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 شكر وعرف ان
 

سبحانك الليم لا علم لنا إلا ما علمتنا، نشكر الله ونحمده فضل نعمو علينا، نعمة العق ل التي أنار بيا دربنا وفكرنا ونعمة  

 الذاكرة التي حفظنا بيا سرنا وجيرنا.

 ين.أجمعصحبو   والصلاة والسلام على قدوة المربين نبينا محمد وعلى آلو و 

من لم يشكر الق ليل لم يشكر ال كثير ومن لم    «إن من تمام شكر الله، شكر أىل الفضل والبر، وعملا بقول نبيو محمد صلى الله عليه وسلم:  

 .  " رواه " أحمد و الترمذي«  يشكر الناس لم يشكر الله

 من أجمل العبادات وأفضليا،و نخص بالشكر الجزيل لأساتذة الخ ير الذين علموا بلا شك أن العلم  

وإن من آمالنا وتطلعاتنا في ىذا الصرح أن نتقدم بجزيل الشكر إلى كل من ساعدنا وساى م في تكويننا طيلة مشوارنا   

 الدراسي من أساتذة التعليم الابتدائي،

 و نخص بالذكر الأستاذ المشرف المحترم    في قسم اليندسة المدنية  وصولا إلى أساتذة التعليم العالي والبحث العلمي 

 و لنا من معلومات و توجييات قيمة ساىمت في إثراء بحثنا العلمي،لعابد عبد الرحيم"على كل ما قدم" ا

 .فيو برىان للذين بذلوا شاق الجيد و يسروا العسير بقدرة الصمد القدير 

كل من الأستاذ " سلطاني محمد رضا" رئيسا و   ناقشة مذكرتنا،كما نشكر كافة أعضاء لجنة المناقشة التي شرفتنا بقبوليا م 

 الأستاذ  

 .الذين لاشك أنيم سيفيضون علينا بتوجيياتيم القيمة وملاحظاتيم السديدة" بولعراس السعيد" ممتحنا   

 " زميلين " أبو طير بكر وائل" و" بوجاجة مروىثم الشكر موصول لل                                       

 دون أن نغض الطرف بالشكر والثناء عن إخواننا الطلبة المقربين بصلة العلم في فيحاء الأخوة والسند.

 راجين من المولى العليّ القدير كل التوفيق والف لاح . 2222دفعة   2وخاصة طلبة ماستر   

الأخير نشكر كل من قدم لنا يد العون والمساعدة من قريب أو بعيد ولو بكلمة طيبة أو بتوجيو أو حتى بدعوة في    و في

 ظير الغيب ليم جزيل الشكر والعرف ان.

 .ول كم منا ف ائق التقدير و الاحترام



 

  

 

 إى    داء
 

لله على منو وامتنانو والشكر لو على نعمو و إنعامو حمدا كثيرا طيبا، الذي أنعم علي بنعمة العلم وسيل لي طريق ا    الحمد

 أبغي فيو علما ووفقني في إنياء عملي المتواضع ىذا.

  .زكى التسليمإلى من بلغ الرسالة وأدى الأمانة ونصح الأمة، إلى نبي الرحمة ونور العالمين، سيدنا محمد عليو الصلاة وأ 

إلى التي بالأماني حملتني، وبالتياني استقبلتني، وبالحنان رعتني، إلى من لم يعرف دعائيا حدود ولا عطاءىا قيود، إلى  

  .بسمة الحياة وسر الوجود، إلى ينبوع الصبر والتف اؤل والأمل: أمي الغالية

قدم لنا لحظة سعادة، إلى من حصد الأشواك عن  إلى من جرع الكأس ف ارغا ليسقيني قطرة حب، إلى من كلت أناملو لي

 دربي ليميد لي طريق العلم، إلى الق لب ال كبير الذي أحمل اسمو بكل فخر وأعتز بو في كل مكان: أبي العزيز.

إلى سندي وقوتي وملاذي، إلى من آثروني على أنفسيم، إلى من علموني علم الحياة، إلى الق لوب الطاىرة: إخوتي   

  .وأخواتي

  ى التي يأنس بيا ق لبي و تقر بيا عيني برعم العائلة: " نسرين ".إل

 إلى نفسي و نفسيتي. 

 إلى من جمعني بيم دم واحد وق لب واحد وبيت واحد: كل الأىل والأق ارب.

 إلى كل الأصدق اء الأوفياء والزملاء الأعزاء التي جمعتني بيم الحياة خصوصا حبيبات ق لبي " توامي اسيا "، 

  اء "،  " دوايدي أميرة "." ىيبي صف 

 إلى كل من تصفح ىذه المذكرة وانتفع بيا وتذكرنا بدعائو.

 إلى كل ىؤلاء أىدي ثمرة جيدي

 **دى ل وز من ال   **
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ABSTRACT 

This thesis deals with the impact of buckling on the carrying capacity of slender sections 

(class 4) considering the elastic and inelastic analyses. Steel sections can be regarded as a combination 

of individual plate elements connected together to form the required shape. Two instabilities are being 

investigated: Local buckling (LB), Lateral Torsional Buckling (LTB) and most often their interactions. 

LB influences the behaviour of slender sections by preventing them to attain their full capacity, greatly 

diminishes their load bearing capability. While LTB makes the overall behaviour of steel member 

changing from initially in-plane bending to combined a large lateral displacement and twist angle with 

a partial failure or whole failure element. The classification of steel sections with regard to local 

buckling is presented as per EC3 and AISC provisions. In order to accomplish the objectives of this 

research work, the author has followed the procedure: First of all, an extensive literature overview has 

been made covering the different instability phenomenon susceptible to occur in slender beams: LB 

and LTB with the code's provisions. The necessary theoretical background of advanced analysis of the 

Effective Length Approach (ELA) of slender sections has been reviewed with application to the 

studied cases. The essential understanding of basic theory of the elastic (eigen modes) and inelastic 

behaviours of steel slender sections was also performed. The parametric comparative study undertaken 

in this investigation considers some parameters that are believed to influence the bending strength of 

slender sections of three sections S1, S2 and S3. These parameters are the slenderness (class) of 

flanges and load locations in the cross section. The study covers both elastic linear and inelastic 

buckling behaviour. Analytical elastic buckling study as per EC3 of the prediction of Mcr taking into 

account of the elastic and effective properties respectively was performed. Another buckling analysis 

based on the eigen modes, taking into account the same parameters, is carried out by mean of FE 

modelling using LTBEAM and ABAQUS software. Very good agreement was found when comparing 

the outcomes of the three studies were compared. Then a true, more sophisticated inelastic analysis to 

describe the nonlinear behaviour of slender sections has been carried out throughout 3D models built-

up in ABAQUS. The inelastic analysis was done using RIKS approach implanted in ABAQUS. The 

results have shown the particular importance of the flange class in an inelastic behaviour of slender 

section with regard to LTB which is mainly bending behaviour. According to the obtained results, it 

seems that, in the elastic range, the class of flange does not have any significant impact on the general 

resistance to LTB of slender sections. However, as far as the inelastic behaviour is concerned, sections 

S1, S2 and S3, despite that all sections are classified in class 4, have shown different behaviours 

according to their flange class in the prediction of Pcr and the post-buckling behaviour of the section. 

Better performance has been found in S1 and lesser in S2 and the worst was S3 (web and flanges being 

class 4). The load positions of have shown their importance in both elastic and inelastic behaviours. It 
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has been found that situations when the load is applied in the compressive flange. Some very 

interesting conclusions have been drawn this parametric comparative investigation with some 

suggestions for future work. 

Key words: Instability, classification, LB, LTB, ELA, FEA, elastic and inelastic behaviour, 

load location, flange class. 
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 ملخص

( ِغ ِشاػبح اٌزح١ٍلاد اٌّشٔخ ٚغ١ش 1الاٌزٛاء ػٍٝ اٌمذسح الاسز١ؼبث١خ ٌلألسبَ إٌح١ٍخ )اٌفئخ  رزٕبٚي ٘زٖ الأطشٚحخ رأص١ش

اٌّشٔخ. ٠ّىٓ اػزجبس اٌّمبطغ اٌفٛلار٠خ ِض٠غًب ِٓ ػٕبطش اٌٍٛحخ اٌفشد٠خ اٌّزظٍخ ِؼًب ٌزشى١ً اٌشىً اٌّطٍٛة. ٠زُ اٌزحم١ك فٟ اص١ٕٓ 

ػٍٝ سٍٛن  LB ٚفٟ أغٍت الأح١بْ رفبػلارّٙب. ٠إصش (LTB) ، ٚالإٌزٛاء اٌغبٔجٟ (LB) ِٓ حبلاد ػذَ الاسزمشاس: الأجؼبط اٌّحٍٟ

ثزغ١١ش  LTB الألسبَ إٌح١ٍخ ِٓ خلاي ِٕؼٙب ِٓ ثٍٛؽ سؼزٙب اٌىبٍِخ ، ِّب ٠مًٍ ثشىً وج١ش ِٓ لذسرٙب ػٍٝ رحًّ الأحّبي. ث١ّٕب رمَٛ

ٜ ئٌٝ اٌغّغ ث١ٓ ئصاحخ عبٔج١خ وج١شح ٚصا٠ٚخ اٌزٛاء ِغ فشً عضئٟ أٚ اٌسٍٛن اٌىٍٟ ٌٍؼضٛ اٌفٛلارٞ ِٓ الأحٕبء الأٌٟٚ فٟ اٌّسزٛ

أعً رحم١ك أ٘ذاف ٘زا  ِٓ .EC3 ٚ  AISC ػٕظش فشً وبًِ. ٠زُ رمذ٠ُ رظ١ٕف ألسبَ اٌظٍت ف١ّب ٠زؼٍك ثبٌزشبثه اٌّحٍٟ ٚفمًب ٌجٕٛد

اٌؼًّ اٌجحضٟ، ارجغ اٌّإٌف الإعشاء: أٚلاً ٚلجً وً شٟء، رُ ػًّ ٔظشح ػبِخ شبٍِخ ٌلأدث١بد اٌزٟ رغطٟ ظب٘شح ػذَ الاسزمشاس 

ٙظ ِغ أحىبَ اٌىٛد. رّذ ِشاعؼخ اٌخٍف١خ إٌظش٠خ اٌلاصِخ ٌٍزح١ًٍ اٌّزمذَ ٌٕ LB ٚ LTB :اٌّخزٍفخ اٌزٟ ٠ّىٓ أْ رحذس فٟ حضَ سف١ؼخ

ٌلألسبَ إٌح١ٍخ ِغ اٌزطج١ك ػٍٝ اٌحبلاد اٌّذسٚسخ. رُ أ٠ضًب ئعشاء اٌفُٙ الأسبسٟ ٌٍٕظش٠خ الأسبس١خ ٌلأشىبي  (ELA) اٌطٛي اٌفؼبي

ٚاٌسٍٛو١بد غ١ش اٌّشٔخ ٌلألسبَ إٌح١ٍخ اٌفٛلار٠خ. اٌذساسخ اٌّمبسٔخ اٌزٟ أعش٠ذ فٟ ٘زا اٌزحم١ك رأخز ثؼ١ٓ  (eigen اٌّشٔخ )أّٔبط

٘زٖ اٌّؼٍّبد ٟ٘  .S1 ٚ S2 ٚ S3 ثؼض اٌّزغ١شاد اٌزٟ ٠ؼزمذ أٔٙب رإصش ػٍٝ ِمبِٚخ الأحٕبء ٌلألسبَ إٌح١ٍخ ٌضلاصخ ألسبَ الاػزجبس

سلخ )فئخ( اٌشفبٖ ِٚٛالغ اٌزح١ًّ فٟ اٌّمطغ اٌؼشضٟ. رغطٟ اٌذساسخ ولاً ِٓ سٍٛن الأضٕبء اٌخطٟ اٌّشْ ٚغ١ش اٌّشْ. رُ ئعشاء 

ِغ ِشاػبح اٌخظبئض اٌّشٔخ ٚاٌفؼبٌخ ػٍٝ اٌزٛاٌٟ. ٠زُ ئعشاء رح١ًٍ اٌزٛاء آخش  Mcr ٌزٕجإ EC3 اٌّشْ حستدساسخ رح١ٍ١ٍخ ٌلاٌزٛاء 

رُ  .LTBEAM ٚ ABAQUS ثبسزخذاَ ثشٔبِغٟ FE ، ِغ ِشاػبح ٔفس اٌّؼٍّبد ، ػٓ طش٠ك ّٔزعخ eigen ٠ؼزّذ ػٍٝ أٚضبع

ٌضلاس. صُ رُ ئعشاء رح١ًٍ غ١ش ِشْ حم١مٟ ٚأوضش رؼم١ذاً ٌٛطف اٌسٍٛن غ١ش اٌؼضٛس ػٍٝ ارفبق ع١ذ ٌٍغب٠خ ػٕذ ِمبسٔخ ٔزبئظ اٌذساسبد ا

 رُ ئعشاء اٌزح١ًٍ غ١ش اٌّشْ ثبسزخذاَ طش٠مخ .ABAQUS اٌخطٟ ٌلألسبَ إٌح١ٍخ ػجش إٌّبرط صلاص١خ الأثؼبد اٌزٟ رُ ئٔشبؤ٘ب فٟ

RIKS ٟاٌّضسٚػخ ف ABAQUS. اٌسٍٛن غ١ش اٌّشْ ٌٍمسُ إٌح١ف ف١ّب ٠زؼٍك ثـأظٙشد إٌزبئظ الأ١ّ٘خ اٌخبطخ ٌفئخ اٌفٍٕغبد ف ٟ 

LTB  اٌزٞ ٠ؼذ سٍٛن الأحٕبء ثشىً أسبسٟ. ٚفمًب ٌٍٕزبئظ اٌزٟ رُ اٌحظٛي ػ١ٍٙب، ٠جذٚ أٔٗ فٟ إٌطبق اٌّشْ، لا ٠ىْٛ ٌفئخ رأص١ش وج١ش

، ػٍٝ اٌشغُ ِٓ  S1 ٚ S2 ٚ S3 الألسبَ ِٚغ رٌه ، ف١ّب ٠زؼٍك ثبٌسٍٛن غ١ش اٌّشْ ، فاْ .LTB ػٍٝ اٌّمبِٚخ اٌؼبِخ ٌلألسبَ اٌشف١ؼخ

ٚسٍٛن ِب ثؼذ الأحٕبء ٌـ  Pcr ، أظٙشد سٍٛو١بد ِخزٍفخ ٚفمًب ٌفئخ اٌحبفخ اٌخبطخ ثٙب فٟ اٌزٕجإ ثـ 1أْ ع١ّغ الألسبَ ِظٕفخ فٟ اٌفئخ 

أظٙشد ِٛاضغ اٌحًّ (. 1ا٠ٌٛت ٚاٌشفبٖ ِٓ اٌذسعخ ) S3 ٚالأسٛأ وبْ S2 ٚألً فٟ S1 اٌغضء. رُ اٌؼضٛس ػٍٝ أداء أفضً فٟ

أ١ّ٘زٙب فٟ وً ِٓ اٌسٍٛو١بد اٌّشٔخ ٚغ١ش اٌّشٔخ. ٌمذ ٚعذ أْ اٌحبلاد اٌزٟ ٠زُ ف١ٙب رطج١ك اٌحًّ فٟ شفخ الأضغبط. رُ اسزخلاص 

 اٌشئ١س١خ: ػذَ .اٌىٍّبد ثؼض الاسزٕزبعبد اٌّّٙخ ٌٍغب٠خ فٟ ٘زا اٌجحش اٌّمبسْ اٌجبسِٚزشٞ ِغ ثؼض الالزشاحبد ٌٍؼًّ اٌّسزمجٍٟ

 اٌطجمخ اٌٛح١ذح.اٌسٍٛن اٌّشْ ٚغ١ش اٌّشْ، ِٛلغ اٌزح١ًّ ٚ  ،LB، LTB، ELA، FEAالاسزمشاس، اٌزظ١ٕف، 
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Résumé 

Cette thèse traite de l'impact de l'instabilité sur la capacité portante des sections élancées 

(classe 4) en utilisant les analyses élastiques et inélastiques. Les profilés en acier peuvent être 

considérés comme une combinaison d'éléments individuels de plaque reliés entre eux pour former la 

forme requise. Deux instabilités sont étudiées : le voilement local (LB), le déversement (LTB) et 

éventuellement leurs interactions. LB influence le comportement des sections élancées en les 

empêchant d'atteindre leur pleine capacité, diminue considérablement leur capacité de résistance. Alors 

que LTB balance le comportement global de l'élément d'une flexion initiale dans le plan de forte 

inertie à la combinaison d'un grand déplacement latéral et d'un angle de torsion avec une défaillance 

partielle ou totale de l'élément. La classification des profilés en acier dépend du voilement local est 

présentée selon les dispositions des codes EC3 et AISC. Afin d'accomplir les objectifs de ce travail de 

recherche, l'auteur a suivi la démarche suivante : Tout d'abord, une revue bibliographique abondante a 

été faite couvrant les différents phénomènes d'instabilité susceptibles de se produire dans les poutres 

élancées : LB et LTB avec les recommandations des codes. Le contexte théorique nécessaire à 

l'analyse avancée de l'approche de la longueur efficace (ELA) avec des applications aux sections 

élancées considérées dans cette étude. La compréhension essentielle de l'analyse modale des 

comportements élastiques (modes propres) et inélastiques des sections élancées en acier a également 

été effectuée. L'étude comparative paramétrique entreprise dans cette enquête considère certains 

paramètres qui sont censés influencer la résistance à la flexion des sections minces de trois sections S1, 

S2 et S3. Ces paramètres sont l'élancement (classe) des semelles et les emplacements des charges dans 

la section transversale. L'étude couvre à la fois le comportement de flambement linéaire élastique et 

inélastique. Une étude analytique du flambement élastique selon EC3 de la prédiction de Mcr tenant 

compte respectivement des propriétés élastiques et effectives a été réalisée. Une autre analyse de 

flambement basée sur les modes propres, prenant en compte les mêmes paramètres, est réalisée au 

moyen d'une modélisation EF à l'aide des logiciels LTBEAM et ABAQUS. Un très bon accord a été 

trouvé lors de la comparaison des résultats des trois études. Ensuite, une véritable analyse inélastique 

plus sophistiquée pour décrire le comportement non linéaire des sections élancées a été réalisée à 

travers des modèles 3D construits dans ABAQUS. L'analyse inélastique a été réalisée à l'aide de 

l'approche RIKS implantée dans ABAQUS. Les résultats ont montré l'importance particulière de la 

classe de semelle dans un comportement inélastique de section élancée vis-à-vis du LTB qui est 

principalement un comportement en flexion. D'après les résultats obtenus, il semble que, dans le 

domaine élastique, la classe de semelle n'ait pas d'impact significatif sur la résistance générale au LTB 

des sections élancées. Cependant, en ce qui concerne le comportement inélastique, les sections S1, S2 

et S3, bien que toutes les sections soient classées en classe 4, ont montré des comportements différents 
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selon leur classe de semelle dans la prédiction de Pcr et le comportement post-voilement de la section. 

De meilleures performances ont été trouvées en S1 et moins en S2 et les pires étaient en S3 (l'âme et 

les semelles étant de classe 4). Les positions de charge appliquée par rapport au centre de torsion ont 

montré leur importance aussi bien dans les comportements élastiques qu'inélastiques. Notamment, des 

situations défavorables lorsque la charge est appliquée dans la semelle en compression. Des 

conclusions très intéressantes ont été tirées de cette étude comparative paramétrique avec quelques 

suggestions pour des travaux futurs. 

Mots clés : Instabilité, classification, LB, LTB, ELA, FEA, comportement élastique et 

inélastique, localisation de la charge, classe de la semelle. 
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GENERAL INTRODUCTION 

 

1. Slender steel beams 

The main objective of this thesis is the investigation of the impact of buckling behaviour of 

class 4 slender steel cross section on their carrying capacity of these beams. The term „slender section‟ 

should not be confused with „slender beam‟. Where the slenderness of any plate element is more than 

the yield limit, the section is classified as slender. Normally it is best to avoid using slender sections, 

but it is sometimes necessary to check a section of this type. When the aspect ratio is relatively high, 

then local buckling may prevent any part of the cross-section from reaching the design strength. Such 

sections are called slender sections and are classified as Class 4 sections; their capacity is based on a 

reduced design strength as specified in Clause 3. The limiting aspect ratios for elements of the most 

commonly used cross-sections subject to pure bending, pure axial load or combined bending and axial 

loads. A parametric investigation is made a numerical elastic and inelastic modelling along with a 

theoretical background of such sections. For class 4 cross-sections it is assumed that parts of the area 

under compression due to local instability phenomena do not have any resistance (lost area): typically, 

the compressed portions of the cross-sections, which have to be neglected for the resistance checks, are 

the parts close to the free end of an outstand flange or the central part of an internal compressed 

element. Currently, EC8-1 does not account for structures with class 4 members.  

In general, the properties of the effective section in cross-sections of class 4 (slender) are 

obtained by defining certain effective widths in the compressed areas of the parts, in accordance with 

the criteria. 

Recent research on the behaviour of slender sections have been reported namely  [Taras and 

Greiner 2010; Couto et al 2015; João Ferreira et al 2017; Lee and Chiew 2019; Couto et al 2019, and 

Seres and Fejes 2020]. These and others have investigated the inelastic behavior to LTB of slender 

steel sections of class 4 as per EC3 with some interesting conclusions.  

2. General considerations 

Flexural members built up of plates that form horizontal flanges at top and bottom and joined to 

vertical or near vertical webs are called plate girders. They differ from beams primarily in that their 

web depth-to-thickness ratio is larger flange. The webs generally are braced by perpendicular plates 

called stiffeners, to control local buckling or withstand excessive web shear. Plate girders are most 

often used to carry heavy loads or for long spans for which rolled shapes are not available 

Steel members with thin-walled cross-sections are commonly used in steel structures due to its 

lightness and long span capacity. Beams are members subjected to bending are also generally affected 
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by shear forces, which have to be adequately considered in all the safety checks. Furthermore, the 

design of beams has to take into account both serviceability (mainly, check on deflections and dynamic 

effects) and ultimate limit states, including, in addition to resistance, stability verifications when 

relevant.  

Slender steel I- girder sections are commonly used for long-span beams of industrial halls, 

composite bridges, where mainly flanges provide the bending resistance and web has a relatively small 

thickness providing only hinged support to the flanges and resistance to shear stresses. To maximize 

their load-carrying capacity, steel beams are often oriented in such a way that the strong axis of the 

cross-section is perpendicular to the loading plane. When a beam is loaded in this manner, several 

failure modes are possible depending on its lateral unsupported length L. For a doubly symmetric I-

shaped compact section, if L is less than a reference length referred to by the AISC (2011). 

The buckling resistance assessment is usually based on appropriate buckling curves and 

requires the computation of the elastic critical moment, which is strongly dependent on several factors 

such as, the bending moment distribution, the restraints at the end supports and in correspondence of 

the load points, the beam cross-section, the distance between the load application point and the shear 

centre. The high strength and stiffness-to-weight ratios of structural steel often results in relatively 

slender members and systems in which stability is a primary design consideration. 

