELIMINARY LEMMAS

Next, assume the following assumptions:

(A1) : g,0 : RT — R* are nonincreasing differentiable functions satisfying

00 t
g(s) >0, lp = / g(s)ds < o0, o(t) >0, 1 — 20(75)/ g(s)ds >1>0,
0 0

(As) There exists a positive differentiable functions £ satisfying

g(H) <0, o'(t) <0, ¢(t) < —£()g(t), fort >0, lim _5(‘;%) _

(A3) : M is a C'-function and satisfying

M(s) > —myg, and M(s)s > M(s), s >0,

S

where M(s) = / M(r)dr.
0
(A4): The constant p satisfies

2
p>2, ifn=1,2, 2<p§ﬁi§,ﬁn23
n R
(As): The constants py and po satisfy
fo < fh1-
Assume further that g satisfies

00 (N —2—2Mp)
o)) oM < iy

By using the direct calculations, we have

g(t)/o g(t—s)/Qu(s)dsut(t)dx
=4 |5 o0 0= TP [ aoras] - Datnucon:

dt | 2 2
2 0w 0+ T2 g0 (0 - TP [ ato)is



3.2. ASSUMPTIONS PRELIMINARY LEMMAS

where

t
(gou)(t) = /O g(t = )||u(t) — u(s)||2ds.
Now, we introduce, as in [50], the new variable
2(z, p,t) = w(z,t —p1), v€Q, pe(0,1), t>0 (3.10)
which gives us
T2(x, p, ) + 2p(x, p, 7) =0, InQ x (0,1) x (0;00) (3.11)

Then, problem (3.1)) is equivalent to

(

t
ug + A%u — M (|| Vul]?)Au — a(t)/ g(t — s)A%uds = 0,2 € Q,t >0,
0
ou

u(x,t):%(:r,t) =0, zelyt>D0,
0Au 5, OU ¢ 0Au
il t) = ) = MO u G 0)+ o(0) [ ole— )75 ds

(3.12)
—pyug(z,t) — poz,(z, p, t) + [uP2u, z €Ty,t >0,

T2(x, p, ) + 2p(x, p, 7) =0, inl'y x (0;1) x (0;00),
2(0,t) = u(t), xe€ly,t>0,

2(x,p,0) = folx — pr) x €Tt €0;7).

\

We now state, without a proof, local existence result, which can be established by using the
Fadeo-Galerkin method (see [3], 18, 29]).

Theorem 3.1. Suppose that (Ay) — (As) hold. Then, for any (ug,u;) € HE (Q) x L*(Q) and
fo € L*(Q x (0,1)), there exists a unique weak solution of problem (3.1)) satisfying

ue L ((0,T); HE (),
u, € L= ((0,7); L*(T)), (3.13)
uy € L ((0,7); L*(Q)) N L ((0,T); L*(Ty)) .
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3.2. ASSUMPTIONS PRELIMINARY LEMMAS

Now, we define the energy associated with problem (3.12)) as

1

E(t) ——Hutlb Hut|!2r1+2

(1 ~o(t) [ o(s)ds ) 180l + jo(0)g o Bu) + 137 (I¥ul?)

/ 1o, D)l dp — Hunpn,
(3.14)

where £ be a positive constant satisfying

The < &< 71 — pa). (3.15)
Lemma 3.1. Let u be a solution of problem (3.1)). Then,

o(t)

B0) < —ao (lullr, + 1:01.0080,) + 2 (0 0 80 0~ T2 ([ gte)as) 1auli. (s.10)

Proof. Multiplying the first equation in (3.12)) by w;, integrating over €2, and using (3.9)), we obtain

1

Ll Gz, + 5 (100 [ o(e)ds) 180l + 500 (a0 8 0

1 -
301 (IVal) =l ]

2
(t) (1) (3.17)
2

= 7D gy au + D (g0 awy () +

~Z( [ s 30l =l = s [ 200,y

Multiplying the second equation in (3.12)) by £z and integrating over I'; x (0,1), we obtain

//|p7|dpdw= //—| (p,t)[Pdpda
27‘dt (3.18)

= 5 (el ~ 120,013,

(g0 Au) (t)

Using Young’s inequality, we have

~ o / 2(Lude < BJ|2(1,0) 3, + Sl r, (3.19)
1
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3.3. GLOBAL EXISTENCE

Combining (3.17)), (3.18)), and (3.19)), we obtain

/ 2 2 o), , a'(t) ' 2
E(0) < ~a (lallr, + 11 01B0,) + 2 0 ) () = T2 ([ gts)ds ) ol (3:20)
where ¢y = min {ul — 2£ — %, 2£ — %}, which is positive by (3.15]). O
T T

i —1
Lemma 3.2. ([/])]). Suppose that p < 2n_2 holds. Then, there exists a positive constant C' > 1
n p—

depending only on € such that
lully < C (IVullz + [lullp) .

for any u € Hy (), 2 < s < p.

3.3 Global Existence

In this section, we will prove that the solutions established in Theorem are global in time. For

this purpose, we define the functionals:

1) = N (|Vullg) + (1—a<t> / g(s)ds) 1Aul3 + o(t) (g 0 Au)

) (3.21)
= [ o o =l
and .
1 1 1 .-
) =5 (1= 0) [ ato)ds) 18ulg + o (0(g0 du) + 337 (19ul}
e g 0 X (3.22)
+5 | 1.0l e dp =l
Then, it is obvious that )
B(t) = J0) + 5 [l + ol ] (3.23)

Lemma 3.3. Assume that (A) — (As) hold, and for any (ug,u1) € HE () x L*(Q), such that

<1, (3.24)

E(0)

cbcb 2p
I d a=-—2
(0) >0 and « 7 [l(p—Q)
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3.3. GLOBAL EXISTENCE

then
I(t) >0, forallt>0.

Proof. Since 1(0) > 0, then by continuity of u, there exist a time ¢; > 0 such that
I(t) >0, Vte (0,t).

We assume that
{I(to) =0and I(t) > 0, for all0 <t < ty}.

This, together with (3.21)), (3.22), (3.26), and (A;), give that

) =225 vul) + (1= o) [ ato)ds) 18ulg + ote) (g 00 0

+¢ [ sto.0)lBdp] + 109

> P22 [0 (19ul) + (1= o) [ ato)ds) 18l + ot) (g 80 0

e [ 1. 010]

Using (A1), ( , and -, we obtain

g < (1000 [ gtras ) Iaul < -2 st

2
=L _B(0), Vte0,t].

=52

Exploiting Lemma [3.1], (3.29) and (3.24), we obtain

—2
cpcp p—=z

luttollr, < cteglduly < 52 (7 2550)  didumlg

—allauwl < (1000 tg<s>ds) | Au(ro)2

Therefore,
I(ty) > 0.
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which contradicts to (3.27). Thus, I(¢) > 0 on [0, 7. O

Theorem 3.2. Assume that the conditions of Lemma hold, then the solution of (3.1)) is global

and bounded.

Proof. 1t suffices to show that
luell2.r, + lluellz + [l Aullz

is bounded independently of ¢. Using (3.16)), (3.23) and (3.29), we have

1 1
E(0) E<> T+ el + 3l
31
> P2 uaal2) + Ll + Sz, .
o 2 279 2

Therefore,
el + lluellp, + [[Vull3 < CE(0), (3.32)

where C' is a positive constant. This infers that the solution of (3.1)) is bounded and global in
time. =

3.4 General decay

In this section, we prove the energy decay result by constructing a suitable Lyapunov functionals.

Theorem 3.3. Let (ug,uy) € HE, x L*(Q) be gwen. Assume that (A;) — (As) hold. Then, for
each t > 0, there ezist two positive constants K and k such that, for any solution of problem (3.1

, the energy satisfies
E(t) < Ke "o 807 (3.33)

For this goal, we define the following functionals

F(t) = B(t) + e10(t)p(t) + 20 ()0(1), (3.34)
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where £; and &5 are some positive constants to be specified later and

o(t) = /uutdac—{—/ uugd. (3.35)
Q I

o) = — < /Q wpda + /F | uutda:) /0 "ot — $)(ult) — u(s))ds. (3.36)

In order to show our stability result, we need the following lemmas:

Lemma 3.4. Let (u,z) be a solution of problem (3.12)). Then there exist two positive constants
a1 and oo such that
aE(t) < F(t) < anE(t), t> 0. (3.37)