Steel mode failures 

According to [Chen and Duan 2014] there are four fundamental failure modes for steel 

members; yielding, rupture, buckling, and fatigue. Buckling failures can be characterized by an 

instability of a member as a whole (global buckling) or as instability of one or more of the elements of 

a cross section (local buckling). In this context, the word “element” is meant to describe a plate 

component that makes up part of a cross section. For instance, the web of an I-shaped girder or the 

flanges of a channel are cross-sectional “elements.” With respect to local buckling, classification of the 

cross-sectional elements as slender, non-slender, compact, or noncombat aids greatly in determining 

which of the four fundamental failure modes may govern and how they are addressed. This section 

provides the background needed to understand the classification of the sections for local buckling. 

Buckling of steel thin-walled members 

The steel material is characterized by a symmetrical mono axial stress-strain (σ–ε) constitutive 

law, which can be determined by monotonic tension tests on samples taken from the base material 

before the working process or from the products in correspondence of appropriate locations. The 

response of steel members can, however, be significantly different in tension or compression, owing to 

the relevant influence of the buckling phenomena.                                                                 



 

 
K 

In case of thin-walled members, that is member which has a cross-section components with 

high values of ratio width over thickness, the local instability phenomena might occur in the elastic 

range, hence preventing the spread of plasticity in the cross-section, that is, the achievement not only 

of the plastic moment but also of the elastic moment. These kinds of cross-sections are sensitive for 

local web buck-ling; however, the dominant failure mode of the entire girder is lateral-torsional 

buckling (LTB). Therefore, these girders should be designed for coupled instabilities, for the 

interaction of local plate buckling of the web and global LTB of the entire girder. 

Individual members may be combined in a quite great variety of ways to produce a more 

efficient compound cross-section member. The resistance can significantly be limited by instability 

phenomenon in the range of standard products.  

The instability of compressed steel members as well as of all the members realized with other 

materials can be distinguished in: 

• An overall buckling or Euler buckling, which affects the element throughout its length (or a 

relevant portion of it).  

• Local buckling, already which affects the compressed plates forming the cross-section, 

characterized by relatively short wavelength buckling. 

N.B. Also, there is a third type of instability, the so-called distortional buckling, distortional 

buckling is characterized by relative displacements of the fold-line of the cross-section and the 

associated wave-length is generally in the range delimited by one of local buckling and one of global 

buckling.  

 Local buckling 

A very important phenomenon affecting steel slender member behaviour and, as a 

consequence, the whole structural performance, is the local buckling that typically affects thin-walled 

members. Local buckling is a phenomenon that influences the behaviour of thin-walled structural steel 

elements in a major way and it can be the determining factor for their design in contemporary 

construction. Its occurrence prevents slender sections from attaining their full capacity, greatly 

diminishes their load bearing capability and should be completely avoided to ensure the safety and 

serviceability of steel structures.  

Lateral torsional buckling 

Lateral-torsional buckling is a kind of failure that occurs when the in-plane bending capacity of 

a member exceeds its resistance to out-of-plane lateral buckling and twisting.  Physically, the 

phenomenon of LTB in which the overall behaviour of steel member changes from initially in-plane 
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bending to combined a large lateral displacement and twist angle due to an application of load on an 

unsupported beam. The LTB can cause partial failure or whole failure in the structure. The stress at 

which buckling occurs depends on a variety of factors ranging from the dimensions of the member to 

the boundary conditions to the properties of the material of the member. The resistance of a steel beam 

in bending depends on the cross-section resistance or the occurrence of lateral instability. 

Classification of sections   

The local buckling of cross sections affects their resistance and rotation capacity and must be 

considered in design. The evaluation of the influence of local buckling of a cross section on the 

resistance or ductility of a steel member is complex. Consequently, a deemed-to-satisfy approach was 

developed in the form of cross section classes that greatly simplify the problem.  

AISC cross-section classification criteria are based, as in Eurocode 3, on the steel grade and on 

the width-to-thickness ratios distinguished for stiffened elements (elements supported along two edges 

parallel to the direction of the compression force) and unstiffened elements (elements supported along 

only one edge parallel to the direction of the compression force). 

More details will be provided in Chapter 4. 

- Classification in Accordance with European Standards  

Eurocode 3 proposes a criterion for the classification of cross-sections based on the slenderness 

ratio (width over thickness ratio) of each compressed component of the cross-section, as well as on 

other factors. It should be noted that, in case of compressed member, no distinctions can be observed 

in the performance of the elements of the first three classes, owing to the stress distribution in axially 

loaded cross-sections limited to yielding strength. The cross-section resistance to axial compression 

should be based on the plastic capacity (plastic axial force) in compact sections (class 1, 2 or 3), but 

taking into account the local buckling resistance through an effective elastic capacity in class 4 

sections. The buckling resistance should be evaluated according to the relevant buckling mode and 

relevant imperfections of real members, as described in the following sections. 

- Classification in Accordance with US Standards 

AISC 360-10 addresses classification of cross-sections in Chapter B, Section B4; the code deals 

with members subjected to axial load and members subjected to bending in a different way. The 

classification of cross-sections is classified on the basis of type of load acting on the element (i.e. 

compression and bending). 

N.B. Contrary to the European approach, which assumes the same classification criteria for 

both static and seismic design, it must be remarked that AISC Seismic provisions propose a different 

classification criterion when profiles are used in seismic areas. 
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Resistance of cross sections to EC3 

According to [Simões da Silva et al 2010], the resistance of cross sections depends on their class 

(clause 6.2.1(3)) in EC3. According to the definition of the four cross section classes (see 2.4), cross 

section classes 1 and 2 reach their full plastic resistance, while class 3 cross sections only reach their 

elastic resistance. Class 4 cross sections are not able to reach their elastic resistance because of local 

buckling. Nevertheless, using the concept of effective section [EC3 2006], they are effectively treated 

as class 3 cross sections and their resistance is evaluated as an elastic resistance.  

The design value of an action effect, at each cross section, should not exceed the corresponding 

design resistance, and if several action effects act simultaneously, the combined effect should not 

exceed the resistance for that combination (clause 6.2.1(1)). Shear lag effects and local buckling 

effects should be included according to the concept of effective section of EC3-1-5 (CEN, 2006c). 

Shear buckling effects should also be considered according to EC3-1-5 (clause 6.2.1(2)). 

3. Motivation and aim of the present work 

Exploring the impact of different buckling phenomenon on the elastic and inelastic behaviour 

of slender steel beam under static loadings is quite interesting, consideration several parameters that 

are believed to greatly influence the elastic and inelastic buckling. These parameters are: variation of 

flange's slender ratio, from class 1, class 3 and class4, load localisation in the cross section. The 

numerical modelling of the beams has been developed through well-known software: LTBeam for 

elastic buckling analysis and ABAQUS for both elastic and inelastic buckling behaviours of slender 

steel beams. By performing this task, the author of this dissertation has learned how to deal with 

complex analyses in 3D models.  

4.  Methodology  

To be able to meet the aim of the thesis the following steps were performed with tasks that need 

to be executed:  

 Understanding the different instability phenomenon susceptible to occur in beams under 

transverse static loadings. 

 Detecting the buckling interaction: local and torsional buckling. 

 Understanding the theoretical background of the effective length approach used for 

effective geometric properties. 

 Hand-calculations of some cases using effective length approach. 

 Explore the methods and assumptions used in LTBEAM and ABAQUS software 

 Understand the elastic and inelastic instability behaviour of steel slender sections and the 

theory behind lateral-torsional buckling. 



 

 
N 

 Built-up 3D models of beams with slender sections for linear and nonlinear buckling 

analyses in ABAQUS software. 

 Extract and discuss the obtain results. 

 Compare the performance of different beams  

 Draw some conclusions and suggestions for future wok. 

5.    Organisation of the dissertation  

 The present thesis has been partitioned in six chapters as follows: 

- A general introduction on steel beams summarises some concepts used in this work 

along with important definitions.  Also, a description of the scope and objective of the present research 

work and the way to attain the planned objectives is given. 

- Chapter 1: A concisely presentation and discussion on the local buckling and 

classification criteria of steel beams sections along with the parameters influencing this classification. 

A special attention has been paid to components under compression and bending. 

- Chapter 2:  A concisely presentation of the theory of stability of thin-walled steel 

structures is given. Introduces a theoretical insight of LTB with an overview of LTB in standards and 

guides and background of the European standards (EC3) with some details, EC3 and ANSI/AISC 360-

16 (June 2018) provisions. 

- Chapter 3: Dealing with the effective length approach. A detailed hand calculation of 

the designed beams of class 4 used in this study is given. 

- Chapter 4:  Displays an overview of the use the finite element method in structural 

analysis. LTBeam and ABAQUS are introduced. Technics and capabilities of assessing the lateral 

torsional buckling of laterally of unrestrained beams.  

- Chapter 5: In this chapter, presents and discusses the results of the elastic linear 

buckling analysis. Some concluding remarks are given.  

- Chapter 6:  This chapter is devoted to a presentation of results of the inelastic buckling 

analysis with a full discussion and the comparison of obtained results. 

- Conclusions and recommendations for future works: provides the essential the 

conclusions coming up from this research work on the key parameters governing the elastic and 

inelastic behaviours of slender beams, and followed some recommendations for future works 
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1.1 Introduction 

Sections normally used in steel structures are I-sections, Channels or angles etc. which are 

called open sections, or rectangular or circular tubes which are called closed sections. These sections 

can be regarded as a combination of individual plate elements connected together to form the required 

shape.  The strength of compression members made of such sections depends on their slenderness 

ratio. Higher strengths can be obtained by reducing the slenderness ratio i.e. by increasing the moment 

of inertia of the cross-section. Similarly, the strengths of beams can be increased, by increasing the 

moment of inertia of the cross-section. For a given cross-sectional area, higher moment of inertia can 

be obtained by making the sections thin-walled. As discussed earlier, plate elements laterally supported 

along edges and subjected to membrane compression or shear may buckle prematurely.   Therefore, 

the buckling of the plate elements of the cross section under compression/shear may take place 

before the overall column buckling or overall beam failure by lateral buckling or yielding. This 

phenomenon is called local buckling. Thus, local buckling imposes a limit to the extent to which 

sections can be made thin-walled. 

1.2 Local buckling 

1.2.1 General definition 

Local buckling is a phenomenon that influences the behaviour of thin-walled structural steel 

elements in a major way and it can be the determining factor for their design in contemporary 

construction. Its occurrence prevents slender sections from attaining their full capacity, greatly 

diminishes their load bearing capability and should be completely avoided to ensure the safety and 

serviceability of steel structures.   Also, local buckling has the effect of reducing the load carrying 

capacity of columns and beams due to the reduction in stiffness and strength of the locally buckled 

plate elements. Therefore, it is desirable to avoid local buckling before yielding of the member. It is 

important to point out that most of the hot rolled steel sections have enough wall thickness to eliminate 

local buckling before yielding.  However, fabricated sections and thin-walled cold-formed steel 

members usually experience local buckling of plate elements before the yield stress is reached. 

1.2.2 Effect of local buckling on structures 

Local buckling prevents the development of plastic hinges with such rotation capacity for 

cross-sections of higher classes and, unless computationally demanding shell elements are used, 

elastic analysis is required. For cross-sections liable to buckle locally, special precautions need to 

be taken in design. However, it should be remembered that local buckling does not always spell 

disaster. Local buckling involves distortion of the cross-section. 

1.2.3 Types of local buckling 

Some kinds of local buckling can be mention as follows: 
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• Local buckling exhibit local deformation of outstand e.g. a flange of I beam  

• Local buckling occurs when the flange outstands to thickness ratio (b/tf) is high Called flange buckling 

• The web is also subjected to compressive stresses from bending with a limiting to d/tw ratio beyond 

which web will buckle even though the axis of the axis remains straight called web buckling 

Consider an I-section column, subjected to uniform compression. The plates supported on 

three sides (outstands) have a buckling coefficient k roughly one-tenth that for plates supported on all 

four sides (internal elements). Therefore, in open sections such as I- sections, the flanges which are 

outstands tend to buckle before the webs which are supported along all edges. Further, the entire 

length of the flanges is likely to buckle in the case of the axially compressed member under 

consideration, in the form of waves. On the other hand, in closed sections such as the hollow 

rectangular section, both flanges and webs behave as internal elements and the local buckling of the 

flanges and webs depends on their respective width-thickness ratios. In this case also, local buckling 

occurs along the entire length of the member and the member develops a „chequer board‟ wave pattern 

Figure. 1.2 (b) and Figure 1.2. 

 

(a) 

 

(b) 

Figure 1.1 Local buckling of compression members 
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Figure 1.2 Experimental local buckling in flanges and web of steel member 

Normally, the bending moment varies over the length of the beam and so local buckling may 

occur only in the region of maximum bending moment. Local buckling has the effect of reducing 

the load carrying capacity of columns and beams due to the reduction in stiffness and strength of the 

locally buckled plate elements. Therefore, it is desirable to avoid local buckling before yielding of the 

member. Most of the hot rolled steel sections have enough wall thickness to eliminate local buckling 

before yielding.  However, fabricated sections and thin-walled cold-formed steel members usually 

experience local buckling of plate elements before the yield stress is reached. 

1.3 Section classifications 

1.3.1 General 

Structural analysis of steel frames is typically performed using beam elements. Since these 

elements are unable to explicitly capture the local buckling behaviour of steel cross-sections, 

traditional steel design specifications use the concept of cross-section classification to determine the 

extent to which the strength and deformation capacity of a cross-section are affected by local buckling. 

 In the case of beams, the compression flange behaves as a plate element subjected to uniform 

compression and, depending on whether it is an outstand or an internal element, undergoes local 

buckling at the corresponding critical buckling stress. However, the web is partially under 

compression and partially under tension. Even the part in compression is not under uniform 

compression. Therefore, the web buckles as a plate subjected to in- plane bending compression.  

1.3.2 Objectives of the classification 

- To determine strength of the structural steel component, it requires the designer to consider the 

cross-sectional behaviour and the overall member behaviour. 

- Purpose of classification: to identify the extent to which the resistance and rotation capacity of cross 

sections is limited by its local buckling resistance. 

- Clause 5.5.1 and 6.2 cover the cross-sectional aspects of the design process. 

https://www.sciencedirect.com/topics/computer-science/classification
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1.4 Classification of cross sections to codes 

1.4.1 Principles 

It is useful to classify sections based on their tendency to buckle locally before overall failure 

of the member takes place. There is no shift in the position of the cross-section as a whole as in 

global or overall buckling. In some cases, local buckling of one of the elements of the cross- section 

may be allowed since it does not adversely affect the performance of the member as a whole. In the 

context of plate bucking, it was pointed out that substantial reserve strength exists in plates beyond the 

point of elastic buckling. Utilization of this reserve capacity may also be the objective of design. 

Therefore, local buckling may be allowed in some cases, provided due care is taken to estimate the 

reduction in the capacity of the section due to it and the consequences are clearly understood. 

1.4.2 Classification process 

The classification process of a cross section depends on the following parameters: 

1 width to thickness ratio c/t of the parts subjected to compression (clause 5.5.2(3)), 

2 type of element (internal part or an outstand part), 

3 the applied internal forces, 

4 the steel grade. 

As the plate elements in structural sections are relatively thin compared with their width, when 

loaded in compression (as a result of axial loads and/or from bending) they may buckle locally. 

The disposition of any plate element within the cross section to buckle may limit the axial load 

carrying capacity, or the bending resistance of the section, by preventing the attainment of yield. 

Avoidance of premature failure arising from the effects of local buckling may be achieved by limiting 

the width-to-thickness ratio for individual elements within the cross section. 

 

Figure 1.3 Internal or outstand elements EC3 

1.4.3 Parameters affecting the classification 

In the design of steel structures, classification of steel section is fundamentally important as it 
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determines many basic properties of the section as well as how the section resistances are calculated in 

many design guidelines. 

The cross-section of most structural members is considered as an assemblage of individual parts. As 

these parts are plate elements and are relatively thin, they may buckle locally when subjected to 

compression (local buckling). In turn, this may limit the compression resistance and the bending 

resistance. This phenomenon is independent of the length of the member and hence is termed local 

buckling. It is dependent upon a number of parameters:  

The following are of particular importance:  

 Width to thickness ratio of the individual compression elements. This is often termed the aspect 

ratio. Wide, thin compression elements are more prone to buckling.  

 Support conditions: This is dependent upon the edge restraint to the individual compression element. 

If the compression element is supported by other elements along both edges parallel to the direction of 

the member, then it is called an internal part as both edges are prevented from deflecting out of plane. 

If this condition only occurs along one edge, it is said to be an outstand part as the free edge is able to 

deflect out of plane. Each half of the flange of an I section is an outstand part; the web is an internal 

compression part.  

 Yield strength of the material: The higher the yield strength of the material, the greater is the 

likelihood of local buckling before yielding is reached.  

 Stress distribution across the width of the plate element: The most severe form of stress 

distribution is uniform compression, which will occur throughout a cross-section under axial 

compression or in the compression flange of an I section in bending. The web of an I section under 

flexure will be under a varying stress, which is a less severe condition. This is because the maximum 

compressive stress will only occur at one location and the stress level will reduce across the width of 

the element, possibly even changing to a tensile value. 

1.4.4 Classification to Eurocode 3 

In EC3 code, cross-sections are placed into one of four behavioural classes depending upon the 

material yield strength, the width to thickness ratios (b/tf or d/tw) of the individual compression parts (e.g. 

web and flanges) within the cross-section and the loading arrangement.  In the Eurocode 3 (EC3), four 

classes of section are defined namely: class 1 (Plastic); class 2 (compact), class 3 (semi-compact) and 

class 4 (slender). The use of plastic design methods is restricted to Class 1 cross-sections, which 

possess sufficient rotation capacity for plastic hinges to develop and a collapse mechanism to form. 

According to clause 5.5.2(1), four classes of cross sections are defined, depending on their rotation 

capacity and ability to form rotational plastic hinges:  
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 Class 1 cross sections are those which can form a plastic hinge with the rotation capacity 

required from plastic analysis without reduction of the resistance;  

Class 2 cross sections are those which can develop their plastic resistance moment, but have 

limited rotation capacity because of local buckling;  

Class 3 cross sections are those in which the stress in the extreme compression fibre of the 

steel member, assuming an elastic distribution of stresses, can reach the yield strength. However, local 

buckling is liable to prevent development of the plastic resistance moment;  

Class 4 cross sections are those in which local buckling will occur before the attainment of 

yield stress in one or more parts of the cross section.  

The bending behaviour of members with cross sections of classes 1 to 4 is illustrated in Figure 

1.2, where Mel and Mpl are, respectively, the elastic moment and the plastic moment of the cross 

section.  

The classification of a cross section depends on the width to thickness ratio t c of the parts 

subjected to compression (clause 5.5.2(3)), the applied internal forces and the steel grade. Parts subject 

to compression include every part of a cross section which is either totally or partially in compression 

under the load combination considered (clause 5.5.2(4)).  

According to EC3, the classification of a cross section is based on its maximum resistance to the type 

of applied internal forces, independent from their values. This procedure is straightforward to apply for 

cross sections subject to compression forces or bending moment, acting separately. However, in the 

case of bending and axial force, there is a range of M-N values that correspond to the ultimate 

resistance of the cross section. Consequently, there are several values of the parameter (limit for 

classes 1 and 2) or the parameter (limit for class 3), both being dependent on the position of the neutral 

axis. 

 

Figure 1.4 Cross section behaviour in bending EC3. 
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Table 1.1 summarises the classes in terms of behaviour, moment capacity and rotational 

capacity. 

 

 

 

The moment resistances for the four classes defined above are:  

 for Classes 1 and 2: the plastic moment (Mpl= Wpl. fy) , 

 for Class 3: the elastic moment (Mel= Wel. fy) , 

 for Class 4: the local buckling moment (Mo< Mel). 
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Table 1.2 Maximun width –to-thickness rations for internal comprassion parts as per EC3 
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Table 1.3 Maximun width –to-thickness rations of flanges as per EC3 
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Table 1.4 Maximun width –to-thickness angles and tubular sections as per EC3 

 

 

Table 1.5 Outstand compression elements as per EC3 
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1.4.5 Features of class 4 sections  

In calculating the effective geometrical properties for Class 4 sections, and as already 

mentioned, it is assumed that parts of the area under compression due to local instability phenomena 

do not have any resistance (lost area): typically, the compressed portions of the cross-sections, which 

have to be neglected for the resistance checks, are the parts close to the free end of an outstand flange 

or the central part of an internal compressed element. 

Furthermore, the effects of local plate buckling usually control the load carrying capacity of 

thin-walled sections, denominated as class 4 sections in EC3. Local plate buckling is taken into 

account by effective cross-section properties. The values Aeff and Weff are calculated each for the 

relevant loading case only. For example, Aeff is calculated under the assumption that an axial force N is 

present only. 

United States Provisions for Steel Design 

The main specification to apply for the design of steel structures in United States is 

ANSI/AISC 360-10 „Specification for Structural Steel Buildings‟ that addresses steel constructions as 

well as composite constructions: steel acting compositely with reinforced concrete. This specification 

states design requirements (stability and strength) for steel members and composite constructions, 

design of connections, fabrication and erection, Quality Control and Quality Assurance. 

Differently from Eurocodes, AISC 360-10 allows use of the semi-probabilistic limit state 

method as well as the working stress (allowable stress) design method. The first method is called Load 

and Resistance Factor Design (LRFD) and the second one ASD. The two methods are specified as 

alternatives and the ASD method is maintained for those who have been using it in the past (senior 

engineers), before LRFD method was introduced. 

Very useful tools for the designer are the AISC manuals: mainly the AISC 325 Steel 

Construction Manual and AISC 327 Seismic Design Manual, which discuss very interesting design 

examples to help in design activity. 

 

Figure 1.5 Moment Capacities of Sections AISC as per 2016 
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As already mentioned, AISC 360-10 addresses classification of cross-sections in Chapter B, 

Section B4; the code deals with members subjected to axial load and members subjected to bending in a 

different way: 

 Members subjected to axial load are distinguished as non-slender or slender; 

 Members subjected to flexure are distinguished as compact, non-compact or slender. 

The classification for members subjected to axial load and bending is absent in the US 

approach. 

Classifications criteria are listed in Table B4.1.a of AISC specifications (reproduced in Table 

4.4a) for compressed members and in Table B4.1b (reproduced in Table 4.4b) for members in bending. 

Classification criteria are based, as in the EC3 code, on steel grade and on width-to-thickness 

ratios for stiffened elements (elements supported along two edges parallel to the direction of the 

compression force, typically webs of I- or C-shaped sections) and unstiffened elements (elements 

supported along only one edge parallel to the direction of the compression force, typically flanges of 

I- or C-shaped sections). 