Proof. By Holder’s, Young’s, Sobolev-Poincare inequalities, (3.2]), and (2.3)), we obtain

o(t) o(t) |o(t)]
70) - B0 < (e +20) 2 iz < e+ 60 D, + 0 T (a4 e,
o ()] 1-1 ' _ _ 2 £ — 2\ g
ter—= (1= 1) i g(t = ) ([lu(t) = u(s) ]z + llu(t) — u(s)lzr, ) ds
o(0 o(0 o(0
< (vt ) Tl + e+ ) i, + 20 T2 (& 4 2) 2
o(t
el 200 0y (@4 ) 2 (g0 duyn)
S 6(61 + 82)E(t).
(3.38)
If we take €1 and &5 to be sufficiently small, then (3.37) follows from (3.38)). This completes the
proof. O]
Lemma 3.5. The functional o(t) defined in (3.35)) satisfies
1
P'() < Nuellz + (1 + e)ludllzr, — cllAullz + 3o (t)(g 0 Au)(?)
(3.39)

+ellz(L )5, + llullpr, -
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Proof. Differentiate (3.35)) with respect to ¢ and using first equation of (3.12)), we get

() = luall? + el + / wdz + / vt
Q

I

= lluell3 + lluellz r, = Al = M ([Vul3) [Vull3 + [[ullp r,

+o(t) /Q /Otg(t — s)Au(s)dsAu(t)dr — /Fl wudr — fg /Fl z(1,

Applying Holder’s inequality, Young’s inequality and (3.2)), we obtain

tyudz.

ho= [ 0 [ ottt dutedsds + ([ gtsyis)lsul

<o [ gte)as)Iaulz + (g0 B0

and 2 2
2 2 2 * 2
I = ﬂl/ upudr < 5““1?“2,1“1 + 4_||u||2,r1 < E||Ut||2,1“1 + i QHAUH2~
I 9 g
Similarly
2 2,22
% /’LZC*C
Bo= i [ (1 0ude < ello(L O, + L2l < ello(L M, + ZEtAul}
1

A substitution of (3.41))-(3.43)) into (3.40)), we obtain

1
P(t) < luellz + 1+ &)lJudllzr, = ecllAullz + 7o()(g 0 Au)(t)
+ellz(L O3, + lullpr,-

where ¢. = {l — moc; — ((uf + p3)cici/4e)} > 0.
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Lemma 3.6. The functional ¥(t) defined in (3.36)) satisfies

t
P(t) < - {/ g(s)ds — 77} luell3 +n {1 +2(1 = )% (t) + Mo } | Aull3 +nllullyr,
0

+(1=1) {%(1 + Moci + (13 + p3)cics + c,c) + (2n + i) a(t)} (go Au)(t) (3.45)

U 4n
t 2 2 2
g(0) (c; +¢i) c
A [ o120} ke, +nte.008r, - 2B S o sy

Proof. Differentiating (3.36)) with respect to ¢ and using equation (3.12)), we get

P(t) =-— ( /Q Uy + /F 1 utt) /O t g(t — s)(u(t) — u(s))dsdx
_ (/Qut—i—/rl ut> /Otg’(t—s)(u(t)—u(s))dsdx

t (3.46)
= ([ atords) (Gt + sl
t
=gt = ([ o)ds) (g + k).
0
By using Holder’s inequality, Young’s inequality, and (A;), we obtain
' (1-1)
Ji = / Au/ g(t — s)(Au(t) — Au(s))dsdx < n||Aul|3 + I (g o Au)(t), (3.47)
Q 0
and
t t
Jy = —a(t)/ (/ g(t — s)Au(s)ds) </ g(t — s)(Au(t) — Au(s))ds) dx
@0 0 (3.48)

1
< (1 — 120 (t)]| Aul + (2n ; 5) (1= Do (t)(g 0 Au) (D)
Now, since ||Vull3 < 2¢2E(0)/1, for all t > 0, taking

My = sup{M(s), 0 < s < 2c2E(0)/1},
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we see that M (||Vul|3) < My < co. Then, we have

M (| Vul2 /Vu/ (t — $)(Vult) — Vu(s))dsdz

(3.49)
Mo(1 = 1)c;
< Mocgn|| Aull3 + T £ (g0 Au) (t).
By using Holder’s inequality, Young’s inequality, and (A;), we obtain
t
:/ ut/ g(t — s)(u(t) — u(s))dsdx
. Jo
, L (A=D [ 2
< nluellzr, + I g(t = s)|[ut) — u(s)lzr,ds (3.50)
0
(1 —1)c2c?
< e, + (g 0 Au(t)
Ui
Similar to (3.50]), we have
t
J; = / z(l,t)/ g(t — s)(u(t) — u(s))dsdz
Fl 0 (1 - e (3.51)
<nllz(L, )5, + 4—(9 o Au)(t).
n
Applying Hoélder’s inequality, Young’s inequality, (A1), (2.3), and (3.2]), we have
t
Jo :/ \u|p_2u/ g(t — s)(u(t) — u(s))dsdx
r 0
1 t p
<l +e [ ([ ottt - ulsas) as
. \Jo
(3.52)