AISC code defines: 

(a) for members subjected to axial load: 

λr, that is width-to-thickness ratio that defines non-slender/slender limit; 

(b) for members subject to flexure: 

λp, that is width-to-thickness ratio that defines compact/non-compact limit; 

λr, that is width-to-thickness ratio that defines non-compact/slender limit. 

It should be noted that: 

 US flange width is one-half of full flange width, while in EC3 it is the outstanding part of the flange 

(one-half of full flange width less one-half of web thickness less the fillet or corner radius); 

 US web width of rolled sections, as in EC3 code, is the clear distance between flanges less the fillet or 

corner radius at both flanges; 
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Table 1.6 Width-to-thickness ratios for members subject to axial compression (from Table B4.1a 

of AISC 360-10) 
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Table 1.7 Width-to-thickness ratios for members subject to flexure (from Table B4.1b of AISC 

360-10). 
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2.1 General 

Historically, buckling of structural members have long been recognized as a potentially 

dangerous failure mode. Buckling of columns was first brought to attention by Euler (1744) more than 

two hundred years ago. Bryan (1891) first introduced the theoretical work on the elastic buckling of 

plates. He presented how the elastic buckling of plates could be applied to the sides of a ship. It was 

quickly realized that the buckling behaviour of a plate was quite different from that of a column. For a 

column, buckling terminates the ability of a member to resist axial load, and the buckling load is thus 

the failure load of the member. However, this might not be the behaviour for plate elements. Most of 

the structural plate elements can, subsequent to reaching the buckling load, continue to resist 

increasing axial loads.  These structural plate elements do not fail until a load considerably in excess of 

the buckling load. In essence plate elements possess substantial post-buckling strength. The buckling 

load of a plate is therefore not the failure load.  Also, the failure load of a structural member made up 

with these plate elements may not correspond to the local buckling of its plate elements. Thus, one 

must determine the load-carrying capacity of a plate or a structural member made of plate elements by 

considering the post-buckling behaviour. 

2.2 Concept of stability 

The Stability is one of the most critical ultimate states for steel structures during the 

construction and during their lifetime. The main objective and the most difficult challenges of 

structural stability is to determine the critical load under which a structure loses its stability. Due to 

their high strength, steel beams are characterized by small thicknesses of section walls, which leads to 

various forms of stability losses. Structural stability problems have substantial effects on the design 

steps of steel structures. Stability is a potent issue in the design of steel structures which may cause 

serious structural failure. The stress at which buckling occurs depends on a variety of factors ranging 

from the dimensions of the member to the boundary conditions to the properties of the material of the 

member. Determining the buckling stress is a fairly complex undertaking [Erath, S. (2020)]. 

2.3 Stability analysis 

In a broad sense, the purpose of analysis of stability of a structure is to determine the loads on a 

structure, which leads to the appearance of new forms of equilibrium. These forms of equilibrium 

usually lead to collapse of a structure and corresponding loads are referred as critical ones. The 

stability of a structure will be provided if acting loads are less than the critical ones. While, the 

buckling analysis is to determine the critical load (or critical loads factor) and corresponding buckling 

mode shapes. 

A study of the stability of structures is aimed at calculating the elastic critical load and 

deducing appropriate design loads for the compression elements, to ensure that buckling does not 
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occur. This is generally a complex procedure although the techniques can be built up from the matrix 

analysis methods presented in later chapters. Fortunately, the stability analysis of a structure can be 

considered subsequent to the linear elastic analysis. Further, in many cases Codes of Practice offer 

sufficient guidance for a stability analysis not to be necessary. Nevertheless, important structures are 

subjected to stability analysis and the computational effort required is continually being reduced by 

developments in computer applications [Erath, S. (2020)]. 

2.4 General definition of stability 

Broadly speaking, stability can be defined as the ability of a physical system to return to 

equilibrium when disturbed slightly. For a mechanical system, Dirichlet stated: "the equilibrium of a 

mechanical system is considered stable if, when moving the points of the system from their 

equilibrium position with an infinitesimal quantity with a low initial speed, the displacement of 

different points of the system remain, during the displacement, contained within the limits imposed 

[Erath, S. (2020)]. 

2.5 Stability theories of thin-walled steel structures 

By approaching thin-walled structures, the consideration of inherent stability phenomenon is 

imperative. Over the past century, compressive research works have been invested to help predict the 

critical buckling load limits for different types of structures. The theoretical and experimental research 

indicated the effect of geometric imperfections and boundary conditions can altered limits of the value 

of the buckling load.  

Stability theories have been developed in order to determine the conditions via which a 

structure, in equilibrium, ceases to be stable. Stability is essentially an extreme geometrical property of 

structures, which can be found for large slenderness, flat thin plates or cylindrical thin shells. 

Normally, systems are considered with a variable parameter which typically represents the external 

load (mechanical), but which can also be temperature (thermal buckling) or other types of loadings. 

For each limit load value, there is only one non-buckling configuration [A.Labed]. 

It is possible that systems undergo large deformations before even the elastic limit of the 

material is reached, especially in the case of structures with Class 4 sections as a result of the local 

buckling. However, this situation is not dangerous for the system when the deformations do not 

contribute to the increase of mechanical stresses. The system is still elastically stable. On the other 

hand, and despite the fact that the elastic limit is not yet reached, it does exist a situation where large 

deformations contribute to the increase of internal stresses, which generally leads to the ruin of the 

system and then elastically unstable. 

Critical stability loads can be determined using:   

- The classical resolution of differential equations of equilibrium. 
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- Approaches based on energy methods. 

It is worth to remind that the resolution of differential equations of equilibrium can only be 

accomplished for simple buckling problems. For more complicated structures situations, it is common 

to use the alternative energy methods, iterative methods can also be utilized to solve stability 

problems. Hypotheses on the nature of the deformation, the elastic system can be approached using 

suitable and modifiable parameters or generalized coordinates, determined in such a way as to meet the 

equilibrium conditions.   

2.6 General on the instability Modes in steel structures 

As explained in the resistance of a steel member subjected to axial compression depends on the 

cross-section resistance or the occurrence of instability phenomena. As steel members usually have 

high slenderness the design for compression is governed by the instability phenomena such as: 

• Flexural buckling 

• Torsional buckling 

• Flexural torsional buckling 

• Lateral torsional buckling 

The buckling resistance should be evaluated according to the relevant buckling mode and 

relevant imperfections of real members, as described in the following sections. 

Flexural Buckling 

Flexural buckling is a phenomenon that occurs about the axis of the highest slenderness ratio 

and the smallest radius of gyration. It can happen in any member subjected to compression, which in 

the end will lead to deflection of the member. An illustration of the flexural buckling can be seen in 

Figure1.3. 

Torsional Buckling 

Torsional buckling is a form of buckling occurring about the longitudinal axis of a member, 

where the centre of the member remains straight while the rest of the section rotates. Flexural 

Torsional Buckling 

According to [da Silva et al., 2010], flexural torsional buckling consists of the simultaneous 

occurrence of torsional and bending deformations along the axis of the member. 

2.7 Lateral torsional buckling 

2.7.1 General 

Open section beams bent in their stiffer principle plane are susceptible to a type of buckling 

deflecting sideways and twisting, the so-called lateral instability, lateral-torsional or flexural-torsional 

instability. In particular, this form of instability is due to the compression force acting on a part of the 
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profile causing instability with lateral deflection partially prevented by the tension part of the profile, 

which generates twist.  

Design standards consider lateral–torsional buckling as one of the ultimate limit states that 

must be checked for steel members in bending, when relevant. The buckling resistance assessment is 

usually based on appropriate buckling curves and requires the computation of the elastic critical 

moment, which is strongly dependent on several factors such as, the bending moment distribution, the 

restraints at the end supports and in correspondence of the load points, the beam cross-section, the 

distance between the load application point and the shear centre 

 2.7.2 Definition                                                                                                                 

Lateral Torsional Buckling (LTB), is a mode of buckling that occurs when a flexural member 

undergoes both lateral deflection and twisting as illustrated in Fig. 1. However, the complex nature of 

the LTB phenomenon makes it difficult to embrace all the affecting factors and assumptions 

responsible for that phenomenon. In fact, the LTB resistance capacity of a slender section depends 

upon a number of factors. These several factors which are believed to influence the resistance to LTB 

such as : the distance between lateral and /or torsional braces, the type and position of the applied 

loads, the restraints at the ends and at intermediate positions along the beam axis, the material 

properties, the magnitude and distribution of residual stresses, initial imperfections of geometry, 

changes in the cross section (steps or taper in the cross section, holes), and interaction between local 

and overall buckling.  

When a beam is laterally braced at discrete points along its length and is loaded such that it is 

bent about its strong axis, the possibility that the beam will buckle laterally and with a torsion before 

reaching its plastic moment or local buckling moment must be investigated. Figure 2.1 shows moment 

resistance versus unbraced length of a flexural member.  

 

Figure 2.1 Lateral-torsional buckling solution space  
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2.7.3 Theory of LTB 

          Traditionally, the theoretical study of LTB mentioned phenomenon starts for the basic case 

representing members with rectangular section.  A particular interest of slender sections, I-shaped of 

classes 3 and respectively, in which the ratio of Iy/ Iz is large as they are mainly concerned by the LTB. 

These type of section are very common in the steel structures having large span. The manner in which 

the point of application of loads in the top flange , the shear centre or at the lower flange, affects 

considerably the global  behaviour of flexural members in their resistance with regard to the lateral-

torsional buckling. In order to understand the real behaviour (inelastic) of the so-called real beams, the 

initial imperfection must be considered.  

The following assumptions are considered to understanging the LTB phenomenon in the 

particular case of I-shaped steel sections:  

-  The beam is prismatic. 

-  The beam is initially undistorted. 

-  The member cross section retains its original shape during buckling. 

-  The externally applied loads are conservative. 

-  The global behaviour is elastic (no yielding).  

 -The analysis is limited within the elastic limit. 

-  The transverse load passes through the axis of symmetry in the plane of 

bending. 

-  Residual stresses are not considered. 

-  Simply supported vertically and laterally bouandring conditions. 

In order to determine the lateral torsional buckling capacity of beams, different structural steel 

design standards (e.g., CAN-CSA S16-14 (2014), AISC-ANSI 360-10 (2010), AS 4100 (1998), and 

Eurocode 3 (2005)) provide different algebraic equations. However, in a general sense, all of them 

start with calculating the elastic LTB resistance Mu of a simply supported beam under uniform 

moments. 

The finite element method is a numerical technique used to solve problems that may be 

otherwise difficult to solve analytically. The basic concept behind the finite element method is to 

model a continuum with infinite degrees of freedom and as a system of elements having finite degrees 

of freedom.  These elements are assembled to accurately approximate the behavior of the entire 

system. The next point will be the causes of failures for beams is the lateral-torsional buckling LTB 

either elastically or inelastically. A beam can fail by reaching Mpl, and a plastic hinge will be created. 

The failure can be one of the three types of bucklings:  LTB  is the first reason for failur and also the 

flange local buckling (FLB) in elastic or inelastic manners. 
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2.8 Parameters effecting the design background of members subjected to LTB  

2.8.1  General 

           The buckling is essentially flexure behaviour. Due to their high strength, steel beams are 

characterized by small thicknesses of section walls, which leads to various forms of stability loss. 

Structural stability problems have substantial effects on the design steps of steel structures. Stability is 

a potent issue in the design of steel structures which may cause serious structural failure. Lateral-

torsional buckling is a kind of failure that occurs when the in-plane bending capacity of a member 

exceeds its resistance to out-of-plane lateral buckling and twisting.  Physically, the phenomenon of 

LTB in which the overall behaviour of steel member changes from initially in-plane bending to 

combined a large lateral displacement and twist angle due to an application of load on an unsupported 

beam.  

2.8.2 LTB codes provisions 

The elastic stability of flexural members has been an important consideration in civil 

engineering design since the beginning of the 20th century. In fact, International design codes in 

United States, Australia, Europe and Canada contain relative provisions for designing flexural 

members considering the limit state. Therefore, LTB is one of the most important stability problems 

and may often be a controlling parameter in steel beam design. Various design standards and codes 

recommend methods in order to calculate lateral torsional buckling of steel members. Critical elastic 

lateral torsional buckling moment capacities for I-shaped steel members are considered in various 

standards and codes: AISC 360-10, EC3, BS 5950 etc.  

With regard of LTB, the effect of moment distribution between supports and the effect of load 

height with respect to the shear centre, the beam being or not laterally restrained etc. The LTB can 

cause partial failure or whole failure in the structure. The stress at which buckling occurs depends on a 

variety of factors ranging from the dimensions of the member to the boundary conditions to the 

properties of the material of the member. 

2.8.3 Effect of moment distribution                

To designate the effects of moment distribution between supports codes used an expression 

termed the equivalent uniform moment factor. This factor is an attempt at modifying the basic strength 

of a loaded member by referring its strength versus the strength of a member loaded with a constant 

moment distribution. The factors used by these codes are inaccurate for some loading circumstances 

on both the conservative and unconservative ends of capacity prediction. This issue arises due to the 

broad range of moment distributions for which the factor is intended to predict capacities. Current 

efforts to improve the effectiveness of these moment factors involve producing expressions for specific 

loading types. Although extensive effort has been put into producing solutions for possible 
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distributions, many loading scenarios remain uncharacterized. Without solutions for a comprehensive 

range of load distributions, it is unlikely design codes will alter their methods and use moment factors 

tailored to specific load distribution types. 

2.8.4 Effect of load position in the cross section                

The effects of load locations are characterized in the design codes that consider this effect by 

modifying the members‟ effective length. In the case of a sagging bending moment, when a member is 

loaded below its shear centre, the effective capacity of the member increases because the load acts to 

correct the torsional displacement tendency (tension zone). When the load is above the shear centre, 

however, the capacity decreases significantly as the load produces additional destabilizing forces in the 

torsional direction.  

         It is worth to recall that neglecting the fact of actual location of the applied load, the design 

codes at risk of producing weak structural components and therefore entire the entire structures are 

structurally deficient during critical phases of their life. The most significant of these phases being the 

construction period, as many of the members will be loaded in a standalone temporary fashion where 

they do not have suitable lateral bracing to ensure negation of the load height effect. 

2.9 Lateral-Torsional Buckling according to EC3 

2.9.1 Cross-section classification 

 Basis: The role of cross section classification is to identify the extent to which the resistance 

and rotation capacity of cross sections is limited by its local buckling resistance as shown in (Figure 

4.1). 

 Classification: Four classes of cross-sections are defined, as follows: 

- Class 1 cross-sections are those which can form a plastic hinge with the rotation capacity 

required from plastic analysis without reduction of the resistance. 

- Class 2 cross-sections arc those which can develop their plastic moment resistance, but 

have limited rotation capacity because of local buckling. 

- Class 3 cross-sections are those in which the stress in the extreme compression fiber of the 

steel member assuming an elastic distribution of stresses can reach the yield strength, but 

local buckling is liable to prevent development of the plastic moment resistance. 

- Class 4 cross-sections are those in which local buckling will occur before the attainment of 

yield stress in one or more parts of the cross-section. 
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Figure 2.2 Classification of cross-section [EN 1993-1-1:2005] 

 Classification criteria 

- For the particular case of Class 4, the cross sections effective widths may be used to make the 

necessary allowances for reductions in resistance due to the effects of local buckling, [EN 1993-1-5, 

4.4]. 

- The classification of a cross-section depends on the width to thickness ratio of the parts subject to 

compression. 

- Compression parts include every part of a cross-section which is either totally or partially in 

compression under the load combination considered. 

- The various compression parts in a cross-section (such as a web or flange) can, in general, be in 

different classes. 

- A cross-section is classified according to the highest (least favourable) class of its compression 

parts. 

 Particular remarks  

Alternatively, the classification of a cross-section may be defined by quoting both the flange 

classification and the web classification. The limiting proportions for Class 1, 2, and 3 compression 

parts should be obtained from Table 4.1. A part which fails to satisfy the limits for Class 3 should be 

taken as Class 4. Except as given in (10) Class 4 sections may be treated as Class 3 sections if the 

width to thickness ratios are less than the limiting proportions for Class 3 obtained from (Table 4.2) 

when £ is increased by √
  

   

       
 , Where         is the maximum design compressive stress in the part 

taken from first order or where necessary second order analysis. 

However, when verifying the design buckling resistance of a member using section 6.3 [EN 

1993-1-1:2005], the limiting proportions for Class 3 should always be obtained from Tables  

Cross-sections with a Class 3 web and Class I or 2 flanges may be classified as class 2 cross 

sections with an effective web in accordance with 6.2.2.4 [EN 1993-1-1:2005]. 

Where the web is considered to resist shear forces only and is assumed not to contribute to the bending 

and normal force resistance of the cross section, the cross section may be designed as Class 2, 3 or 4 

sections, depending only on the flange class.  
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2.9.2 Uniform members in bending: buckling resistance 

In order to analyses buckling effect on a structure subjected to transverse loading, and  

according to section EN-1993-1, where no lateral-torsional buckling checking is needed, two main 

cases are considered:  

1. Beams with sufficient restraint to compression flange, which are not susceptible to lateral-

torsional buckling. 

2. Beams with particular cross-section shape, such as square or circular hollow sections, 

fabricated circular tubes or square box sections are not susceptible to lateral-torsional buckling. 

According to  EN-1993-1-1, lateral-torsional bukling checking for a member laterally unrestrained 

subject to major axis bending, should be verified as the follow: 

  

                                      
   

     
                                                                                        

Where,              MEd                   is the design value of the moment 

                          Mb, Rd                is the design buckling resistance moment 

If the  ratio 
   

     
 ≤ 1.0 then Mb, Rd is the highest value that section can reach, so MEd cannot 

exceed it.  

The design buckling resistance moment is calculated as: 

            

  

   
                                                                        

Where, Wy is the appropriate section modulus as follows: 

In which Wy is Wpl, y for Class 1 or 2 cross-sections, and Wy is Wel, y for Class 3 cross-sections.  

For Class 4 cross-sections Wy is Weff, y  

And,                 Is the partial factor for buckling resistance. 

                      Is the yield strength of the material.  

                      Is the  non-dimensional reduction factor for lateral-torsional buckling that ranges from 

0 to 1. Further details will be provided later in the chapter. 

2.9.3 Lateral-torsional buckling parameter and buckling curves 

For bending members of constant cross-section, the value of       for the appropriate non-

dimensional slenderness ̅   , should be determined from the given formulation: 

    
 

    √   
   ̅  

 
   ,                                                         

Where,        (     ( ̅      )   ̅  
 )and ranges from 0 to 1. It is a non-dimensional 

parameter.      
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      Is an imperfection factor and must be taken from Table 4.3. It is a non-dimensional parameter. 

    ̅         Is the non-dimensional slenderness, it is calculated as: 

 ̅   √
     

   
                                                                     

       Is the elastic critical moment for lateral-torsional buckling. It is based on gross cross sectional 

properties and takes into account the loading conditions. 

The Standard provides a table to determine what buckling curve we must chose and other 

recommended values that belongs to each curve (see Table 4.2 and Table 4.3). 

In addition, EN-1993-1-1 says that it is not necessary check the phenomenon for     ̅   < 0.4. Table 4.2 

Recommended values for lateral torsional buckling curves for cross-sections using for     [EN-1993-

1-1, Table 6.4]  

Table 2.1 Recommended values for imperfection factors for lateral-torsional buckling curves 

[EN-1993-1-1, Table 6.3] 

 

Table 2.2 Recommended values for lateral torsional buckling curves for cross-sections using for 

    [EN-1993-1-1, Table 6.4] 

 

 

Buckling curves: 

The graphical representation of these curves is the following one: 
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Figure 2.3 Buckling curves. [EN-1993-1-1, 2005] 

- Curve a, represents quasi perfect shapes. 

- Curve b, represents shapes with medium imperfections. 

- Curve c, represents shapes with a lot of imperfections. 

- Curve d, represents shapes with maximum imperfections. 

2.10 Elastic critical moment, Mcr   

The 3-factor formula (EC3) 

When finding the lateral-torsional buckling resistance of a beam, a certain maximum 

theoretical moment is needed which applies for the beam if it was ideal. That moment is the elastic 

critical moment, Mcr. It depends on number of factors, for example the length of the beam, the moment 

diagram, the support conditions, the stiffness of the beam about the minor axis and the torsional 

stiffness. 

The elastic critical moment is used to find the non-dimensional slenderness of a beam in the 

process of designing it according to Eurocode3. However, there is nothing stated about how to 

determine Mcr in Eurocode3.  In an earlier version of Eurocode3, the pre-standard ENV 1993-1-

1:1992, an approximating formula is presented to estimate Mcr, which gives conservative results. The 

formula is valid for beams in a major axis bending with a uniform cross section that is symmetric 

about the minor axis (ECCS 2006, p. 229). Beams in reality are not ideal. That is why a reduction 

factor must be used to find the design capacity. The formula mentioned above is often called the 3-

factor formula and is expressed as follows: 

       
      

       
[√(

  

  
)

    

   

 
           

      

 (         )
 
 (         )]                    

Where, 

C1 = factor depending on the moment diagram and the end restraints. 
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C2 = factor depending on the moment diagram and the end restraints, related to the vertical 

position of loading. 

C3 = factor depending on the moment diagram and the end restraints, related to the mono-

symmetry of the beam. 

E = Young is modulus of elasticity. 

G = shear modulus. 

It = Torsional constant. 

IW = Warping constant. 

IZ = second moment of area about the minor axis.  

L = length of the beam between points which have lateral restraints. 

KW = effective length factor which refers to end warping. 

KZ = effective length factor which refers to end rotation in plan. 

Zg = coordinate of the point of load application w.r.t the shear Centre in the z-direction. 

Zj = mono-symmetry parameter. 

Values of the factorsC1, C2, and C3 referred to as the C-factors, for the two load cases studied 

in the present theses, given by ECCS (2006) are presented in Table 4.4. Different values for the C-

factors can be found in other literature, such as in Access Steel (2010) and Access Steel (2006), where 

only KZ=KW=1 is considered and in the pre-standard ENV 1993-1-1:1992, where various load cases 

are considered but some values are overestimated as shown in Mohri et al. (2003). 

The shear modulus is calculated as follows:           
 

      
                                       (2.6) 

Where,       = Poisson‟s ratio 

The parameter Zg describes the vertical position of the PLA ??. In lateral-torsional buckling, the 

PLA has a significant influence. If the load acts on the compression flange, i.e. above the SC, the 

parameter Zg is positive and Mcr lower than for Zg=0, so the load has a destabilizing effect. If the load 

acts below the SC, like on the tension flange, the parameter Zg is negative and Mcr higher than for Zg 

=0 so the load has a stabilizing effect.  