< nllullyr, +Cn<1_l)p1/0 g(t = s)||u(t) —u(s))l,r,ds

t
< nflullpr, + el = l)p‘lci’cz’/o g(t = 9)[|Au(t) — Au(s))|l2ds

< llullyr, +e(1—1)c(g o Au) (¢).

p, "1
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Finally,

(3.53)
g(0) (cf, + cf) .,
o (g o Au) (t)

< lluell3 + nllullr, —

A substitution of (3.47)-(3.53)) into (3.46)), we obtain
t
P'(t) < - {/ g(s)ds — 77} w3 +n {1 +2(1 = 1)%0(t) + Mocs } || Aull + nlfull) r,
0

+(1-1) {%(1 + Moc2 + (] + p13)c3cs + ¢,0) + (277 + i) a(t)} (goAu)(t) (3.54)

U 4n
- { / g(s)ds - 2n} B + oL )2, — 22 (C’z; %o ).
[
Lemma 3.7. The functional F(t) defined in satisfies
F'(t) < —koo(t)E(t) + k1o (t)(g o Au)(t), t > to, (3.55)

where ko and ki are some positive constants.

Proof. First, since the function ¢ is a positive and continuous function, for any ¢, > 0 we have

t to
/ g(s)ds > / g(s)ds := go, forall t > t,.
0 0
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Differentiating and using Lemmas [3.5] [3.6] we get
F'(t) = E'(t) +e10'(t)p(t) + e10(t) @ (t) + e20” ()(t) + e90 () (1)
< —o(t) {ealgo — m) — e} lwll3 — o(t) {% —ei(l+e)+e2(g0 — 277)} [uel3r,
—o(t) {5105 —ean (14 2(1 = 1)%0(t) + Moc?) + ;TU((?) (/0 g(s)ds> } | Aull2

Elﬂ + 82077 + &9 <27’] + %) (1 — Z)O'(t)} (g o Au)(t)

4 (3.56)

S (/}%+ﬁ;m)/ (t = $)(u(t) — u(s))dsdz.

On the other hand, we have

o'(t) o'(t)
5wl = == llullze, = o' (D(e; + el Aulls,

J’(t)/uutdx+0’(t)/ uugdr < —
Q I

(/W+£ﬂ0/‘t—s u(t) — u(s))dsdz.

(||ut||2 + ||Ut||21“1) o'(t )(02—1—0 )% (/0 Q(S)ds) (g o Au)(t).

and

S_
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Consequently, inequality (3.56|) becomes

PO) <o) {ealan—n) - a1+ T bl

o' (t
{ e(149) + exgo—2m) + 2 } el

t){elcs — e (14 2(1 — )20 (t) + Myc?)
'(?)

s, o) + ST

SRS
Q
A
~
N~—
_
>
ot

(3.57)

) : /Otg(s)ds}(goAu)(t)

rat {3 -8B 0

Fo(t) fer + ean} . — o() {m - 6277} (L 0) 2

First, we choose 1 so small such that

1 1
9o =1 > 590 and cﬁ(l +2(1 —1)* 4+ Moc2) < 1%

For any fixed n > 0, we choose ; and 5 small enough to satisfy

%52 < e < 82%, (358)

and

1 = e2(g0—0)—e1>0,
Co = E1C. —&9M (1 + 2(1 — l)2 + M()CZ) > 0,
c3 = ¢e2(go—2n) —e1(l+¢)>0.
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Further, we pick £; and &5 so small that (3.37)) and (3.59) remain valid and

1 9(0)(c; + )
= ~— >0
Cy 2 €2 47] 3
Co
= 2 —cie—en >0
Cs U(O) £1€ 2N

Therefore, (3.57)) becomes

Po) < -0t {e+ 20}l - o0 {eat S0 s,

o(t) 20 (t)
~ott) {ex + S [ gtogas) + LT g
o) {ea = ST g9 (g0 200 +eso®lulzy,
Since tlgglo _;(,t()t ) = 0, we can choose t; > t; so that takes the form
F'(t) < —o(t) {cillull + call Aull3 + eslluell3 r, — collullyr, } + cao(t)(g o Au)(t)

< —koo(t)E(t) + kio(t)(g o Au)(t), Vit > to.
where k;, © = 0,1 are some positive constants. This completes the proof.

Proof of Theorem [3.3} Multiplying (3.55)) by £(¢), we have
SV () < —koo (H)E(8)E(t) + k1o (t)E(1)(g o Au)(t)
Since (A;) and using the fact that —o(t)(¢’ o Au)(t) < —2E(t) by Lemma [3.1] we obtain

EOF(t) < —hoo()E)E(t) — kro(t)(g' o Au)(t)

< —koo ()E(R)E(t) — k1 (2E'(t) + ' (1) (/0 g(S)dS) 1Au]3).
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Since ((t) is nonincreasing, we have

4 COP) + 200 < ko060 - k') [ atehas) Il 3.03)

Observing from definition of E(t) and assumption (Ag) that [||Vul|3 < E(t), we get

L) + 2B (1) < —kaor(t)COER) — kso' (1) < / g(s)ds> A2

dt
2ksE(t) ¢
< ~ko e B ~ 2251ty [ g(s)as (3.64)
0
2k5l00/(t)
< —a(t)(t) | k —= | E(t).
< ~a(0¢(e) (ke + o0 £
—o'(t /
Since tliglo . (;é (22) = 0, we can choose t; > t, such that k; + zllféo)z(g) for t > t,. Finally, let

L(t) = C(t)F(t) + 2ks E(1),
then we can easily see that L(t) is equivalent to E(t). Thus, we arrive at
L'(t) < —kC(t)o(t)L(t) fort > ti. (3.65)
Integrating over (t1,t) with respect to t, we get

L(t) < L(ty)e Ha @@y~ 40

Consequently, the equivalent relations of L(t), F(t) and E(t) yield the desired result.

3.5 Blow up

In this section, we state and prove the blow-up result of problem (3.1)) with F(0) < 0.

Theorem 3.4. Let (Ay) — (As), (3.8) and the initial energy E(0) < 0 hold. Then, the solution of
problem (3.1)) blows up in finite time.
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Proof. Let

then £(0) < 0 and (3.16), gives
H'(t) = —E'(t) > co (luellzr, + 121 O)]5r,) >0,
and H(t) is an increasing function. From (3.14)) and ([3.66)), we obtain

1
0<H(0) < H(t) < —[ull;
p

p,l'1°

Next, we define

Gt)=H"7(t) + 5/

uudr + 6/ uugde,
Q r

where € > 0 is a small constant and will be chosen later, and

-2 p—2
O<J§min{p—,p—}.
2p - p

Taking a derivative of (3.69)) and using first equation in (3.12)), we have

G'(t) =1 —o)H 7(t)H'(t) + elluel5 + lluel3 1, +5/ uudr +5/ uuydr
Q

Iy
= (1= o)H7(t)H'(t) +llull3 + ellucll3r, — ellAullf — M ([[Vull3) [[Vull3
t
+5||U||Z,F1+5U(t)// g(t—s)Au(s)dsAu(t)da:—E,ul/ upudz
aJo

'y

—8/1,2/ 2(1, t)udx.
I

Applying Holder’s and Young’s inequalities, for 1,0 > 0, we have

/QAU /Otg(t — $)Au(s)dsdz > (1 - %) (/Otg(s)ds) A2 — (g o Au)(t),

1 1
i [ wude < flull, + 35llBe, < el + O,
1

and

4005
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Similarly, we have

1

1
uz/ 2(1, t)udr < o5 |ull3p, + 4—5\12(1,t)!|§,p1 < o5 llullyr, + 13 5H’(t)- (3.74)
Iy Co

Combining these estimates (3.72))-(3.74)) and (3.71)), we get

/ -0 € !
60 = {(- oo - 15 b+ el + el

—6{1 + My — o(t) <1 - %) (/Otg(s)ds>} |1 Aul2 (3.75)

—eno(t)(g o Au)(t) — (ui + p3)dllull3 p, + ellullyr,-

It follows from (3.14) and (3.66]), for constant N > 0, we see that

€

¢ z{u-orow-e b more {5 b { 51} g,

re{ (5 -r-m) —ot (5 1= 1) ([ ateras) 1l

N N (3.76)
re{ 5 = nboiae s +e{ S~ 1Ly, - <t + moluly,
N¢ 1
sengt [ a0l do + NeH (1)
0
Using (3.8), we find that, for some number n with 0 < n < N/2,
€ N N
60 2 {a-amr - oo re{ el {5 1] g,
(3.77)

p,l'1

N 1
+ean[Bul} + caao(t)(g o Mu)(®) + caallulle, + e [ a0 Ol do
0

—e(p + p3)o]|ull3p, -

o = (g—l—MO—a(t) (g—u%) (/Otg(s)ds> -0,
N
2

N
—n>0,a3=——1>0.
b

where

20
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Therefore, by taking 6 = H(t)? /4cok, where k > 0 to be specified later, we have