2.11 Lateral-Torsional Buckling according to ANSI/AISC 360-16 (June 2018) 

2.11.1 Cross-section classification 

For members subject to axial compression, sections are classified as non-slender element or 

slender-element sections. For a non-slender-element section, the width-to- thickness ratios of its 

compression elements shall not exceed λr from Table 4.5(sheet 1 of 2). If the width-to-thickness ratio 

of any compression element exceeds λr, the section is a slender-element section. 
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For members subject to flexure, sections are classified as compact, noncompact or slender-

element sections. For a section to qualify as compact, its flanges must be-continuously connect to the 

web or webs, and the width-to-thickness ratios of its compression elements shall not exceed the 

limiting width-to-thickness ratios, λp, from Table 4.5(sheet 2 of 2). If the width-to-thickness ratio of 

one or more compression elements exceeds λp, but does not exceed λr from Table 4.5(sheet 2 of 2)., 

the section is noncompact. If the width-to-thickness ratio of any compression element exceeds λr, the 

section is a slender-element section.  

2.11.2 Doubly symmetric compact I-shaped members and Channels  

When Lb ≤ Lp, the limit state of lateral-torsional buckling does not apply. 

 When Lp < Lb ≤ Lr              [                
     

     
 ]                          

 When Lb > Lr                                                                                                        

where  

 Lb = length between points that are either braced against lateral displacement of the compression flange 

or braced against twist of the cross section in (mm) 

     
     

 
  
   

  
√       

  

    
 
  

   
   critical stress, ksi (MPa)                                   (2.9) 

 E = modulus of elasticity of steel = 29,000 ksi (200 000 MPa) 

 J = torsional constant, in.4 (mm4) 

 Sx = elastic section modulus taken about the x-axis, in.3 (mm3) 

 ho = distance between the flange centroids, in. (mm) 

The square root term in Equation (2.10) may be conservatively taken equal to 1.0. 

Equations (2.9) and (2.10) provide identical solutions to the following expression for lateral-torsional 

buckling of doubly symmetric sections that has been presented in past editions of this Specification: 

      

 

  
√       

  

  
                                                         

The advantage of Equations (4.8) and (4.9) is that the form is very similar to the expression for 

lateral-torsional buckling of singly symmetric sections given in Equations (2.9) and (2.10). 

 Lp, the limiting laterally unbraced length for the limit state of yielding, in. (mm), is: 

       𝑟 √
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 Lr, the limiting unbraced length for the limit state of inelastic lateral-torsional buckling, in. 

(mm), is:                     𝑟  
 

     

√   

    
 √(

  

    
)
 
     (

     

 
)
 
                             

Where  

 ry = radius of gyration about y-axis, in. (mm) 

 𝑟  
  

√    

  
                                                                                                                                 

and the coefficient c is determined as follows: 

- For doubly symmetric I-shapes           c=1                                                              (2.14) 

- For channels             
  

 
√

  

  
                                                                                 (2.15) 

Where 

 Iy = moment of inertia about the y-axis, in.4 (mm4) 

For doubly symmetric I-shapes with rectangular flanges,    
    

 
                                              

Hence, 𝑟  
  

    

   
                                                                        

rts may be approximated accurately and conservatively as the radius of gyration 

of the compression flange plus one-sixth of the web: 

𝑟   
  

√     
 
 

 𝑡 
  𝑡 

 

                                                        

User Note: All current ASTM A6 W, S, M, C and MC shapes except W21×48, W14×99, W14×90, 

W12×65, W10×12, W8×31, W8×10, W6×15, W6×9, W6×8.5 and M4×6 have compact flanges for Fy 

= 50 ksi (345 MPa); all current ASTM A6 W, S, M, HP, C and MC shapes have compact webs at Fy ≤ 

70 ksi (485 MPa) 

 

 

 

 

 

 



 

 

 

CHAPTER 3: 
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 AND HAND CALCULATIONS OF 

GEOMETRIC PROPERTIES  
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3.1 INTRODUCTION 

In this chapter full details will be provided on calculations of geometrical properties of the 

selected slender sections becoming to class 4 as per EC4. Determining the resistance (or strength) of 

structural steel components requires the designer to consider firstly the cross-sectional behaviour and 

secondly the overall member behaviour. Clauses 5.5.1 and 6.2 cover the cross-sectional aspects of the 

design process. Whether in the elastic or inelastic material range, cross-sectional resistance and 

rotation capacity is limited by the effects of local buckling.  

As this research work is devoted to the study of the elastic and inelastic buckling behaviour of 

slender section of class 4, more interest in the theoretical back ground of such type of sections will be 

discussed. 

3.2 DESIGN OF THE CROSS SECTIONS TO EC3 

3.2.1 Introduction              

In Eurocode 3, cross-sections are placed into one of four behavioural classes depending upon 

the material yield strength, the width-to-thickness ratios of the individual compression parts (e.g. webs 

and flanges) within the cross-section, and the loading arrangement.  

 Class 1 cross-sections are those which can form a plastic hinge with the rotation capacity required 

from plastic analysis without reduction of the resistance.  

 Class 2 cross-sections are those which can develop their plastic moment resistance, but have limited 

rotation capacity because of local buckling.   

 Class 3 cross-sections are those in which the elastically calculated stress in the extreme compression 

fibre of the steel member assuming an elastic distribution of stresses can reach the yield strength, but 

local buckling is liable to prevent development of the plastic moment resistance.   

 Class 4 cross-sections are those in which local buckling will occur before the attainment of yield stress 

in one or more parts of the cross-section.  

N.B The classifications from BS 5950 of plastic, compact, semi-compact and slender are 

replaced in Eurocode 3 with Class 1, Class 2, Class 3 and Class 4, respectively[De Gardner et al,2010]. 

 .3.2.2 Behavioural classes 

The moment–rotation characteristics of the four classes are shown in Figure 4.1.  

Class 1 cross-sections are fully effective under pure compression, and are capable of reaching 

and maintaining their full plastic moment in bending (and may therefore be used in plastic design). 

Class 2 cross-sections have a somewhat lower deformation capacity, but are also fully effective 

in pure compression, and are capable of reaching their full plastic moment in bending.  
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Class 3 cross sections are fully effective in pure compression, but local buckling prevents 

attainment of the full plastic moment in bending; bending moment resistance is therefore limited to the 

(elastic) yield moment.  

For Class 4 cross-sections, local buckling occurs in the elastic range. An effective cross-section 

is therefore defined based on the width-to-thickness ratios of individual plate elements, and this is used 

to determine the cross-sectional resistance. In hot-rolled design the majority of standard cross-sections 

will be Class 1, 2 or 3, where resistances may be based on gross section properties obtained from 

section tables. Effective width formulations are not contained in Part 1.1 of Eurocode 3, but are instead 

to be found in Part 1.5; these are discussed later in this section.  

It must be notated that both compression parts include every part of a cross-section which is 

either totally or partially in compression under the load combination considered.  

       The various compression parts in cross-section such as web or flange can be in different classes as 

per EC3. 

 

Figure 3.1 The four behavioural classes of cross-section defined by Eurocode 3[De Gardner et al, 

2010] 

3.3 Class 4 cross-sections according to EC3 

3.3.1 General 

For class 4 cross-sections it is assumed that parts of the area under compression due to local 

instability phenomena do not have any resistance (lost area): typically, the compressed portions of the 

cross-sections, which have to be neglected for the resistance checks, are the parts close to the free end 

of an outstand flange or the central part of an internal compressed element. It is worth to note that the 

design principles of Class 4 sections are very specific and usually more difficult than for normal 

sections. The local buckling of cross sections affects their resistance and rotation capacity and must be 

considered in design. The evaluation of the influence of local buckling of a cross section on  
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the resistance or ductility of a steel member is complex. Consequently, a deemed-to-satisfy approach 

was developed in the form of cross section classes that greatly simplify the problem. 

3.3.2 Class 4 to EC3  

Class 4 cross-sections (see clause 6.2.2.5 of EC3) contain slender elements that are susceptible 

to local buckling in the elastic material range. It is well-known that allowance for the reduction in 

resistance of Class 4 cross-sections as a result of local buckling is made by assigning effective widths 

to the Class 4 compression elements see Chapter 1.  

The formulae for calculating effective widths are not contained in Part 1.1 of Eurocode 3; instead, the 

designer is directed to Part 1.3 for cold-formed sections, to Part 1.5 for hot-rolled and fabricated 

sections, and to Part 1.6 for circular hollow sections. The calculation of effective properties for Class 4 

cross-sections is described in detail in Section 6.2.2 of this guide [De Gardner et al,2010]. 

3.3.3 Load type effect on the classification under combined bending and axial force 

Cross-sections subjected to combined bending and compression should be classified based on 

the actual stress distribution of the combined loadings. For simplicity, an initial check may be carried 

under the most severe loading condition of pure axial compression; if the resulting section 

classification is either Class 1 or Class 2, nothing is to be gained by conducting additional calculations 

with the actual pattern of stresses. However, if the resulting section classification is Class 3 or 4, it is 

advisable for economy to conduct a more precise classification under the combined loading. 

Once again, for checking against the Class 1 and 2 cross-section slenderness limits, a plastic 

distribution of stress may be assumed, whereas an elastic distribution may be assumed for the Class 3 

limits. To apply the classification limits from Table 5.2 (EC3) for a cross-section under combined 

bending and compression first requires the calculation of  (for Class 1 and 2 limits) and (for Class 3 

limits), where  is the ratio of the compressed width to the total width of an element and is the ratio of 

end stresses (Figure 3.2).  
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where cw is the compressed width of the web (see Figure 3.2) and NEd is the axial compression force; 

use of the plastic stress distribution also requires that the compression flange is at least Class 2.  

The ratio of end stresses (required for checking against the Class 3 limits) may be determined 

by superimposing the elastic bending stress distribution with the uniform compression stress 

distribution 

Design rules for verifying the resistance of structural components under combined bending and 

axial compression are given in clause 6.2.9 for cross-sections and clause 6.4.3 for members. An 

example demonstrating cross-section classification for a section under combined bending and 

compression is given below [De Gardner et al, 2010]. 

 

 

Figure 3.2. Definitions of  and for classification of cross-sections under combined bending and 

compression. (a) Class 1 and 2 cross-sections. (b) Class 3 cross-sections EC3 [De Gardner et al, 

2010] 

3.4 Principles of effective width calculation  

To determine the resistance of Class 4 cross sections subject to direct stresses by using the 

effective width method, the      𝑡 𝑣   widths of each plate element in compression are calculated 

independently. Based on these      𝑡 𝑣   widths effective effective geotrical properties of cross 

section are calculated :     ,      and      are calculated (see Fig.3.3 , Fig.3.4 , Fig3.5).  

Compression : For compression elements the effective widths are determined by taking into 

account the combined effect of shear lag and plate buckling. 

 Tension : For tension elements,      𝑡 𝑣   widths come only from shear lag effects. Tension 

elements without shear lag effects are taken as fully effective. The effective cross section is then 

treated as an equivalent Class 3 cross section, with the assumption of a linear elastic strain and stress 

distribution over the reduced cross section. The ultimate resistance is reached with the onset of 

yielding in the centre of the compressed plate located furthest from the centroid of the cross section.  
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The maximum stress may be calculated in the mid-plane of the critical plate – for I girders, for 

instance in the mid-plane of flanges (see Fig.4.3). 

Combined loadings: If axial force and bending moment act simultaneously, the calculation of 

effective widths may be based on the resulting stress distribution. EN 1993-1-5 allows a simplified 

approach where      is calculated only for stresses due to pure compression and      only for 

stresses due to pure bending. 

 In non-symmetrical cross sections subject to an axial force    , a shift    occurs (of the centroid G´ 

of the effective area      relative to the centre of gravity of the gross cross section G, see Fig.4.4). 

This shift results in an additional bending moment  M =       that should be taken into account in 

the cross-section verification (see section 2.4.6). According to clause 4.3(3) of EN 1993-1-5 the shift 

   (see Fig3.5) of the centre of gravity due to pure bending can be disregarded in the calculation of 

 M, even if the cross section is subject to the combination of axial force and bending moment.  

N. B. The following material including figures is mainly taken from Beg et al 2012, see bibliography 

[De Beg, Darko et al, 2012]  

 

 

Figure 3.3: Effective cross section [De Beg, Darko et al, 2012]  

 

Figure 3.4: Class 4 cross sections in pure compression [De Beg, Darko et al, 2012]  
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Figure 3.5: Class 4 cross section in pure bending [De Beg, Darko et al, 2012]  

3.5 Iterative procedure 

3.5.1 General 

Generally, the calculation of      𝑡 𝑣   widths requires an iterative procedure shown in Fig. 

4.6 that ends when the differences between two steps are sufficiently small. 

 

Figure 3.6 Determination of effective area by iterative procedure [De Beg, Darko et al 

,2012] 

The first iteration starts with the stress distribution on the gross cross section AG1. The 

effective area for the second iteration       is calculated from this stress distribution and the effective 

area for the third iteration Aeff3 from the stresses on     .  

3.5.2 Step 

For I-section and box cross section in bending EN 1993-1-5 allows a simplified approach that 

ends in two steps.  

In the first step: effective widths in flanges (if they are in Class 4) are determined from the 

stress distribution on the gross cross section.  

In the second step: the stresses are determined on the cross section composed of the 

     𝑡 𝑣   area of the compressed flanges and the gross areas of the web and the tension flanges. The 

     𝑡 𝑣   width in the web is calculated based on these stresses and this is taken as the final result.  
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3.5.3 Cases of stages of construction    

When different stages of construction have to be considered, which is a normal case in the 

design of composite bridges, the following simplified approach proposed in a Note to clause 4.4 (2) of 

EN 1993-1-5 may be used:  

  In all relevant construction stages (e.g. concreting of the slab, normal use of a bridge) the stresses 

should be calculated on the gross cross section of the web and effective cross section of the flanges 

(plate buckling and/or shear lag), when relevant.  

 The stresses from different construction stages are summed up and used to determine a single effective 

cross section of the web that is used for all construction stages.  

 Finally, the stresses for individual construction stages are calculated on corresponding effective 

cross sections and summed up to get the final cumulative stresses [De Beg, Darko et al ,2012]. 

3.6 Effective width implanted in EC3 method for section properties calculation 

3.6.1. An overview 

It is well known that a side supported thin steel plate with aspect ratio   = a/b   1 (Fig 3.7) 

subject to direct loading along in-plane direction tends to buckle at a stress level  cr less than the yield 

stress fy.  However, after  cr is reached, resistance of the plate is not completely exhausted and it shall 

have sufficient post-buckling strength due to stress redistribution. According to the ultimate resistance 

of the plate will be reached after yielding occurred at the two supported sides and this will result in 

final a non-uniform stress distribution  act<fy  (Fig. 3.8). This phenomenon is commonly known as 

“plate like buckling” and is most obvious for geometrical prefect elastic plate but less remarkable for a 

realistic imperfect inelastic plate. It is also well known that as the value of    reduces, the post-

buckling resistance of the plate will diminish gradually and the 2D plate like buckling behaviour of the 

plate will change back to the 1D buckling behaviour like a column. Obviously, the non-uniform 

distribution of   act is not ideal for design of thin plate subjected to direct stress. Hence, in EC3 Part 1-

5, two different design methods, namely the effective width method (Fig. 3.8b) and the effective stress 

(Fig. 3.8c) method are suggested. 

In summary, both methods aim to employ uniform stress block for design. While the effective 

width method reduces the gross width to an appropriate effective width      =     < b that subjected 

to the constant yield strength f for design (Fig. 4.8b), the effective stress method maintains a uniform 

stress  equ = f <f along the whole width. The reduction factors ρ  and χ are calculated based on the 

principle of equivalent in-plane force such that 
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For the effective width method :  (3.1) 

For the effective stress method  :  (3.2) 

It is obvious that for a cross section consisting of a single plate, the two methods are equivalent 

to each another such that (Fig. 3.8b and Fig. 3.8c) bfy=bfy and =. However, for cross sections that 

consist of more than one plate element (e.g. an I section), the two methods are not equivalent to each 

another and the effective stress method are generally more conservative. 

It should be noted that EC Part 1-5 can be considered as largely “biased” towards the effective 

width method as Sections 4 to 7 (16 pages in length) of EC3 Part 1-5 were written based on this 

method while only Section 10 (2 pages in length) was devoted to describe the design approach if the 

effective stress method is employed. Hence, in the design of thin-walled structural components like 

plate girder and box section using EC3, the calculation of effective width of a Class 4 section is one of 

the most important steps during the section properties calculation [De Lee, Chi-Kinget, 2019]. 

 

 

Figure 3.7Failure of plate with =a/b >1 subject to in-plane direct loading [De Lee, Chi-Kinget, 

2019] 



Manel Dahlouz                                                                                                                       CHAPTER3 

Effective length approach and hand calculations of geometric properties Page 37 
 

 

 

Figure 3.8 Actual stress distribution at failure, effective width and stress methods [De Lee, Chi-

Kinget, 2019] 

3.6.2. Effective width calculation procedure 

In EC3 Part 1-5, for a given plate element (either supported on a single or on both sides) the 

effective width reduction factor  is solely based on two parameters: (i)  ̅ /t, the appropriate width ( ̅) 

to the plate thickness (t) ratio of the element and (ii) the stress ratio at the two ends  =   /   

where      In general,  ̅ is the appropriate clear width between the supports of the plate element.  ̅ 

is always slightly less than b, the overall width of the plate element, and should be calculated 

according to the section classification table (Table 5.2) of EC3 [1] and Section 4.4 of [2]. Figs. 3 and 4 

respectively show the possible stress distributions for an internal compression element (i.e. the plate is 

supported at both ends) and an outstanding compression element (i.e. only one end of the plate is 

supported). Note that in Fig. 3 and Fig. 4, it is assumed that the stress distribution is linear and 

compressive stress is taken as positive. Furthermore, for   0, the whole plate element is divided into 

two parts that are under tension and compression respectively with widths equal to    and  , so that 

  ̅      +    and    =  ̅ / (1 − 𝜓) (Fig. 3c, Fig. 4b and Fig. 4d). In general, the effective parts of the 

plate element consist of those parts that are either under tensile stress (i.e. the stress is negative) or 

those compressive parts that locate near the supported ends where local buckling is prevented to occur. 

Once the values of   ̅  /t and  =   /   are known, the effective width of the plate element could be 

computed by using the following steps [De Lee, Chi-Kinget, 2019]. 
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Table 3.1 Calculation of    [De Lee, Chi-Kinget, 2019]  

 

 Use the equations listed in Table 1 to calculate the buckling factor    according to the stress ratio  for 

different stress distributions shown in Fig 3.9 and Fig 3.10. 

 Compute the plate slenderness   ̅  ratio such that 

                        ̅   =
     

       √  
    𝜀 = √

   

  
                                                                                  (3.3) 

 Calculate the reduction factor  for the compressive part of the element such that (EC3 Part 1-5, 

Equations. 3.2 and 3.3) For an internal plate element (Fig.3.10): 

         (3.4) 

 For an outstanding plate element (Fig. 4): 

                  (3.5) 

 Calculate      , the effective width for the compressive part of the plate element, (Fig. 3.9 and Fig. 

3.10) 
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         (3.6) 

Note that for the case of an internal compression element with 0 (i.e. the whole plate element is 

under compression), the effective width of the element be      is further divided into two parts (Figs. 

3(a) and 3(b)) with width      and      such that                 . The relative sizes of be1 and be2 

are defined in Fig 3.10. 

 Finally, the total effective width of the whole plate elements is computed as       (Fig 3.9a, Fig 3.10a 

and Fig 3.9c) for 0 when the whole plate element is under compression or      +    for. 

 

Figure 3.9 Stress distribution and effective width for internal compression elements (i.e. both 

ends supported), effective part of the plate is shaded Note: Compressive stress is positive 

with     . [De Lee, Chi-Kinget, 2019] 

 

Figure 3.10 Stress distribution and effective width for outstand compression elements (i.e. only 

end supported), effective part of the plate is shaded. [De Lee, Chi-Kinget, 2019] 
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3.7 Full iteration calculation procedure for class 4 section properties calculation 

 By assuming the whole section is effective, calculate the gross section properties (      ,        

and      ). 

 Set      =      ,     =      ,     =       and y=z=0. 

 Base on the stress ratio, determine the effective area of all plate elements by using Table 3.1 and 

Fig.3.9 and Fig.3.10. 

 Compute the new centroid of the effective area     
̀   and the corresponding effective area     

̀   and 

effective second moment of area      
̀  .  

 Determine the shift of the centroid       -     
̀    =(y, z) and the relative change of effective area 

and effective second moment of area such that 

             (3.7) 

   (3.8) 

            where b and h in Equation 10a is the overall width and depth of the section. 

 Update the section properties so that           
̀ ,           

̀  and          
̀ . 

 Check for convergence of the section properties: The section 

       properties are assumed to be converged if the following criteria are satisfied. 

                                                                                                                   .                                                                       

where      ,      and       are tolerances for the convergences of      ,      and  

     , respectively. 

 

 If the section properties are converged, output the value of     ,        

and      and stop. Otherwise, go to step. [De Lee, Chi-Kinget, 2019]  

3.8 Section properties calculation examples 

3.8.1 General 

In the present study, sections, three sections: S1, S2 and S3 will be designed with different 

flange thicknesses. All sections are being bi-symmetric. The design procedure concern beams which 
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 are predominantly loaded in bending, that is, where axial loads, if any, are small and transverse shear 

forces are not excessive. In all models, the elastic analysis of simply supported beams undergoing 

uniformed transverse load is carried out. 

All members subject to bending should be checked for the following at critical sections: 

(a) A combination of bending and shear force 

(b) Deflection 

(c) Lateral restraint 

(d) Local buckling 

(e) Web bearing and buckling. 

      The application of a theoretical treatment of the problem would be too complex for routine design 

so a combination of theory and test results is required to produce a reliable (safe) design approach. 

      Before considering the analysis of the problem, it is useful to attempt to gain an insight into the 

physical behaviour by considering a simplified model. Since bending of an I-section beam is resisted 

principally by the tensile and compressive forces developed in two flanges, as shown in Figure 3.11, 

the compression flange may be regarded as a strut. 

       Generally, compression members buckle in the weaker direction i.e. the flange buckles 

downwards. However, this is prevented by the presence of the web. Therefore the flange is forced to 

buckle sideways, which will induce some degree of twisting in the section as the web too is required to 

deform. Whilst this approach neglects the real influence of torsion and the role of the tension flange, it 

does approximate the behaviour of very deep girders with very thin webs or of trusses or open web 

joists. Indeed, early attempts at analysing lateral-torsional buckling started with this approach [Abutair. 

Baker Wael]. 

 

Figure 3.11 the analogy and approximation of beam buckling problem as a strut problem 

[Abutair. Baker Wael, 2017] 
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3.8.2 Case 1 studied 

      Once again, we will present only one type of cross section will be studied with different thickness 

of flanges for a single spanned beam, supported at both ends. 

3.8.3 Sections bi-symmetric 

The beam with the bi-symmetric I-section chosen to be modelled will be made of elastic 

material, with E = 210 Gpa and   = 0.4. The beam length is L = 20 m. 

The beam will be subjected to a uniform distributed load along of the beam, with different 

position of load. 

 

  𝑞𝑢 

  

 

 

20 m 

 

Figure 3.12 Beam with supports under uniform distributed load 

M(x)    

M(x) =𝑞   . 
 