G'0) 2 {(1= o)~ Ry B0+ {5+ 1l e {5+ 1} e,

N¢ [t
tear[| A3 + eazo (1) (g 0 Au)(t) + easlfullyr, +e5> / l=(p. )15, o
0

(13 + 113) o112
—5WH(75) l|ull2r, -

Exploiting (3.68)), we have
C? 9
H(t)[lullyr, < CRHO [Julpr, < p—fHUHZf}f :
Substituting (3.79) into (3.78]), we get
! —0 / N 2 N 2
G'(t) 2{(1—0) =k H7(OH'(t) +e 5 + 1 lwlz+e9 5 +1 0 ullr,

Ne !
+eay || Aull3 + eazo(t)(g o Au)(t) + eas||ull} -, + 87/ 12(p,t)|13.r,dp
0

2(,,2 2
_gcp(:ul + /’62) ||u| op+2
deopk pI1 -

From (3.70), and Lemma , for s = op + 2 < p, we deduce
lullgs? < O (IVullz + llullyr,) < Cucg (1Au]3 + [lullr,) -
Combining (3.81)) with ( - we get

G'(t) >{(1—0)—ck}Ho(t)H'(t) +¢ {g + 1} [Juell5 + € {g + 1} el r,
e {ar = 2 1Al + cazo (g 0 A1) + = {as = T}l
N 1
+e [ 10Dl de

where ay = (C.2C%(ud + 113)) / (4cop?).

o1
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(3.79)

(3.80)

(3.81)
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First, we fix k such that
0 < k < min {CL4/CL1,CL4/CL3} .

Once k is fixed, we select € > 0 small enough such that

(1—0)—ck>0, and G(O):HI_U(O)—Fe/

uourdx + 8/ ugurdx > 0.
Q I

Therefore, we obtain from ([3.82)) that

G'(t) > w<H(t) +luell3 + Nuells r, + 1Aull + o (t)(g 0 Au)(t)

; (3.83)
= [ 1B do + )
where w is a positive constant.
We now estimate G (t)ﬁ By Holder’s inequality, we have
[ e <l < el sl (3:5)
)
which implies
1
T— 1 1
/ wude| < el 7 (3.85)
Q
Young’s inequality yields
1
1—0o K _0
s < (1l 4l (3.50)
Q

for /% + 3 = 1. To be able to use Lemma , we take 6 = 2(1 — o) which gives £ = 2~ < p.
Therefore, (3.85)) becomes

1
1
/ uUdx
Q
2

were s = 1—5-. Again Lemma W gives

—20°

< ¢ ([fully + ullz) .

1
l1—0o
/ uude
Q

< C(llullp + IVl + lludll3) < ex (|1 Aull; + [lulf3) - (3.87)
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By applying Lemma [2.3] and similar to (3.87)), we have

o
1—0o
/ uudr
I

Combining these estimates (3.87))-(3.88)) and (3.69)), we get

G5 (1) — H1—at+5/uud:1:+5/ uudx)l_c
0 = (o0 e e ee [ (3.59)

< c3 (H(t) + [l + lluell3 r, + [1Aull3 + ulpr,) -

< Cy (llullp.r, + IVull3 + lullzr,) < 2 (fullpr, + 1Aul3 + [lwllr,) - (3-88)

Combining (3.89) with (3.83), we find that
G'(t) > kGT= (1), t > 0, (3.90)

where k is a positive constant. A simple integration of (3.90) over (0,t) yields

o 1
G (t) > ——= .
G0) -
Consequently, the solution of problem ({3.1)) blows up in finite time 7% and T* < —=2— n

koGT5 (0)
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CONCLUSION

In this thesis, we have studied the asymptotic behavior (Decay rate and Blow-up) of solutions
for two Kirchhoff-type problems with nonlinear boundary conditions, delay and source terms.
First, we gave the results of local and global existence of solutions using Faedo-Galerkin and
potential well methods respectively.
Then, we examined the general decay result of energy, by introducing suitable energy and
perturbed Lyapunov Functional.
Finally, we thought about the finite time blow-up results of solutions with negative initial

energy. The main tool used is based on the method of Georgiev and Todorova.
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