 
 

x = 
 

 
   M(x= 

 

 
 ) =𝑞   . 

 

 
  =     (x) =𝑞    . 

 

 
 

L20 m; S355 → fy =355 Mpa → fu = 470 Mpa or 510 Mpa 

  

                a) Section 1                         b) Section 2                     c) Section 3 
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Figure 3.13 bi-symmetric cross-section of the beam (elastic) 

3.8.4 Pre-defining 

    = 
 

   
. L = 

  

  
        = 1300 mm 

    
 

     
 .    = 

 

   
 . 1300 =10 mm 

b = 
  

   
 = 

    

   
 = 250 mm 

    = 
 

    
 . b = 

 

    
  . 250 = 20 mm 

    = 
 

  
 . b =  

 

  
 . 250 = 12 mm 

    = 
 

  
 . b =  

 

  
 . 250 = 10 mm 

3.8.5 Geometrical proprieties (section 1) 

 Cross-sectional area 

   = h. 𝑡  + 2b. 𝑡   = (1300. 10) + (2.250.20) = 23000     = 230     

 Moment of inertia 

    = 
               

 

  
 = 

                        

  
 = 6187166667     = 618716.66 67    

   = 
                 

  
 = 

                       

  
 = 52191666.67     = 5219.1667     

 Elastic resistance modulus 

     = 2. 
   

 
 = 2. 

           

   
 = 9234.5771     

 Elastic moment 

      =        .    = 9234.5771. 3550 = 32782748.7100 dan. cm = 3278.2749 KN. m 

 Inertia of torsion 

   = 
 

  
 (h.  𝑡𝑤  + 2b. 𝑡  

 ) = 
 

  
 (1300.      + 2.250.    ) =1766666.6670     = 176.6667     

 Factor of warping 

    =    * 
     

 
   = 52191666.67*  

       

 
   = 2.273469.          = 22734690     

 



Manel Dahlouz                                                                                                                       CHAPTER3 

Effective length approach and hand calculations of geometric properties Page 44 
 

 Shear modulus 

G = 
 

          
 = 

      

            
 = 80769.2308 Mpa 

 

Table 3.2 Section 1 e p (with thickness of flange =20 mm) 

CHARACTERISTI

C 

GEOMETRIC 

   

      

    

    ] 

 

    

    ] 

 

      

      

 

      

[KN.m] 

    

      

    

      

G 

[Mpa] 

E 

[Mpa] 

Section 1 230 618716.667 5219.167 9234.577 3278.275 176.667 22734690 80769.231 210000 

 

Table 3.3 Section 2 (with thickness of flange =12 mm) 

CHARACTERISTI

C 

GEOMETRIC 

   

      

    

    ] 

 

    

    ] 

 

      

      

 

      

[KN.m] 

    

      

    

      

G 

[Mpa] 

E 

[Mpa] 

Section 3 190 441292.133 3135.833 6666.044 2366.446 72.1333 13494619.59 80769.231 210000 

 

Table 3.4 Section 3 (with thickness of flange =10 mm) 

CHARACTERIST

IC 

GEOMETRIC 

   

      

    

    ] 

 

    

    ] 

 

      

      

 

      

[KN.m] 

    

      

    

      

G 

[Mpa] 

E 

[Mpa] 

Section 3 180 397600 2615 6024.242 2138.606 60.000 11219003 80769.231 210000 

 

3.8.6 Classifications of the used sections 

 Web  

 Section 1 

 

  
   124 𝜀  𝜀       

    

  
       100.44      𝑠𝑠    

 Section 2 

 

  
   124 𝜀   𝜀       

                      
    

  
       100.44      𝑠𝑠    

 Section 3 

 

  
   124 𝜀   𝜀       

                      
    

  
       100.44      𝑠𝑠    

 Flange 



Manel Dahlouz                                                                                                                       CHAPTER3 

Effective length approach and hand calculations of geometric properties Page 45 
 

      

 C = 
   

 
 - 

  

 
 = 120 mm 

 Section 1 

 
 

   
    9 𝜀   𝜀       

  
   

  
 = 6  9 𝜀         classe 01 

 Section 2 

 
 

   
   14 𝜀   𝜀       

   

  
 = 10   14 𝜀         classe 3 

 Section 3 

 

   
   14 𝜀   𝜀       

   

  
 = 12   14 𝜀         classe 4 

3.8.7 Determining the elastic loading acing on the beam 

     =     = 
    

 
              for the section 1. 

3278.275 = 
     

 
  𝑞           KN /m 

Section 1             KN /m 

Section 2             KN /m 

Section 3             KN /m 

 

3.8.8 Case 2 studied 

     Once again, we will present one type of cross section will be studied with different thickness of 

flanges for a single spanned beam, supported at both ends. 

3.8.9 Sections bi-symmetric 

The beam with the bi-symmetric I-section chosen to be modelled will be made of effective material, 

with E = 210 Gpa and 9 = 0.4. The beam length is L = 20 m. 

The beam will be subjected to a uniform distributed load along of the beam, with different position of 

load. 

 

 

 

 

 



Manel Dahlouz                                                                                                                       CHAPTER3 

Effective length approach and hand calculations of geometric properties Page 46 
 

                                                             𝑞𝑢 

 

 

 

20 m 

 

Figure 3.14 Beam with supports under uniform distributed load 

 

  

 

                a) Section 1                         b) Section 2                     c) Section 3 

 

 

Figure 3.15 bi-symmetric cross-section of the beam (elastic) 

M(x)    

M(x) =𝑞   . 
 

 
 

x = 
 

 
   M(x= 

 

 
 ) =𝑞   . 

 

 
  =     (x) =𝑞    . 

 

 
 

L20 m; S235 → fy = 235 Mpa → fu = 360 Mpa or 510 Mpa 

3.8.10 Geometrical proprieties effective (section 3) 

           The gross section properties of the section are given by:   =1300mm, 𝑡 =10mm, 

                   =18000     ,       =397600.000     and    =6024.242     

 Flange 

 Determine the stress ratio, ψ: 

 From Table 4 of EN 1993-1-5, the buckling factor ψ = +1,    0.43 
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 The normalized slenderness ratio  ̅  is given by 

  ̅   =
   

       √  
 = 

      

              √    
 = 0.795 

              ̅     0.673 

 The reduction factor ρ for an internal compression member is given by 

ρ = 
   ̅̅ ̅̅

        

 ̅ 
  = 0.910 

 The effective depth     is given by 

      = ρ. c = 0.910. 120 = 109.2 

 WEB SECTION 

 First iteration 

 Calculation of effective area,       

 Determine the stress ratio, ψ: 

 From Table 4.1 of EN 1993-1-5, the buckling factor    = 23,9 for ψ = −1,0. 

 The normalized slenderness ratio  ̅  is given by 

             ̅   =
     

       √  
 = 

       

              √    
 = 1.156   >   1.08 

 The reduction factor ρ for an internal compression member is given by 

 ρ = 
  ̅             

 ̅ 
  = 

                 

         0.783 

 The effective depth       is given by 

        = 
   

      
  = 

          

         
 = 508.95 mm 

 The depth of web left at the top     : 

    = 0.4      = 0.4× 508.95 = 204.58 mm 

 The depth of web left at the bottom (above the centroidal axis), be2:  

    = 0.6      = 0.6 × 508.95 = 305.37 mm 

 The ineffective portion of web has a length 

     x = 
   

 
  -             650− 204.58 – 305.37= 141.05 mm 

 The net loss of area of the web,     is given by 

          𝑡                        
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 Effective area of section,     : 

      = A −     = 18000-1410.50 = 16589.50     =165.895      

  (%) = 
            

    
 × 100%     (%) = 7.84%>0.1% 

 

 Figure 3.16 Calculation of effective cross section. [Lee, Chi-King & Chiew, Sing-Ping, 

2019] 

 Calculation of       Position of effective centroid,     : 

r = 
   

 
 -      

  

 
 =

     

 
 -        

       

 
 = 375.89mm 

 r.      +       G=0 or G = 
                 

        
 = -31.96mm 

 Note,           is the neutral axis position at the previous iteration. 

 For the first   iteration,           = h/2 

 Effective second moment of area,           

                    =           +          − (  
     

  
    +      𝑟         ) 

                     =397600.   +18000         − (
          

  
 +                           )  

                     = 3757422587      = 375742.259      

                         (%) = 
                

     
  × 100%  

                      

      
                  = 5.49% > 0.1% 

       = 
  

 
  + 

  

 
    =  650+5+31.96= 686.96 mm 

   = 
  

 
  + 

  

 
    =650+5-31.96 = 624.04 mm 

 The lesser elastic section modulus        is given as 

                   = 
      

  
 = 

            

      
 = 5469.638     
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 Since both     and   >0.1%, further iteration is carried out. 

 Effective moment 

                   =        .    = 19417214.9 dan .cm        

 

                       =1941721490 N. cm = 1941.721 KN. cm 

 Second iteration 

 Calculation of effective area,      

 Determine the stress ratio, ψ: 

            Ψ = - 
    

  
 

      

    
  
 

     
 = -  

    
    

 
         

    
    

 
        

 = - 0.906 

                 = 7.81 - 6.29 + 9.78   = 21.536 

 The normalized slenderness ratio  ̅  is given by 

             ̅   =
     

       √  
 = 

       

              √      
 = 1.218   >   1.08 

 The reduction factor ρ for an internal compression member is given by 

             ρ = 
  ̅             

 ̅ 
  = 

                     

         0.743 

 The effective depth       is given by 

                = 𝑤 /2+G=1300/2+31.96= 681.96 mm 

                    =       = 0.744. 681.96 = 506.70 mm  

 The depth of web left at the top     : 

                 = 0.4      = 0.4× 506.70 = 202.68 mm 

 The depth of web left at the bottom (above the centroidal axis), be2:  

                 = 0.6      = 0.6 × 506.70 = 304.02 mm 

 The ineffective portion of web has a length 

                  x =      -             681.96− 202.68– 304.02= 175.26 mm 

 The net loss of area of the web,     is given by 

Aw = lw.tw = 175.26.10 = 1752.60 mm
2 

 Effective area of section,     : 
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        = A −     = 18000-1752.60 = 16247.4     

    (%) = 
              

     
 × 100%     (%) = 

                   

        
 × 100%   (%)  

   = 2.06 % > 0.1% 

 Calculation of       

 Position of effective centroid,     : 

      r = 
   

 
 -      

  

 
 = 

     

 
 -        

       

 
 = 359.69mm 

      r.            G=0 or G =- 
                

        
 = -38.80mm 

    This means that shift of G‟ to G‟‟=(-31.96–(-38.80))= 6.84mm (downward) 

      Note,           is the neutral axis position at the previous iteration. For  

     the first iteration,           = h/2 

 Effective second moment of area,           

                    =           +          − (  
     

  
    +      𝑟         ) 

                     = 397600.   +18000          (
          

  
 +                         ) 

                     = 372030898.1      = 372030.898      

        (%) = 
 |            

 |

     
×100%  

                          

           
             

      = 0.99% > 0.1% 

        = 
  

 
  + 

  

 
    =  650+5+38.80= 694.8 mm 

        = 
  

 
  + 

  

 
    =650+5-38.80 = 616.20 mm 

 The lesser elastic section modulus         is given as 

                          = 
      

  
 = 

          

     
 = 5362.221     

 Effective moment 

             =        .    = 5362.221. 3550 = 19035884.55dan .cm  

                                 =1903588455     N. cm = 1904.588 KN. cm 

 third iteration 

 Calculation of effective area,       
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 Determine the stress ratio, ψ: 

       Ψ = - 
    

  
 

      

    
  
 

     
 = -  

    
    

 
         

    
    

 
        

 = - 0.887 

          = 7.81 - 6.29 + 9.78   = 21.020 

 The normalized slenderness ratio  ̅  is given by 

       ̅   =
     

       √  
 = 

       

              √     
 = 1.233   >   1.08 

 The reduction factor ρ for an internal compression member is given by 

 ρ = 
  ̅             

 ̅ 
  = 

                     

      
   0.734 

 The effective depth       is given by 

     = 𝑤 /2+G=1300/2+38.8= 688.80 mm 

         =       = 0.734. 688.80= 505.58 mm  

 The depth of web left at the top     : 

    = 0.4      = 0.4× 505.58= 202.23 mm 

 The depth of web left at the bottom (above the centroidal axis), be2:  

    = 0.6      = 0.6 × 505.58 = 304.35 mm 

 The ineffective portion of web has a length 

     x =      -             688.80− 202.23– 304.35= 184.22 mm 

 The net loss of area of the web,     is given by 

                      𝑡                         

 Effective area of section,      : 

      = A −     = 18000-1832.20 = 16167.     = 161.678     

  (%) = 
            

    
 × 100%     (%) = 

                   

        
 × 100% 

                               (%) = 0.49%   0.1% 

 Calculation of      

 Position of effective centroid,     : 
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r = 
   

 
 -      

  

 
 = 

     

 
 -        

       

 
 = 356.16mm 

 r.            G=0 or G =- 
                

        
 = -40.36mm 

This means that shift of G‟ to G‟‟= (-38.80–(-40.36)) =1.56mm (downward) 

 Note,           is the neutral axis position at the previous iteration. For the first 

iteration,           = h/2 

 Effective second moment of area,           

                     =           +          − (  
     

  
    +      𝑟         ) 

                      =397600.   +18000          (
          

  
 +                         ) 

 = 3712121875      = 371212.187     

         (%) = 
 |            

 |

     
×100%   

                            

           
       

            = 0.22%   0.1% 

         = 
  

 
  + 

  

 
    =  650+5+40.36= 695.36mm 

         = 
  

 
  + 

  

 
    =650+5-40.36 = 614.64mm 

 The lesser elastic section modulus        is given as 

                    = 
      

  
 = 

          

      
 =5338.417 

 Effective moment 

             =        .    = 5338.417. 3550  

            =18951380.35 dan .cm =1895138035N. mm = 1895.138 KN. m 

 For iteration 

 Calculation of effective area,      

 Determine the stress ratio, ψ: 

 Ψ = - 
    

  
 

      

    
  
 

     
 = -  

    
    

 
         

    
    

 
        

 = - 0.883 

                 = 7.81 - 6.29 + 9.78   =20.989 

 The normalized slenderness ratio  ̅  is given by 

         ̅   =
     

       √  
 = 

       

              √      
 = 1.233 >   1.08 
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 The reduction factor ρ for an internal compression member is given by 

 

  ρ = 
  ̅             

 ̅ 
  = 

                     

         0.734 

 The effective depth       is given by 

  = 𝑤 /2+G=1300/2+40.36= 690.36 mm 

        =       = 0.734. 690.36= 506.72mm  

 The depth of web left at the top     : 

    = 0.4      = 0.4× 506.72= 202.69 mm 

 The depth of web left at the bottom (above the centroidal axis), be2:  

    = 0.6      = 0.6 × 506.72 = 304.03 mm 

 The ineffective portion of web has a length 

     x =      -             690.36− 202.69– 304.03= 184.64 mm 

 The net loss of area of the web,     is given by 

          𝑡                         

 Effective area of section,     : 

       = A −     = 18000-1836.40 = 16164.     = 161.636     

   (%) = 
            

    
 × 100%     (%) = 

                   

        
 × 100% 

                               (%) = 0.025%   0.1% 

 Calculation of      

 Position of effective centroid,     : 

 r = 
   

 
 -      

  

 
 = 

     

 
 -        

       

 
 = 355.49mm 

             r.            G=0 or G =- 
                 

        
 = -40.39mm 

This means that shift of G‟ to G‟‟= (-40.36–(-40.39))=0.03mm (downward) 

 Note,           is the neutral axis position at the previous iteration. For the first 

iteration,           = h/2 
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 Effective second moment of area,           

                     =           +          − (  
     

  
    +      𝑟         ) 

                      = 397600.   +18000          (
          

  
 +                          ) 

                      = 3712401098      = 371240.110      

    (%) = 
 |            

 |

     
×100%   

                          

           
       

          = 0.003%   0.1% 

               = 
  

 
  + 

  

 
    =  650+5+40.39= 695.39mm 

          = 
  

 
  + 

  

 
    =650+5-40.39 = 614.61mm 

 The lesser elastic section modulus        is given as 

                   = 
      

  
 = 

          

     
 = 5            

 Effective moment 

                   =        .    = 5338.512. 3550 =18951717.60 dan .cm  

                         =1895171760 N. mm = 1895.172 KN. m 

Table 6.5 Section 1 (with thickness of flange =20 mm) 

Iteration         

     ] 

        

     ] 

       

     ] 

        

[KN. m] 

 

   

[mm] 

 

0 (Gross) 230 618716.667 9234.577 3278.275  -1 

1 215.895 597251.355 8724.602 3097.234 24.56 -0.927 

2 214.271 594496.113 8634.531 3065.258 28.51 -0.916 

3 212.901 594161.381 8624.157 3061.221 29.03 -0.914 

4 ( Full ) 212.820 594069.425 8620.196 3060.169 29.16 -0.913 

Simplified 215.895 597251.355 8724.602 3097.234 24.56 -0.927 

Full/Simplified 0.99 0.99 0.99 0.99   
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Table 3.6 Section 1 (with thickness of flange =12 mm) 

Iteration 

 

        

     ] 

        

     ] 

       

     ] 

        

[KN. m] 

 

   

[mm] 

 

0 (Gross) 190.000 441292.133 6666.044 2366.446  -1 

1 175.895 419530.153 6114.352 2170.595 30.14 -0.911 

2 172.793 416247.068 6015.305 2135.433 35.98 -0.895 

3  172.096        415522.590 5994.180 2127.934 37.21 -0.892 

4 ( Full ) 171.995 415440.014 5991.520 2126.990 37.38 -0.891 

Simplified 175.895 419530.153 6114.352 2170.595 30.14 -0.911 

Full/Simplified 0.98 0.99 0.98 0.98   

 

Table 3.7 Section 1 (with thickness of flange =10 mm) 

 

Iteration         

     ] 

        

     ] 

       

     ] 

        

[KN. m] 

 

   

[mm] 

 

0 (Gross) 180.000 397600.000 6024.242 2138.606  -1 

1 165.895 375742.259 5469.638 1941.721 31.96 -0.906 

2 162.474 372030.898 5362.221 1904.588 38.80 -0.887 

3 161.674 371241.240 5338.569 1895.192 40.36 -0.883 

4 (Full) 161.636 371240.110 5        1895.172 40.39 -0.882 

Simplified 165.895 375742.259 5469.638 1941.721 31.96 -0.906 

Full/Simplified 0.98 0.99 0.98 0.98   

 

3.8.11 Determining the effective loading acing on the beam 

       =     = 
    

 
              for the section 4. 

 1941.721 = 
     

 
  𝑞              KN /m 

Section 1                KN /m 

Section 2               KN /m 

Section 3                KN /m 

 

  

 



 

 

 

CHAPTER 4: 
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4.1 General introduction to stability of members in bending 

This chapter deals the technics of modelling structures with finite element. This modelling 

concerns the elastic and inelastic buckling behaviour of slender sections. The author suggests a brief 

introduction to the stability theory and the types of analysis of buckling. A general introduction to 

software used in modelling the considered sections. The used software, the first is a free (LTBEAM) 

and the second is the more general purpose: well-known (ABAQUS).  

The main material described in this chapter is extracted from Master thesis previously submitted under 

the supervision of A. Labed in The University of Tebessa. 

A study of the stability of structures is aimed at calculating the elastic critical load and 

deducing appropriate design loads for elements under compression to ensure that buckling does not 

occur. This is generally a complex procedure although the techniques can be built up from the matrix 

analysis methods are available. Fortunately, the stability analysis of a structure can be considered 

subsequent to the linear elastic analysis. Further, in many cases Codes of Practice offer sufficient 

guidance for a stability analysis not to be necessary. Nevertheless, important structures are subjected to 

stability analysis and the computational effort required is continually being reduced by developments 

in computer applications. 

LTB can be considered as a critical condition for laterally unsupported beams. Like members in 

compression, the resistance of members in bending to lateral torsional buckling depends on the non- 

dimensional slenderness and an allowance for initial imperfections. However, no simple expression is 

given for non-dimensional slenderness for lateral torsional buckling. Its value is to be derived from the 

elastic critical buckling moment for the member. There are two methods for determining LTB 

slenderness manually, without the need to determine elastic critical moment. Both are based on 

empirical simplifications that give conservative values of slenderness [Abutair. Baker Wael,2017]. 

4.2 Solution by Finite Element Analysis for stability problems 

4.2.1 Introduction 

The recourse can be made to finite element analysis software (LTBEAM, ABAQUS ANSYS) 

when it is not possible to isolate uniform structural components, the loading on the components is 

complex or the interaction between components makes it difficult to determine boundary conditions 

for the critical components in order to determine elastic critical buckling loads using matrix analysis. 

The eigenvalue of interest to the designer is therefore not the lowest value but the one relevant to the 

first global LTB mode. The eigenvalue of interest to the designer is therefore not the lowest value but 

the one relevant to the first global LTB mode. The Eigen value of interest to the designer is therefore 

not the lowest value but the one relevant to the first global LTB mode. 
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Two types of analysis i.e. elastic buckling analysis and non-linear analysis are performed to estimate 

the ultimate load carrying capacity of beams. Firstly, an eigenvalue analysis is performed for elastic 

buckling analysis in which eigenvalues of corresponding Eigen modes are determined using the linear 

perturbation buckling analysis. In this study, four eigenvalues for each run are extracted. Finally, RIKS 

method (ABAQUS 2014) is selected for non-linear post buckling analysis since it is suitable for 

predicting the instability as well as for understanding the non-liner behaviour of geometric collapse 

(ABAQUS 2014). RIKS method is based on Arc-length method and a form of Newton-Raphson 

iteration method, in which an additional unknown, named load proportionality factor is introduced to 

provide solutions concurrently for load and displacement [Abutair. Baker Wael, 2017]. 

4.2.2 First order analysis 

First order analysis software will determine buckling loads by considering a particular loading 

situation and evaluating the eigenvalues for the stiffness matrix. Each eigenvalue has a corresponding 

eigenvector that defines the particular buckling mode associated with that value. The eigenvalues thus 

represent the critical buckling loads for each possible mode of buckling. Each eigenvalue gives the 

multiple of the applied loading at which the structure buckles in that particular mode and thus it is only 

the lowest values that are of relevance. 

First order buckling analysis will be adequate for determining elastic critical buckling loads for most 

situations, which means that material non-linearity and geometric deformation are not taken into 

account. Note, however, that since the software for determining elastic critical loads generally uses 

stress stiffness matrices, which are based on initial linear stress and displacements, the destabilizing 

effect of any loads applied above the member centroid is automatically taken into account. 

The effects of initial imperfections are not considered in first order analysis. 

The primary result of an FE buckling analysis is a series of eigenvalues representing the load factors 

(multipliers on the magnitude of the given loading) at which the various buckling modes are critical 

(such as the higher harmonic modes referred to for flexural buckling). The results are normally 

presented in ascending order and only the lowest modes are of interest. However, the effective design 

resistance is not necessarily given by the lowest eigenvalue. To determine the design resistance, the 

designer must consider not just the eigenvalues but also the associated eigenvectors (which reveal the 

mode shape): when there are slender plate elements, local buckling can occur at a lower load than 

member buckling but the local buckling does not represent failure and does not determine the 

slenderness that is needed in the evaluation of design resistance of the member. 

The top flange in a mid-span region may well be proportioned such that it is close to the out stand limit 

for Class 3 or 4, this occurs when its slenderness is about 0.75. If the slenderness for LTB were the  
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same as this value (and thus the eigenvalues for the two buckling modes would be the same), then the  

reduction factor for LTB (assuming a welded section and buckling curve d) would be about 0.6. In 

practice, economic design would probably require a „better‟ (higher) reduction factor and thus a lower 

slenderness and a greater elastic critical buckling load. In such a situation, the eigenvalue for LTB (the 

ratio of elastic critical load to load applied to the model) would be higher than that for flange buckling. 

The eigenvalue of interest to the designer is therefore not the lowest value but the one relevant to the 

first global LTB mode. 

To analyse members in bending, shell elements should be used for the webs and the flanges. 

Generally, the FE mesh size should be sufficiently fine that the model is able to represent torsional 

effects in the elements and the overall buckling modes. The mesh will also be able to model the local 

buckling of the compression flange and the webs in bending, although not with accuracy unless the 

mesh is fine. Shear buckling of the web will not normally be modelled as it would require a much finer 

mesh than is appropriate for determining member buckling [Abutair. Baker Wael, 2017]  

4.2.3 Second order analysis 

A full second order analysis takes account of material non-linearity and geometric deformation. 

To carry out such an analysis to determine failure load in accordance with Eurocodes requires complex 

software. It can determine failure loads directly, without reference to buckling curves, but the model 

does need to incorporate initial imperfections that are equivalent to those assumed in the Euro code 

design rules; it should be noted that the design imperfections exceed the geometrical limits given in 

EN 1090-2 because the former also include the effects of residual stresses through additional 

equivalent geometric imperfection. Evaluation of appropriate imperfections for the analysis requires a 

thorough understanding of the design basis in Eurocode3. 

Second order analysis is essential when the buckling behaviour is influenced by the modified geometry 

of the structure under load. First order buckling analysis would only give eigenvectors for buckling 

modes related to the original geometry. However, the axial strain in the arch members will cause the 

arch to flatten, which increases the axial forces and strains. (In a sufficiently flat arch, the arch will 

snap through.) The true buckling load is thus only given by a second order analysis. 

Nonlinear FE model is developed using the commercial finite element software package ABAQUS 

(ABAQUS 2014). Both geometric and material nonlinearities are considered in modelling. Since shell 

element is the most suitable element for complex buckling behaviour and has the capability of 

providing accurate solutions in case of a structure whose thickness is much smaller than the other 

dimensions (Smalberger 2014), a 8-node doubly curved shell element with reduced integration S8R 

(ABAQUS 2014) has been chosen from ABAQUS element library to model the web and flanges of I  
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sections (i.e. W and WWF) [Abutair. Baker Wael].  

4.3 Overview of Software used in this thesis 

In this chapter the following tow commercial structural engineering software tools will be 

introduced: 

 LTBEAM v1.0.11 

 ABAQUS v6.14-1 

The software will hereinafter be referred to as LTBEAM and ABAQUS respectively. 

Information about their background will be given. Their methods for finding the elastic critical 

moment Mcr described and their possibilities and limitations in that area discussed. 

Two types of analysis i.e. elastic buckling analysis and inelastic analysis are conducted to estimate the 

ultimate load carrying capacity of simply supported beam subjected to uniform loading. Firstly, as it 

was the case with LTBEAM, an eigenvalue analysis is performed for elastic buckling analysis in 

which eigenvalues of corresponding Eigen modes are extracted using the linear perturbation buckling 

analysis. In this study, four eigenvalues for each run were extracted. From the eigenvalue analysis a 

suitable pattern of imperfection is obtained and incorporated into nonlinear analysis. 

Nonlinear buckling analysis is usually the more accurate approach and is therefore recommended for 

design or evaluation of actual structures. This technique employs a nonlinear static analysis with 

gradually increasing loads to seek the load level at which your structure becomes unstable. Using the 

nonlinear technique, the model can include features such as initial imperfections, plastic behaviour, 

gaps, and large-deflection response [Abutair. Baker Wael, 2017].  

4.4 Modelling beams of class 4 using LTBEAM (CTICM LTBeam) 

4.4.1 General 

The Centre Technique Industrial de la Construction Métallique (CTICM) in France have 

developed a computer program which enables the designer to quickly calculate the elastic critical 

lateral torsional buckling moment in a matter of seconds. The elastic critical lateral torsional buckling 

moment is determined using an iterative calculation process in which a linear eigenvalue analysis is 

performed. The behaviour of the beam is treated using the finite element method and the discretization 

of the beam can be varied from 100 elements up to 200 elements. 

LTBEAM is software used in the field of the computational structural steel. It was developed by 

CTICM within a European research project, partly funded by the European Coal and Steel Community 

(ECSC), and completed in 2002 (CTICM, n.d.). LTBEAM is software that deals with elastic lateral-

torsional buckling of beams subjected to bending about their major axis (CTICM, n.d.). It uses FEM  
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to obtain it´s results. This software applies to straight beams with one or more spans under simple 

bending about their major axis. The cross section must be symmetric about the minor axis, but can 

vary along the x-axis. Each node has four degrees of freedom (DOFs). At the beam ends, the user can 

choose which one of them to restrain. The four DOFs are: 

 Lateral displacement 

 Torsion rotation 

 Lateral flexural rotation 

 Warping 

Along the beam the following restraints can be applied: 

 Lateral displacement, local and continuous 

Torsional rotation, local and continuous Supports conditions in the bending plane and 

externally applied loads are taken into account by the bending moment distribution [A. Galea].  

4.4.2 User interface 

The program provides a database of different steel profiles, saving the designer time to input 

the material and geometrical properties of the beam. Of course a manual input is possible .The next 

step is to choose the support conditions at the end of the beam. The program also allows the designer 

to apply one, two, or a continuous lateral restraint at different heights to the beam. After that, the load 

conditions must be chosen. Many types of load combinations can be chosen. The point of application 

is located in the shear Centre by default; however, the distance from the shear Centre can be varied as 

well. The program also calculates the maximum bending moment for the chosen loads. The final step 

is to calculate the elastic critical lateral torsional buckling moment with just a mouse click. As a result, 

the value of the elastic critical lateral torsional buckling moment is given as well as a graphical 

example of the deformed shape [A. Galea]. 

Two input methods are available; the simple input mode and the file input mode, shown in Figure 4.1. 

As the name indicates the simple input mode is simpler and therefore faster. It is unnecessary to use 

the file input mode unless the beam to be checked has a variable cross section or if complex loading 

conditions are present.  

4.4.3 Simple input mode 

The software gives the possibility to choose members from its built-in catalogue, or to 

manually enter the geometry. Additionally, it can be entered as in the following sectional properties: 

The second moment of area about the minor axis, the torsional constant, the warping constant and the 

Wagner‟s coefficient. The last option must be used if beams with a channel section are to be modelled. 

No channel sections or mono-symmetric I-sections are available from the built-in catalogue. 
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BI-symmetric I-sections can be defined by choosing the By Dimensions option, as shown in Figure 

5.1. Then the corresponding sectional properties will be calculated by the software. The user can 

choose between 100, 120, 150 and 200 elements. When lateral restraints are chosen, fixed, and free 

or spring restraints are the alternatives but for the end supports in the plane of bending, fixed and free 

are the only options. No spring supports are available in simple input mode. It is also a possibility to 

apply local lateral restraints or a continuous lateral restraint along the whole beam. Different types of 

loading can be applied; a point load, a distributed load and a point moment about the major axis. The 

location of the forces can be chosen along the beam and the point load and the distributed load can be 

placed at different heights as well. The cross section must be constant along the x-axis in the simple 

input mode. In order to model a multi-span beam, the interior supports in the plane of bending must be 

replaced by its reactions and applied as point loads[Abutair. Baker Wael, 2017]. 

 

Figure 4.1 User interface of the simple input mode in LTBEAM 

4.4.4 File input mode 

To use the file input mode for more complex cases, a preparation and even pre calculations are 

sometimes needed. Here the cross section can vary, but the user must then define the sectional 

properties in each element. Between 50 and 300 elements can be chosen. The bending moment 

distribution for the whole beam has to be established and specified, it is defined by the values of 

bending moment in the endpoints of each element. Any loading, such as external moments and loads, 

and support reactions in the plane of bending are taken into account by the bending moment 

distribution. In addition to that, loads that are not applied at the shear Centre of the beams cross 

section, and result in destabilising or stabilising effects, need to be specifically stated [A. Galea].  
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4.5 Modelling beams of class 4 using ABAQUS (Manuel of ABAQUs) 

4.5.1 Prologue  

 Undoubtedly, the finite element method represents one of the most significant achievements in the 

field of computational methods in the last century. Historically, it has its roots in the analysis of 

weight-critical framed aerospace structures. These framed structures were treated as an assemblage of 

one-dimensional members, for which the exact solutions to the differential equations for each member 

were well known. These solutions were cast in the form of a matrix relationship between the forces 

and displacements at the ends of the member. Hence, the method was initially termed matrix analysis 

of structures. Later, it was extended to include the analysis of continuum structures. Since continuum 

structures have complex geometries, they had to be subdivided into simple components or “elements” 

interconnected at nodes. It was at this stage in the development of the method that the term “finite 

element” appeared. However, unlike framed structures, closed form solutions to the differential 

equations governing the behavior of continuum elements were not available. Energy prin-ciples such 

as the theorem of virtual work or the principle of minimum potential energy, which were well known, 

combined with a piece-wise polynomial interpolation of the unknown displacement, were used to 

establish the matrix relationship between the forces and the interpolated displacements at the nodes 

numerically. In the late 1960s, when the method was recognized as being equivalent to a minimization 

process, it was reformulated in the form of weighted residuals and variational calculus, and expanded 

to the simulation of nonstructural problems in fluids, thermo-mechanics, and electromagnetics. More 

recently, the method is extended to cover multiphysics applications where, for example, it is possible 

to study the effects of temperature on electromagnetic properties that might affect the performance of 

electric motors [Khennane. A. 2013]. 

4.5.2 General 

           FEA is widely useful tool for studying the behaviour of various structural and mechanical 

designs. It can also be used to predict the ability of a design to withstand extreme loading conditions 

that cannot be duplicated in an experiment. Hopefully these extreme loading conditions will be 

considered early in the design process.  An example of such a finite element analysis is the simulation 

of the ability of an offshore platform to withstand the forces produced by a storm. 

            With the advances in modern computing techniques, finite element analysis has become a 

practical and powerful tool for engineering analysis and design. In Structural Engineering, 

development of structural design code equations, their redeveloping is a continuous process and 

requires a wide range of experimental studies. However, performing many numbers of experiments is  
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costly, time consuming and hence uneconomical. On the other hand, conducting experiments is a 

compulsion for the research to progress. 

             ABAQUS is a suite of powerful engineering simulation programs based on the Finite Element 

Method, sold by Dassault Systems as part of their SIMULIA Product Life-cycle Management (PLM) 

software tools. Abaqus is a software package that is widely used in various industries and in the field 

of construction to solve a wide variety of problems in structural mechanics. It allows the 

implementation of very complex and customized material behaviours, up to the definition of failure 

criteria. The problem gets enormously simplified with the use of ABAQUS 6.9 (2009). ABAQUS is a 

highly sophisticated, general purpose finite element program, designed initially to model the behaviour 

of solids and structures under various externally applied loadings . 

4.5.3 Brief introduction to ABAQUS 

The ABAQUS 6.14.1 software was used for the finite element analysis (FEA). Which is a 

general-purpose finite element analysis program, capable of handling non-linear static analysis and 

elasto-plastic materials? In addition, Abaqus allows to take into account very complex contact 

behaviours that consider large rotations and friction.  

Designed as a general-purpose simulation tool, ABAQUS can be used to study more than just 

structural (stress/displacement) problems. It can simulate problems in such diverse areas as heat 

transfer, mass diffusion, thermal management of electrical components (coupled thermal-electrical 

analyses), acoustics, soil mechanics (coupled pore fluid-stress analyses), and piezoelectric analysis. 

ABAQUS contains an extensive library of elements that can model virtually any geometry. It has an 

equally extensive list of material models that can simulate the behaviour of most typical engineering 

materials including metals, rubber, polymers, composites, reinforced concrete, crushable and resilient 

foams, and geotechnical materials such as soils and rock.  

ABAQUS includes the following features: 

 Capabilities for analysing both static and dynamic problems; 

 The ability to model very large changes in shape of solids, in both two and three 

dimensions;  

 A very extensive element library, including a full set of continuum elements, beam 

elements, shell and plate elements. 

 A sophisticated capability to model contact between solids 

 An advanced material library, including the usual elastic and elastic– plastic solids; 

models for foams, concrete, soils, piezoelectric materials and many others  
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 Capabilities to model a number of phenomena of interest, including vibrations, coupled 

fluid/structure interactions, acoustics, buckling problems and so on. 

ABAQUS is simple to use and offers the user a wide range of capabilities, even the most                   

complicated analyses can be modelled easily [Marwa Boudjadja, 2019].  

4.5.4 Modelling sequence 

Every complete finite-element analysis consists of 3 separate stages: 

Pre-processing or modelling: this stage involves creating an input file, which contains an engineer's 

design for a finite-element analyser (also called "solver").  

Processing or finite element analysis: This stage produces an output visual file.  

 Post-processing or generating report, image, animation, etc. from the output file: This stage is a 

visual interpretation stage.  

 In fact, ABAQUS/CAE is capable of pre-processing, post-processing, and monitoring the 

processing stage of the solver; however, the first stage can also be done by other compatible CAD 

software, or even a text editor.  

ABAQUS/Standard, ABAQUS/Explicit or ABAQUS/CFD is capable of accomplishing the 

processing stage. Assault Systems also produces ABAQUS for CATIA for adding advanced 

processing and post processing stages to a pre-processor like CATIA. 

 As shown in the picture below, 11 modules are implanted in ABAQUS CAE which have to be used 

one after the other in order to modelling, loading, defining boundary conditions and finally analysis 

and then showing the results, diagrams and etc. These11 modules are named: Part-Property-

Assembely-Step-Intreaction-Load-Mesh-Optimization-Job-vizualation-Sketch.  

In the following, some details will be provided for each module: 

 PART MODULE: This module allows the creation of the geometry required for the problem.  

Prior to create a 3-D geometry, the creation of 2-D must be performed and then manipulate it 

to obtain the solid geometry. 

 PROPERTY MODULE: For defining material properties for the analysis and assigning them 

to available parts. 

 ASSEMBLY MODULE: For assembling created parts together. Even with a single part, 

assembly is needed. 

 INTERACTION MODULE: Permits to rely different parts by Tie, Rigid body, etc. 

 STEP MODULE: To select the kind of analysis to be performed and define the parameters 

associated with it. variables to include can be also selected.in the output files in this module.  
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Load is applied over a step; the sequence of loads creates several steps and define the loads for 

each of them. Most complex analysis are likely to have a sequence of steps. An analysis step 

during which the response is nonlinear is called general analysis step. An analysis step during 

which the response is linear is called a linear perturbation step. A linear perturbation analysis 

step provides the linear response of the system about the base state i.e. the state at the end of 

the last nonlinear analysis step prior to the linear perturbation step. 

 LOAD MODULE: Allows defining the loads and boundary conditions of the model for a 

particular step (indicated in the toolbar below). 

 MESH MODULE: The mesh module controls how to mesh your model: the type of element, 

their size etc. 

 JOB MODULE: To submit the model for analysis. 

 VISUALIZATION MODULE: To look at the deformed model. A plot of values of stress, 

displacement, reaction forces, etc. with the possibility of using contours, surface, vectors or 

tensors. 

 MODEL TREE: Provides a graphical overview of the model and the objects that it contains, 

such as parts, materials, steps, loads, and output requests. In addition, the Model Tree provides 

a convenient, centralized tool for moving between modules and for managing objects. If the 

model database contains more than one model, Model Tree can be used to move between 

models.  

 RESULTS TREE: provides a graphical overview of your output databases and other session-

specific data such as X–Y plots. When more than one output database is open in the session, 

the Results Tree can used to move between output databases.  

N.B. There is no inherent set of units used in ABAQUS. It is up to the user to decide on a consistent 

set of units and use that unit [ABAQUS].  

Modelling demonstration 
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Figure 4.2: ABAQUS Modules [ABAQUS] 

4.6 Elements in ABAQUS 

4.6.1 Element types 

Wide range of elements in the ABAQUS/Explicit element library are available and provides 

flexibility in modelling different geometries and structures. 

Each element can be characterized by: 

- Family:  Continuum, shell, membrane, rigid, beam, truss elements, etc. Figure 4.3 

- Number of nodes: Element shape and Geometric order. Figure 4.4 

- Linear or quadratic interpolation 

- Degrees of freedom: Displacements, rotations, temperature: translation towards1; translation 

towards 2; translation direction 3; rotations around the axis 1; rotations around the axis 2; 

rotations around the axis 3. 

Directions 1, 2 and 3 correspond to the global directions 1, 2 and 3, respectively; unless a local 

coordinate system has been defined at the nodes. Figure 4.5 

- Formulation:  Small and finite strain shells, etc. 

- Integration: Reduced and full integration 

Each element in ABAQUS has an assigned name: S4R, B31, M3D4R, C3D8R and C3D4 and the 

element name identifies primary element characteristics. 

Each element can be differed by family, number of nodes, and Degrees of freedom. 

- Family: solid (Continuum), shell, membrane, rigid, beam, truss elements, etc. 
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Figure 4.3 Family of element in ABAQUS [Marwa Boudjadja, 2019]  

- Number of nodes 

 

Figure 4.4: Number of nodes of element in ABAQUS [Marwa Boudjadja, 2019] 
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Figure 4.5 Displacement and Rotational degrees of freedom [Marwa Boudjadja, 2019] 

 

Figure 4.6 Elements Shapes in ABAQUS [Marwa Boudjadja, 2019] 

4.6.2 Shell element overview 

Shell elements are needed for out-of-plane loading. Shell elements can also be used where the 

loading is planar but the material is made of composites. Since shell elements by definition allow for 

through thickness variation of material properties these are the appropriate elements to be used in these 

cases. 
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The ABAQUS shell element library provides elements that allow the modelling of curved, 

intersecting shells that can exhibit nonlinear material response and undergo large overall motions 

(translations and rotations). ABAQUS shell elements can also model the bending behaviour of 

composites.  

The library is divided into three categories consisting of general-purpose, thin, and thick shell 

elements. Thin shell elements provide solutions to shell problems that are adequately described by 

classical (Kirchhoff) shell theory, thick shell elements yield solutions for structures that are best 

modelled by shear flexible (Mindlin) shell theory, and general-purpose shell elements can provide 

solutions to both thin and thick shell problems. All shell elements use bending strain measures that 

approximate those of Koiter-Sanders shell theory. While ABAQUS/Standard provides shell elements 

in all three categories, ABAQUS/Explicit provides only general-purpose shell elements. For most 

applications the general-purpose shell elements should be the user's first choice from the element 

library. However, for specific applications it may be possible to obtain enhanced performance by 

choosing one of the thin or thick shell elements. It should also be noted that not all ABAQUS shell 

elements are formulated for large-strain analysis. 

The general-purpose shell elements are axisymmetric elements SAX1, SAX2, and SAX2T and three-

dimensional elements S3, S4, S3R, S4R, S4RS, S3RS, and S4RSW, where S4RS, S3RS, and S4RSW 

are small-strain elements that are available only in ABAQUS/Explicit. The general-purpose elements 

provide robust and accurate solutions in all loading conditions for thin and thick shell problems.                            

Thickness change as a function of in-plane deformation is allowed in their formulation.                                                                     

They do not suffer from transverse shear locking, nor do they have any unconstrained hourglass 

modes. Furthermore, in geometrically nonlinear analyses in ABAQUS/Standard the cross-section 

thickness of finite-strain shell elements changes as a function of the membrane strain based on a user-

defined “effective section Poisson's ratio,” . In ABAQUS/Explicit, the thickness change is based on 

the “effective section Poisson's ratio” for all shell elements in large-deformation analyses, unless the 

user has specified that the thickness change should be based on the element material definition. The 

thickness change based on the “effective section Poisson's ratio”. 

SHELL181 is a 4-node 3-D shell element with 6 degrees of freedom at each node. The element has full 

nonlinear capabilities including large strain and allows 255 layers. The layer information is input using 

the section commands rather than real constants. Failure criteria is available using the FC commands 

[Marwa Boudjadja, 2019]. 

4.6.3 Element Shapes 
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There are various kinds of element shapes in ABAQUS: 

 

 Quad: Use exclusively quadrilateral elements. 

 Quad-dominated: Use primarily quadrilateral elements, but allow triangles in transition regions. 

 This setting is the default. 

 Tri: Use exclusively triangular elements. 

 Hex: Use exclusively hexahedral elements. This setting is the default. 

 Hex-dominated: Use primarily hexahedral elements, but allow some triangular prisms (wedges) 

in transition regions. 

 Tet: Use exclusively tetrahedral elements. 

 Wedge: Use exclusively wedges elements[Marwa Boudjadja, 2019]. 

 



 

  

 

CHAPTER 5: 

RESULTS AND DISCUSSION OF 

LINEAR BUCKLING ANALYSIS 
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5.1 Introduction 

      In this chapter, the results and the discussion of the linear elastic buckling for laterally 

unrestrained beams S1, S2 and S3 made from S355 are provided. Two type of models have been used: 

Analytical method and Finite Element modelling. The evaluation of the elastic and effective critical 

lateral torsional buckling moment by means of analytic equation as per EC3 and throughout an eigen 

analysis by means of two Finite Element software: LTBeam and ABAQUS w sections of cross- 

sections will be presented. The parameters being investigated are: the class of the flange, the position 

of applied load and the effect of the effective geometrical properties on the whole behaviour of the 

considered sections. Also, a comparison of outcomes and some concluding remarks concerning the 

effect of the studied parameters will be drawn at the end of the chapter. 

5.2 Elastic critical moment,     

         When looking for the lateral-torsional buckling resistance of a beam, a certain maximum 

theoretical moment is needed to be applied to the ideal beam. That is the elastic critical moment, noted 

Mcr as per EC3. It depends on number of factors: the lateral length of the beam, the bending moment 

diagram, the support conditions in both flexure and torsion, the stiffness of the beam about the minor 

axis and the torsional stiffness. 

In this study, two distinct cases are investigated: section with class 4 with different flange classes 

ranging from 1, 3 and 4.  

      The elastic critical moment is used to find the non-dimensional slenderness λ LT of a beam to 

Eurocode3. Eurocode3 proposed an approximating formula to estimate Mcr, which gives conservative 

results. The formula is valid for when the beam is bent in its major axis bending with a uniform cross 

section that is symmetric about the minor axis (ECCS 2006, p. 229). Beams are, in reality, are not 

ideal. That is why a reduction factor must be used to find the design capacity. The formula mentioned 

above is often called the 3-factor formula and is expressed as follows: 

               
      
       

[√(
  

  
)
    

   
 

           
      

 (         )
 
 (         )]                   (5.1) 

 

Details of the above equation are presented in Chapter 3. 

 

 

5.3 Results presentation 

In the following, the weakest section, i.e. S3 with flange and web class 4 will be given in 

details. An evaluation of Mcr with the elastic and effective properties will be respectively presented.  It  
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must be recalled that this investigation considers three types of cross sections belonging to class 4, 

slender sections to AISC and three loading conditions. For the remaining sections: S1 and S2, 

summarising tables display their results for both elastic and effective properties. Each table provides 

Mcri in terms section Si namely the class of flange (tfi) and the load position. A comparative table 

provides the differences is provided to express the percentage in the prediction of Mcr.  Finally, a plot 

representing the variation of Mcr.in terms of flange's thicknesses for the whole analysed section. 

Similarly, the results will be displayed in the same manner for the sections with effective properties. 

5.3.1 Linear analyse using elastic properties (EC3) 

 Worked example of the analytical evaluation of Mcr for S3 

      Cross-section of the beam with the thickness of flange = 10 mm (load applied at the top of flange). 

 

Figure 5.1 bi-symmetric cross-section of the beam 
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Table 5.1 Results of Section S1 (tf =20 mm) 
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Table 5.2 Results of Section S2 (tf =12 mm) 
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Table 5.3 Results of Section S3 (tf =10 mm) 
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Table 5.4 Comparison of the whole considering the elastic properties 

EC3 S1     DIFFERENCE S2     DIFFERENCE S3     DIFFERENCE 

POSITION OF 

LOAD 

TOP 241.98 0.675 1 127.20 0.653 1 106.09 0.653 1 

SHEAR 

CENTRE 

358.25 1 194.79 1 162.27 1 

BOTTOM 530.38 1.480 1 298.25 1.531 1 248.41 1.530 1 

 

 

 

Figure 5.2 Results as per EC3 of the variation of Mcr in terms of flange's thickness  

 Discussion of the results 

The overall results for the elastic linear analysis are shown in tables (5.1 to 5.4), and figure 5.2 depicts 

the variation of the of Mcr in terms of flange's thickness. Broadly speaking, one can notice from the 

above shown results that the values of the elastic critic moment depend mainly on the slenderness of 

flange, that the position of the applied load. For each section as expected, Mcr values depends on the 

load position with larger values in the bottom flange (tension zone). These values decrease when P is 

applied at the shear centre and less values are found when the applied load is located at the top flange 

(compressive zone). However, the differences of the amount of Mcr varies from S1 to S3. In fact, the 

differences are being quasi- constant ranging from around 0.7 in the compressive flanges to 1.5 for 

tension flanges. 

5.3.2 Linear analyse using effective properties (EC3) 

 Worked example of the analytical evaluation of Mcr for S1 and S2 

          It must be reminded that S1 and S2 are of class 4 with flanges belonging to class 1 and 3 

respectively. Carrying the hand calculations of effective properties, the only difference from the case 

previously presented is the fact that the down translation of G. 
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 Cross-section of the beam with the thickness of flange = 20 mm (load applied at the top of flange). 

 

Figure 5.3 Bi-symmetric cross-section of the beam (effective) 
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Table 5.5 Results of Section S1 with effective properties (tf =20 mm) 
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Table 5.6 Results of Section S2 with effective properties (tf =12 mm) 
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      Cross-section of the beam with the thickness of flange = 10 mm (load applied at the top of flange). 

 

Figure 5.4 Sections mono-symmetric (effective) 
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Mcr = 97.886   .   

Table 5.7 Results of Section S3 with effective properties (tf =10 mm) 
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Table 5.8 Comparison of the whole considering the effective properties 

EC3 S1     DIFFERENCE S2     DIFFERENCE S3     DIFFERENCE 

POSITION OF 

LOAD 

TOP 245.18 0.674 1 129.45 0.651 1 97.88 0.655 1 

SHEAR 

CENTRE 

363.40 1 198.77 1 149.42 1 

BOTTOM 523.37 1.440 1 293.05 1.474 1 216.09 1.446 1 

 

 

Figure 5.5 Results as per EC3 of the Variation of Mcr in terms of flange's thickness 
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 Discussion of the results 

The overall results for the elastic linear analysis are shown in tables (5.5 to 5.8), and figure 5.5 depicts 

the variation of the of Mcr in terms of flange's thickness. Similarly, with changing the geometrical 

properties from elastic to effective, the tendency of Mcr is quite similar and the same remarks can be 

made as it was discussed in previous section. Once again, the impact of the investigated parameters 

shown their importance. In fact, one can notice from the above shown results that the values of the 

effective moment depend mainly on the slenderness of flange, that the position of the applied load. For 

each section as expected, Mcr values depends on the load position with larger values in the bottom 

flange (tension zone). These values decrease when P is applied at the shear centre and less values are 

found when the applied load is located at the top flange (compressive zone). However, the differences 

of the amount of Mcr varies from S1 to S3. In fact, the differences are being quasi- constant ranging 

from around 0.7 in the compressive flanges to 1.45 for tension flanges. 

N.B. From the above results of the elastic analysis to EC3, it can be concluded that changing the 

geometrical properties from elastic to effective has no important effect as the Mcr are of the same 

range. 

5.4 Linear Buckling Analysis by LTBEAM 

5.4.1 Elastic characteristics   

 Presentation of a sample of results 

As previously mentioned in chapter 4, LTBEAM is free Finite Element software dealing with the 

linear buckling analysis throughout an eigen analysis mode. Firstly, the geometrical properties of the 

used section are displayed before running the linear buckling analysis. It gives also several modes with 

the cr for each mode. In the following, only the first mode (fundamental mode) of buckling is 

considered. The extracted value of cr permits the evaluation of the Mcr which is given by the software. 

The following demonstration is devoted to section S3 that is web and flanges of class 4. 

In this section, the elastic critical lateral torsional buckling moment is calculated for unrestrained beam 

with different position of loads that is applied at the top flange, at the shear centre and at the bottom 

flange for all bi-symmetric sections. The demonstration considers the following: 

Figure 5.6 shows how to introduce the input file of the elastic properties of the studied section. 

Figure 5.7 shows how to introduce the boundary conditions including torsion limitation. 

Figure 5.8 shows how to introduce the applied load and location in the cross section. 

Figure 5.9 shows how to get the results: cr and Mcr 
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Figure 5.6 Shows how to introduce the input file of the elastic properties of the studied section 

 

Figure 5.7 Shows how to introduce the boundary conditions including torsion limitation 

 

Figure 5.8 Shows how to introduce the applied load and location in the cross section 
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Figure 5.9 Shows how to get the results: cr and Mcr 

Table 5.9 Results of Section S1 (tf =20 mm) 

Section Position of load    [KN]     

 

  𝑟(  .  ) 

1 Top 655.656 7.476*     245.09 

1 Shear Centre 655.656 0.10933 358.41 

1 Bottom 355.656 0.15892 520.98 

 

Table 5.10 Results of Section S2 (tf =10 mm) 

Section Position of load    [KN]     

 

  𝑟(  .  ) 

2 Top         5.5153*     130.52 

2 Shear Centre         8.3038*     196.51 

2 Bottom         0.12424 294.02 

Table 5.11 Results of Section S3 (tf =10 mm) 

Section Position of load    [KN]     

 

  𝑟(  .  ) 

3 Top         5.0926*     108.91 

3 Shear Centre         7.6591*     163.80 

3 Bottom         0.11449 244.86 

 

Table 5.12 Comparison of the whole considering the elastic properties  

LTBEAM S1     DIFFERENCE S2     DIFFERENCE S3     DIFFERENCE 

POSITION OF 

LOAD 

TOP 245.09 0.683 1 130.52 0.664 1 108.91 0.664 1 

SHEAR 

CENTRE 

358.41 1 196.51 1 163.80 1 

BOTTOM 520.98 1.453 1 294.02 1.496 1 244.86 1.494 1 
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Figure 5.10 Results as per LTBEAM of the Variation of Mcr in terms of flange's thickness 

 Discussion of the results 

The overall outcomes from LTBEAM for the elastic linear analysis are shown in tables (5.9 to 5.12), 

and figure 5.10 depicts the variation of the of Mcr in terms of flange's thickness. It can be noticed, once 

again as discussed in 5.2.1, that the values of the elastic critic moment depend mainly on the 

slenderness of flange, the position of the applied load with the same proportions: the amount of Mcr 

varies from S1 to S3. In fact, the differences are being quasi- constant ranging from around 0.7 in the 

compressive flanges to 1.5 for tension flanges.  

 

5.4.2 Effective characteristics (LTBEAM) 

 Bi-symmetric sections 

In this section, in the contrary of the previous section, the effective characteristics are rather used to 

evaluate the effective critical lateral torsional buckling moment. The demonstration concerns the case 

of bi-symmetric section of unrestrained beam with different position of loads that is applied at the top 

flange, at the shear centre and at the bottom flange. 

 

Table 5.13 Results of Section S1 (tf =20 mm) 

Section Position of load    [KN]     

 

  𝑟(  .  ) 

1 Top 619.447 8.02000*     248.40 

1 Shear Centre 619.447 0.11738 363.55 

1 Bottom 619.447 0.16605 514.18 

 

 



Manel Dahlouz                                                                                                                       CHAPTER5 

Results and discussion of linear buckling analysis  Page 82 
 

 

Table 5.14 Results of Section 2 (tf =12 mm) 

Section Position of load    [KN]     

 

  𝑟(  .  ) 

2 Top 434.119 6.1207*     132.85 

2 Shear Centre 434.119 9.22702*     200.28 

2 Bottom 434.119 0.13315 289.01 

 

 Mono-symmetric sections 

     In this section, the effective geometrical properties of section of a mono-symmetric section in terms 

of the same parameters as above. 

Table 5.15 Results of Section S3 (tf =10 mm) 

Section Position of load    [KN]     

 

  𝑟(  .  ) 

3 Top 388.344 5.3642*     104.16 

3 Shear Centre 388.344             156.56 

3 Bottom 388.344 0.11512 223.53 

 

Table 5.16 Comparison of the whole considering the effective properties   

LTBEAM S1     DIFFERENCE S2     DIFFERENCE S3     DIFFERENCE 

POSITION OF 

LOAD 

TOP 248.40 0.683 1 132.85 0.663 1 254.49 0.708 1 

SHEAR 

CENTRE 

363.55 1 200.28 1 359.06 1 

BOTTOM 514.18 1.414 1 289.01 1.444 1 537.80 1.497 1 

 

 

 

Figure 5.11 Results as per LTBEAM of the Variation of Mcr in terms of flange's thickness  
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 Discussion of the results 

The overall results for the elastic linear analysis with effective characteristics are presented in 

tables (5.13 to 5.16), and figure 5.11 depicts the variation of the of Mcr in terms of flange's thickness. 

Similarly, with changing the geometrical properties from elastic to effective does not greatly affect the 

results. The tendency of Mcr is quite similar and the same remarks can be made as it was discussed in 

previous section. Once again, the impact of the investigated parameters shown their importance. In 

fact, one can notice from the above shown results that the values of the effective moment depend 

mainly on the slenderness of flange, that the position of the applied load. For each section as expected, 

Mcr values depends on the load position with larger values in the bottom flange (tension zone). These 

values decrease when P is applied at the shear centre and less values are found when the applied load 

is located at the top flange (compressive zone). However, the differences of the amount of Mcr varies 

from S1 to S3. In fact, the differences are being quasi- constant ranging from around 0.7 in the 

compressive flanges to 1.50 for tension flanges. 

N.B. From the above results of the elastic analysis to LTBEAM, it can be concluded that 

changing the geometrical properties from elastic to effective has no important effect as far as the 

extracted values of Mcr are concerned. 

5.5 Linear Buckling Analysis (ABAQUS) 

5.5.1 General   

To determine the elastic critical lateral torsional buckling load of the beam, a linear buckling 

analysis (LBA) is performed. During this analysis, the bifurcation point is determined by solving an 

eigenvalue problem. This eigenvalue problem is solved when the stiffness matrix of the model 

becomes singular and provides nontrivial solutions.  

The software gives the option to choose from two different methods to solve the eigenvalue 

problem, namely the Lanczos and the subspace iteration method. Both methods provide the option to 

determine multiple eigenvalues. However, for this research project only the first positive buckling 

mode is required, therefore only the first positive eigenvalue needs to be determined.  

To eventually determine the elastic critical lateral torsional buckling load of the beam, the 

applied load needs to be multiplied by the eigenvalue resulting from the linear buckling analysis and 

subsequently, the elastic critical lateral torsional buckling moment can be determined. 

5.5.2 Results with elastic characteristics 

In the same manner, results from LBA of ABAQUS will be presented in tables (5.17 to 5.20) 

and single figure 5.12. 
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Table 5.17 Results of Section S1 (tf =20 mm) 

Section Position of load    [KN]     

 

  𝑟(  .  ) 

1 Top 655.656 7.76281*     254.48 

1 Shear Centre 655.656 0.10799 354.02 

1 Bottom 655.656 0.16404 537.78 

 

Table 5.18 Results of Section S2 (tf =12 mm) 

Section Position of load    [KN]     

 

  𝑟(  .  ) 

2 Top         5.84691*     138.36 

2 Shear Centre         8.45167*     200.02 

2 Bottom         0.13061 309.08 

 

Table 5.19 Results of Section S3 (tf =10 mm) 

Section Position of load    [KN]     

 

  𝑟(  .  ) 

3 Top         5.42098*     115.85 

3 Shear Centre         7.87790*     168.45 

3 Bottom         0.12103 258.85 

 

Table 5.20 Comparison of the whole considering the effective properties   

ABAQUS S1     DIFFERENCE S2     DIFFERENCE S3     DIFFERENCE 

POSITION OF 

LOAD 

TOP 254.48 0.718 1 138.36 0.691 1 115.85 0.684 1 

SHEAR 

CENTRE 

354.02 1 200.02 1 168.45 1 

BOTTOM 537.78 1.519 1 309.08 1.545 1 258.85 1.536 1 

 

Figure 5.12 Results as per ABAQUS of the Variation of Mcr in terms of flange's thickness  
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 Discussion 

The same remarks made in the two-above analysis can be applied to the present analysis by 

ABAQUS. However, some slight differences can be noticed.  

5.6 Linear Buckling Analysis with effective characteristics  

          In the following, a demonstration of the use of ABAQUS for Linear Buckling Analysis (LBA) 

is presented. A summary of the procedure of defining the model and the steps performed are given. 

           1. Part – defines the geometry of a structural element or model to be used in the analysis. 

           2. Property – defines materials and cross sections. 

           3. Assembly – assembles a number of parts to form the global geometry of a model. 

           4. Step – defines the different analyses to be carried out. 

           5. Interaction – defines connections and interface conditions between different parts. 

           6. Load – defines the boundary conditions of the model. 

           7. Mesh – provides the discretization of the model into finite elements. 

           8. Job – defines the jobs to be carried out by the analysis program. 

           9. Visualization – is utilized for viewing and post processing the results. 

           10. Sketch – can be used as a simple CAD programme for making additional drawings.    

  

 Defining the geometry 

          

 

Figure 5.13 Typical model 

Defining the material and cross-sectional properties  

Assigning the values of E= 210000; v =0.3. 
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Figure 5.14 Defining material properties 

 Setting up the analysis 

 

Figure 5.15 Setting-up the analysis 

 

 Defining the boundary conditions Boundary conditions  

These conditions are defined in the Load module.  

The various boundary conditions are generated in a given Step and may be transferred to subsequent 

steps, see Figure 5.4. 
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Figure 5.16 Defining the boundary conditions Boundary conditions 

 

 Defining loads 

 

Figure 5.17 Defining the loads 

 

Discretization 
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Figure 5.18 Discretization 

Choosing the type of analysis 

In the first stage, only the elastic buckling analysis will be selected. This analysis will provide the 

Eigen values of different buckling modes. 

Running the analysis  

In order to submit the analyses to ABAQUS/Standard use the running module. This is the solver, 

which provides an output database that may later be accessed from ABAQUS/CAE. 

Visualisation and post- processing of the results 

 

Figure 5.19 Visualisation and post- processing of the results 
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Result samples of Eigen analysis ; Mode 1 

 

Figure 5.20 Linear buckling analysis deformed shape mode 1 

 

Mode 2 

 

Figure 5.21 Linear buckling analysis deformed shape mode 2 
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Mode 3 

 

Figure 5.22 Linear buckling analysis deformed shape mode3 

  Results and discussion  

In this section, we calculate the effective critical lateral torsional buckling moment for unrestrained 

beam with different position of loads that is applied at the top flange, at the shear centre and at the 

bottom flange for all bi-symmetric sections. 

 

Table 5.21 Results of Section S1 (tf =20 mm) 

Section Position of load    [KN]     

 

  𝑟(  .  ) 

1 Top 619.447 8.21665*     254.49 

1 Shear Centre 619.447 0.11593 359.06 

1 Bottom 619.447 0.17364 537.80 

Table 5.22 Results of Section S2 (tf =12 mm) 

Section Position of load    [KN]     

 

  𝑟(  .  ) 

2 Top 434.119 6.37449*     138.36 

2 Shear Centre 434.119 9.35867*     203.13 

2 Bottom 434.119 0.14240 309.09 

 

      In this section, we calculate the effective critical lateral torsional buckling moment for restrained 

beam with different position of loads that is applied at the top flange, at the shear centre and at the 

bottom flange for all mom-symmetric sections. 
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The overall results for the elastic linear analysis are shown in tables (5.21 to 5.24), and figure 

5.23 depicts the variation of Mcr in terms of flange's thickness. Similarly, with changing the 

geometrical properties from elastic to effective, the tendency of Mcr is quite similar and the same 

remarks can be made as it was discussed in previous section. Once again, the impact of the 

investigated parameter showed their importance. In fact, one can notice from the above shown results 

that the values of the effective moment depend mainly on the slenderness of flange, that the position of 

the applied load. For each section as expected, Mcr values depends on the load position with larger 

values in the bottom flange (tension zone).  

Table 5.23 Results of Section S3 (tf =10 mm) 

Section Position of load    [KN]     

 

  𝑟(  .  ) 

3 Top 388.344 5.43004*     105.44 

3 Shear Centre 388.344              153.77 

3 Bottom 388.344 0.11879 230.66 

Table 5.24 Comparison of the whole considering the elastic properties  

ABAQUS S1     DIFFERENCE S2     DIFFERENCE S3     DIFFERENCE 

POSITION OF 

LOAD 

TOP 254.49 0.708 1 138.36 0.681 1 105.44 0.685 1 

SHEAR 

CENTRE 

359.06 1 203.13 1 153.77 1 

BOTTOM 537.80 1.497 1 309.09 1.521 1 230.66 1.500 1 

 

These values decrease when P is applied at the shear centre and less values are found when the 

applied load is located at the top flange (compressive zone). However, the difference of the amount of 

Mcr varies from S1 to S3. In fact, the differences are being quasi- constant ranging from around 0.7 in 

the compressive flanges to 1.50 for tension flanges. 

 

Figure 5.23 Results as per ABAQUS of the Variation of Mcr in terms of flange's thickness  
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5.7 Overall comparison and conclusions of the linear elastic buckling analysis 

In this chapter the results of linear elastic buckling analysis have been presented and individually 

discussed. It is worth to recall that three means have been used: EC3 analytical, LTBEAM and 

ABAQUS. The comparison of results reveals the importance and the impact of the investigated 

parameters on the carrying capacity of the cross-sections S1, S2 and S3.  

Tables 5.25 To 5.27 show the obtained values from EC3, LTBEAM and ABAQUS for S1, S2 and S3 

respectively using the elastic characteristics. These values of Mcr are given in terms of load position: 

upper flange, at the shear centre and the lower flange. 

As it can be easily noticed, values of Mcr, despite the mean by which is was determined are almost the 

same. Particularly for the finite element software where no sensitive difference has been detected.  

Table 5.25 Variation of Mcr between EC3 LTBEAM and ABAQUS When P is applied the at the 

upper flange 

POSITION 

OF LOAD 

S1     DIFFERENCE S2     DIFFERENCE S3     DIFFERENCE 

TOP 

EC3 254.49 1.038 127.20 0.974 106.09 0.974 

1.006 0.919 0.915 

LTBEAM 245.09 0.963 130.52 1.026 108.91 1.026 

1.019 0.943 0.940 

ABAQUS 240.43 0.944 138.36 1.087 115.85 1.091 

0.980 1.060 1.063 

 

Table 5.26 Variation of Mcr between EC3 LTBEAM and ABAQUS when P is applied the at the 

SC 

POSITION 

OF LOAD 

S1     DIFFERENCE S2     DIFFERENCE S3     DIFFERENCE 

SHEAR 

CENTRE 

EC3 358.25 0.999 194.79 0.991 162.27 0.990 

1.011 0.973 0.963 

LTBEAM 358.41 1.000 196.51 1.008 163.80 1.009 

1.012 0.982 0.972 

ABAQUS 354.02 0.988 200.02 1.026 168.45 1.038 

0.987 1.017 1.028 
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Table 5.27 Variation of Mcr between EC3 LTBEAM and ABAQUS when P is applied the at the 

lower flange 

POSITION OF 

LOAD 

S1     DIFFERENCE S2     DIFFERENCE S3     DIFFERENCE 

BOTTOM 

EC3 530.38 1.018 298.25 1.014 248.41 1.014 

0.986 0.964 0.959 

LTBEAM 520.98 0.982 294.02 0.985 244.86 0.985 

0.968 0.951 0.945 

ABAQUS 537.80 1.013 309.08 1.036 258.85 1.054 

1.032 1.051 1.057 

 

Figure 5.24 Variation of Mcr between EC3 LTBEAM and ABAQUS When P is applied the at the 

upper flange, shear centre and lower flange 

5.8 COMPARISON EFFECTIVE (EC3, LTBEAM and ABAQUS) 

Tables 5.28 To 5. 30 show the obtained values from EC3, LTBEAM and ABAQUS for S1, S2 

and S3 respectively using the effective characteristics. These values of Mcr are given in terms of load 

position: upper flange, at the shear centre and the lower flange. 

As it can be easily noticed, values of Mcr, despite the mean by which is was determined are almost the 

same. Particularly for the finite element software where no sensitive difference has been detected.  

Table 5.28 Variation of Mcr between EC3 LTBEAM and ABAQUS when P is applied the at the 

upper flange 

POSITION OF 

LOAD 

S1     DIFFERENCE S2     DIFFERENCE S3     DIFFERENCE 

TOP 

EC3 245.18 0.987 129.45 0.974 97.88 0.939 

0.963 0.935 0.928 

LTBEAM 248.40 1.013 132.85 1.026 104.16 1.064 

0.976 0.960 0.987 

ABAQUS 254.49 1.037 138.36 1.068 105.44 1.077 

1.024 1.041 1.012 
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Table 5.29 Variation of Mcr between EC3 LTBEAM and ABAQUS when P is applied the at the 

SC 

POSITION 

OF LOAD 

S1     DIFFERENCE S2     DIFFERENCE S3     DIFFERENCE 

SHEAR 

CENTRE 

EC3 363.40 0.999 198.77 0.992 149.42 0.954 

1.012 0.978 0.971 

LTBEAM 363.55 1.000 200.28 1.007 156.56 1.047 

1.012 0.985 1.018 

ABAQUS 359.06 0.988 203.13 1.021 153.77 1.029 

0.987 1.014 0.982 

 

Table 5.30 Variation of Mcr between EC3 LTBEAM and ABAQUS when P is applied the at the 

lower flange 

POSITION OF 

LOAD 

S1     DIFFERENCE S2     DIFFERENCE S3     DIFFERENCE 

BOTTOM 

EC3 523.37 1.017 293.05 1.013 216.09 0.966 

0.973 0.948 0.936 

LTBEAM 514.18 0.982 289.01 0.935 223.53 1.034 

0.956 0.935 0.969 

ABAQUS 537.80 0.027 309.09 1.054 230.66 1.067 

1.045 1.069 1.031 

 

 

 

Figure 5.25 Variation of Mcr between EC3 LTBEAM and ABAQUS When P is applied the at the 

upper flange, shear centre and lower flange 
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5.8 Comparison (ELASTIC and EFFECTIVE)  

 

 

 

Figure 5.26 Variation of Mcr between EC3 LTBEAM and ABAQUS When P is applied the at the 

upper flange with elastic and effective characteristics 

 

Figure 5.27 Variation of Mcr between EC3 LTBEAM and ABAQUS When P is applied the at the 

SC with elastic and effective characteristics 
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Figure 5.28 Variation of Mcr between EC3 LTBEAM and ABAQUS When P is applied the at the 

lower flange with elastic and effective characteristics 

Table 5.31 Variation of Mcr EC3 LTBEAM and ABAQUS when P is applied the at the upper 

flange considering elastic and effective characteristics 

 

Table 5.32 Variation of Mcr EC3 LTBEAM and ABAQUS when P is applied the at the SC 

considering elastic and effective characteristics 

POSITION 

OF LOAD 

ELASTIC EFFECTIVE DIFFERENCE ELASTIC EFFECTIVE DIFFERENCE ELASTIC EFFECTIVE DIFFERENCE 

TOP S1     S1     S2     S2     S3     S3     

EC3 241.98 245.18 0.986 127.20 129.45 0.982 106.09 97.88 1.083 

LTBEAM 245.09 248.40 0.986 130.52 132.85 0.982 108.91 104.16 1.045 

ABAQUS 254.49 254.49 1.000 138.36 115.85 1.194 138.36 105.44 1.312 

POSITION 

OF LOAD 

ELASTIC EFFECTIVE DIFFERENCE ELASTIC EFFECTIVE DIFFERENCE ELASTIC EFFECTIVE DIFFERENCE 

SHEAR 

CENTRE 

S1     S1     S2     S2     S3     S3     

EC3 358.25 363.40 0.985 194.79 198.77 0.979 162.27 149.42 1.085 

LTBEAM 358.41 363.55 0.985 196.51 200.28 0.981 163.80 156.56 1.046 

ABAQUS 354.02 359.06 0.985 200.02 168.45 1.187 203.13 153.77 1.320 
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Table 5.33 Variation of Mcr EC3 LTBEAM and ABAQUS when P is applied the at the lower 

flange considering elastic and effective characteristics 

POSITION 

OF LOAD 

ELASTIC EFFECTIVE DIFFERENCE ELASTIC EFFECTIVE DIFFERENCE ELASTIC EFFECTIVE DIFFERENCE 

BOTTOM S1     S1     S2     S2     S3     S3     

EC3 530.38 523.37 1.013 298.25 293.05 1.017 248.41 216.09 1.149 

LTBEAM 520.98 514.18 1.013 294.02 289.01 1.017 244.86 223.53 1.095 

ABAQUS 537.80 537.80 1.000 309.08 258.85 1.194 309.09 230.66 1.340 

 

5.9 Discussion and concluding remarks 

As far as the elastic buckling analysis is concerned, it has been demonstrated trough the 

outcomes of this study the importance of each parameter. Some general conclusions can be made, 

namely: 

- What ever the mean used for determining the Mcr, similar values have been extracted. 

- The analytical equation given in EC3 does give accurate prediction, with less effort, of Mcr. 

Thus, EC3 can be used safely in the design process.  

- Finite element packages do not have the concept of classification recommended by EC3.  

- The class of the flange being of S1 and S2, no notable differences between the elastic and 

effective properties with bi-symmetric sections have been remarked. As if the class of flange does not 

influence the overall resistance to LTB of sections. However, for S3 where the flange class is 4, the 

cross-section is mono-symmetric   some differences can be noticed. 

- The position of the applied load has an important effect on the Mcr value. 

- The eigen analysis performed by LTBEAM and ABAQUS give roughly the same values 

specially for the first buckling mode. This will give a more confidence to the ABAQUS model, as it 

will be used later on for more sophisticate analysis: inelastic buckling analysis taking into account the 

imperfection.  

 



 

 

 

CHAPTER 6: 

RESULTS AND DISCUSSION OF 

THE INELASTIC BUCKLING 

ANALYSIS OF SLENDER SECTIONS 
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6.1 Introduction  

In this chapter, an introduction to the inelastic buckling analysis background is given. A full 

second order analysis takes into account the material non-linearity and geometric deformation. This 

second order analysis is essential when the buckling behaviour is influenced by the modified geometry 

of the structure under load. However, the axial strain in the arch members will cause the arch to flatten, 

which increases the axial forces and strains. The inelastic buckling models are built-up in Abaqus to 

investigate the impact of lateral torsional buckling on the carrying capacity of slender sections is 

provide and discussed.   

6.2 Inelastic buckling analysis (GMNL)  

When studying the behaviour of steel beam resistance to LTB instability, a geometrical and 

material non-linear imperfection analysis (GMNL) is carried out. To determine the lateral torsional 

buckling resistance of the beam as it considered to give most true lateral torsional buckling resistance 

of beam. Also, as explained in the previous section, the first order buckling analysis would only give 

eigenvectors for buckling modes related to the original geometry. The buckling instability, the load-

displacement response shows a negative stiffness and the structure must release strain energy to remain 

in equilibrium( Figure 6.1). Therefore, it is important that a solution method is chosen that can predict 

the load-displacement response after lateral torsional buckling has occurred. 

 

Figure 6.1 Possible non-linear buckling load-displacement behaviour  

6.3 Modelling the nonlinear behaviour using ABAQUS 

The theoretical background of such solution can be the modified Riks method or arc-length 

method. In ABAQUS, this is an algorithm which provides effective solutions for such cases. The 

modified Riks method uses a tangent line of a function to intersect with an arc, situated at the end of 

every step. From this point on, the curve will converge over the arc-length until it reaches an 

intersection of the arc with the function. At this point, the step is completed and the process will 

continue with the next step (Figure 6.2). 
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Figure 6.2 Graphical example of the modified RIKS method 

In addition to the linear elastic model, the non-linear plastic model also includes the plastic 

material properties. 

 6.4 Material properties 

 (1) Material properties should be taken as characteristic values. 

 (2) Depending on the accuracy and the allowable strain required for the analysis the following 

assumptions for the material behaviour may be used, see (Figure 6.3): 

 a) elastic-plastic without strain hardening 

 b) elastic-plastic with a nominal plateau slope 

 c) elastic-plastic with linear strain hardening 

   d) true stress-strain curve modified from the test results as follows 

 

Figure 6.3 Modelling of material behaviour [Eurocode 3: Design of steel structures] 

 

6.5 Demonstration 

In the following, a demonstration how to perform Riks approach implanted in ABAQUS. 
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Figure 6.4 Executing the linear buckling analysis  

 

  

Figure 6.5 Copy the model 

 

Figure 6.6 Material properties 
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Figure 6.7 Performing RIKS analysis 

 

Figure 6.8 Introducing the imperfection as per EC3 (1/1000) 

 

Figure 6.9 Submitting the file  
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Samples of results (Ur) 

 

 

Figure 6.11 Deformed shape at ultimate increment 

 

6.6 Results and Discussion 

The discussion will be held on the basis of the derived load-deflection curves from the 

modified RIKS analysis implanted in ABAQUS.  Another discussion will be provided dealing with the 

ultimate of displacements. Hence, for each single step, the displacement and stiffness matrices are 

updated, with the inclusion of initial geometrical imperfection which is liable to generate torsion 

and/or lateral bending is obviously of concern, and normally with residual stresses (not considered in 

this study). Tables 6. 

First of all, it should be noted that both load and boundary conditions have very important 

effects on the inelastic LTB failure mode results. The results from the modified RIKS method are 

given in terms of load proportionality factor λ (LPF). In order to determine the actual critical load after  



Manel Dahlouz                                                                                                                       CHAPTER6 

Results and discussion of the inelastic buckling analysis of slender sections   Page 103 
 

 

which the instability occurs, the applied load needs to be multiplied by the LPF λ. In Table, the load 

proportionality factor (LPF) and the actual critical load of unrestrained beam given. 

Figures 6.12 and 6.13 show the outcomes during the whole loading history by considering three 

load positions with an elastic branch for elastic behaviour and then the beams behave nonlinearly due 

to the initial geometric imperfections and the nonlinear geometric and material.   

Figures 6.12 (a), (b) and (c), for S1 to S3 respectively, retrace the Loads – Lateral deflections 

curves extracted from the modified RIKS results in terms of load application locations. taking into 

account the elastic geometrical properties. While Figures 6.13 (a), (b) and (c) represent the case of 

effective properties. Despite the fact that all considered sections are classified as class 4 to EC3, in the 

contrary to the linear buckling analysis discussed in the previous chapter, major differences in their 

behaviours can be seen as depicted in Figures 6.12 to 6.13 (a), (b) and (c). Independently of the used 

geometric properties, S1 shows quiet-different behaviour compared to S2 and S3 with flanges 

belonging to class 3 and 4 respectively.  

For the particular cases of S2 and S3, it is evident from Figures 6.12 and 6.13 that linear load-

deflection behaviour exists before inelastic lateral buckling starts to occur. It is obvious that varying 

flange slenderness, the member capacity is governed by the inelastic capacity, as mentioned in the 

previous section a soft decrease in stiffness in the post-buckling behaviour can be observed. 

In fact, all considered sections show almost the same behaviour in the elastic range, with of 

course different value of Pcr with larger values
 
for S1 to S3 which can be attributed to the flange class. 

Thus, for sections loaded at the top flange, in the compressive zone, the values of Pcr decrease from 

50.89 kN to 27.67 and 23.19 kN for S1, S2 and S3 respectively. For sections loaded at the shear centre, 

the values of Pcr decrease from 70.80 kN to 40 and 33.69 kN for S1, S2 and S3 respectively. Thus, for 

sections loaded at the bottom flange, in the tension zone, the values of Pcr decrease from 107.55 kN to 

61.81 and 51.76 kN for S1, S2 and S3 respectively. 

Considering the obtained effective geometric properties, the same remarks can be made. With 

exception that in the case of S3 (i.e. web and flanges of class 4). In fact, for the cases of S1and S2 

similar results have been found but with larger lateral displacements, the beam is weaker because of 

less lateral stiffness. For S3, Pcr increases from 21.08 kN to 30.75 and 46.13 kN for load being 

localised in the top, at SC and at the bottom flange respectively. Compared to the above values, it can 

be seen that S3 with effective properties is weaker than it was with the elastic properties. In all 

considered cases, an almost the same behaviour in the elastic range, with of course different value of 

Pcr with larger values
 
for S1 to S3. For sections loaded at the shear centre, the values of Pcr decrease 

from 70.80 kN to 40 and 33.69 kN for S1, S2 and S3 respectively. Thus, for sections loaded at the 
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 bottom flange, in the tension zone, the values of Pcr decrease from 107.55 kN to 61.81 and 51.76 kN 

for S1, S2 and S3 respectively. These values show the undeniable effects of the flange class and load 

location. In fact, with flange belonging to class 1 aids considerably the carrying capacity of the section 

to LTB. This strength decreases as the flanges slenderness's increase to about twice lesser for S3.  

 As can be easily seen, for the case of S2 and S3, two distinct branches curves characterized by 

linear pre-critical behaviour for the first branch and an inelastic post-buckling behaviour is recognised 

in the second branch. The second part of curves show a decrease in the stiffness of the beam. The load-

lateral deflection curve starts to soften which means that the capability to resist LTB starts to degrade. 

The observed tendency of all studied I-beams subject to LTB to twist about their longitudinal axis and 

is suspected that such I-beams contain a form of negative rotational stiffness about their longitudinal 

axis. 

 

(a) 

 

(b) 
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(c) 

Figure 6.12 Load- lateral displacement curves with a=S1, b=S2 and c=S3 to elastic properties 

 

(a) 

 

(b) 
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   (c) 

Figure 6.13 Figure 6.12 Load- lateral displacement curves with a=S1, b=S2 and c=S3 to effective 

properties 

 6.7 Comparison  

 6.7.1 Comparison considering elastic characteristics 

 In the contrary of the conclusions made on the elastic buckling analysis in chapter 5, as 

the LTB is mainly bending behaviour, the class of flange plays an important role. In fact, as shown in 

Table 6.1 and Figure 6.14, providing flanges of class 1, the strength of the section, even class 4, has 

shown a full resistance to LTB. For sections S2 and S3, a decrease of the values of Pcr to almost the 

half for upper flange loaded with similar behaviour in elastic range.  

The same tendency can be remarked in Tables 6.2, Table 6.3 and Figures 6.15, 6.16 for section 

loaded in SG and at lower flange respectively. 

 

Table 6.1 Variation of Pcr applied at the top for S1, S2 and S3 

Position of load 

TOP 

 

Pcr DIFFERENCE 

S1 50.89 1.839 

2.194 

S2 27.67 0.543 

1.193 

S3 23.19 0.455 

0.838 
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Figure 6.14 Comparison of results with applied load at the top for S1, S2 and S3 

Table 6.2 Variation of Pcr applied at the SG for S1, S2 and S3 

 POSITION OF LOAD 

SHEAR CENTRE 

 

Pcr DIFFERENCE 

S1 70.80 1.77 

2.101 

S2 40.00 0.564 

1.187 

S3 33.69 0.475 

0.842 

 

 

Figure 6.15 Figure 6.14 Comparison of results with applied load at SG for S1, S2 and S3 
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Table 6.3 Differences in Pcr prediction of S1, S2 and S3 at the bottom 

  

POSITION OF LOAD 

BOTTOM 

 

Pcr DIFFERENCE 

S1 107.55 1.740 

2.077 

S2 61.81 0.574 

1.194 

S3 51.76 0.481 

0.837 

 

Figure 6.16 Figure 6.14 Comparison of results with applied load at the bottom for S1, S2 and S3 

 6.7.2 Comparison considering the calculated effective characteristics  

 In models with effective properties, the same conclusions made be drawn as in the previous 

section with slightly different behaviour and values. Tables 6.4, 6.5 and 6.6, Figures 6.17, 6.18 and 

6.19 give the general tendency of the elastic and inelastic LTB behaviour.  Better performance of S1 

can be noticed followed by S2 and at last S3 showed poorer behaviour with regard to LTB resistance.   

Table 6.4 Variation of Pcr applied at the SC for S1, S2 and S3 

POSITION OF LOAD 

TOP 

Pcr DIFFERENCE 

S1 50.89 1.839 

2.414 

S2 27.67 0.543 

1.312 

S3 21.08 0.414 

0.761 
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Figure 6.17 Load- lateral displacement curves with a=S1, b=S2 and c=S3 to effective properties 

at top 

Table 6.5 Variation of Pcr applied at the SC for S1, S2 and S3 

POSITION OF LOAD 

SHEAR CENTRE 

Pcr DIFFERENCE 

S1 71.81 1.767 

2.335 

S2 40.62 0.565 

1.320 

S3 30.75 0.428 

0.757 

 

Figure 6.18 Load- lateral displacement curves with a=S1, b=S2 and c=S3 to effective properties 

at SC 
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Table 6.6 Variation of Pcr applied at the bottom for S1, S2 and S3 

POSITION OF LOAD 

BOTTOM 

Pcr DIFFERENCE 

S1 107.56 1.740 

2.331 

S2 61.81 0.574 

1.339 

S3 46.13 0.428 

0.746 

 

 

Figure 6.19 Load- lateral displacement curves with a=S1, b=S2 and c=S3 to effective properties 

at the bottom 

 6.7.3 Comparison between results considering elastic and effective 

characteristics 

Considering both properties, it can be seen from Tables 6.7 Figure 6.20 that values of Pcr 

decrease with effective properties exclusively for S3, but not for S1 and S2 for the case of upper flange 

loaded. For Table 6.8 and Figure 6.21, all sections show a slight difference is noticed in Pcr values 

when section are loaded at SG. Table 6.9 and Figure 6.23 show a notable decrease in Pcr in S3 rather 

than the other sections. 

Table 6.7 Differences in Pcr prediction (elastic and effective) of S1, S2 and S3 at the top 

POSITION OF LOAD 

TOP 

ELASIC 

Pcr 

EFFECTIVE 

Pcr 

DIFFERENCE 

S1 50.89 50.89 50.89=50.89 

S2 27.67 27.67 27.67=27.67 

S3 23.19 21.08 23.19>21.08 
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Figure 6.20 Comparison of Pcr (elastic and effective) for S1, S2 and S3 at the top 

Table 6.8 Differences in Pcr prediction (elastic and effective) of S1, S2 and S3 at the SC 

POSITION OF LOAD 

SHEAR CENTRE 

ELASIC 

Pcr 

EFFECTIVE 

Pcr 

DIFFERENCE 

S1 70.80 71.81 70.80 71.81 

S2 40.00 40.00 40.00 40.62 

S3 33.69 30.75 33.69>30.75 

 

 

Figure 6.21 Differences in Pcr prediction (elastic and effective) of S1, S2 and S3 at the SG 

Table 6.9 Differences in Pcr prediction (elastic and effective) of S1, S2 and S3 at the bottom 

POSITION OF LOAD 

BOTTOM 

ELASIC 

Pcr 

EFFECTIVE 

Pcr 

DIFFERENCE 

S1 107.55 107.56 107.55=107.55 

S2 61.81 61.81 61.81=61.81 

S3 51.76 46.13 51.76 46.13 
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Figure 6.22 Differences in Pcr prediction (elastic and effective) of S1, S2 and S3 at the bottom  

 6.8 Interpretation of deformed shaped beam 

In the following, sample of results representing the last increment of section 3 are displayed. 

Figures depicted 3.41 To 3.25 shows the unreformed shape, for S3 exclusively with flange and web of 

class 4, at the ultimate loading increment. As can be seen, for three load positions, the occurrence of 

the local buckling instability phenomenon which exhibit local deformation of outstand flanges of I 

beam: upper, shear centre and lower flanges respectively. The general shape of the deformation looks 

like a continues thin plate in flexion which indicates that flanges undergoe local buckling. For flanges 

of class 1 and 2, the local buckling was not observed or, at least, not clearly for section S2. 

      

Figure 6.23 Local buckling at the upper flange at ultimate increment with load applied at the 

upper flange of S3 

      

Figure 6.24 Local buckling at the upper flange at ultimate increment with load applied at the SG 

flange of S3 
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Figure 6.25 Local buckling at the upper flange at ultimate increment with load applied at the 

lower flange of S3 

 An interaction between the LB and LTB was observed in S3, with less significance in S2 but no 

interaction in S1. This prove, once more, that providing a flange of class 1 will transform in bending to 

some extent, the whole behaviour of class 2 even if it is declared to be class 4 as stated in EC3 as it 

envisages some exceptions to the general procedure for the classification. For cross sections with a 

class 4 web and class 1 or 2 flanges may be classified as class 2 cross sections with an effective web in 

accordance (clause 5.5.2(11)). For cross sections with a class 4 web and class 1 or 2 flanges may be 

classified as class 2 cross sections with an effective web in accordance (clause 5.5.2(11)). 



 

 

 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORKS 

 

1. Conclusions 

This present Master‟s dissertation aims to evaluate the impact of instability in elastic and 

inelastic behaviours on the carrying capacity of slender sections (of class 4). Despite the fact that their 

flanges class belong to class 1, 3 and 4 all studied sections are classified into class 4 because of web 

class 4. Some general conclusions can be made. As far as the elastic buckling analysis is concerned, 

applying the first order buckling analysis, it has been demonstrated throughout of the outcomes of this 

study the importance of each parameter., namely: 

- Whatever the mean used for determining the Mcr, similar values have been extracted. 

- The analytical equation given in EC3 does give accurate prediction of Mcr. Thus, EC3 

can be used safely in the design process.  

- Finite element numerical analysis gives very close values of Mcr to those given by EC3 

without considering the concept of classification recommended by EC3 with regard of different flange 

slenderness and location of load as explained in chapter 5.    

- For S1 and S2, no notable differences have been remarked between the elastic and 

effective properties with bi-symmetric sections and hence, no significant effect of flange in the overall 

resistance to LTB of sections. However, for S3 where the flange class is 4, the cross-section is mono-

symmetric some differences have been be noticed. 

-  The position of the applied load has an important effect on the Mcr value, with as 

expected, the unfavourable case when the load is applied in the compressive flange. 

- An important result is that the eigen buckling analysis performed by LTBEAM and 

ABAQUS software give roughly the same values specially in the first buckling mode. This gives a 

more confidence to the ABAQUS model, as it will be used later on for more sophisticate analysis: 

inelastic buckling analysis taking into account the imperfection. 

  As far as the inelastic buckling analysis, some interesting results have been found and 

discussed in chapter 6 3D models were implanted in ABAQUS software. The modified RIKS method 

uses a tangent line of a function to intersect with an arc, situated at the end of every step, the curve will 

converge over the arc-length until it reaches an intersection of the arc with the function. Figures in 

chapter 6 show the Loads. 

Lateral deflections curves extracted from the modified RIKS results during the whole loading 

history by considering three load positions with an elastic branch for elastic behaviour and then the 

beams behave nonlinearly due to the initial geometric imperfections and the nonlinear geometric and 

material. 



 

 

  Summary of inelastic buckling results is given as follows: 

 A validation of 3D linear model of ABAQUS with the LTBEAM was done. After, a parametric study 

using a second-order analysis carried out to investigate the same parameters.  Some interesting 

findings can be enumerated: 

 Bearing in mind that torsional buckling is essentially flexural behaviour, the section of flanges is very 

important to equilibrated the bending moment.  

 Despite the fact that all considered sections are classified as class 4 to EC3, in the contrary to the linear 

buckling analysis discussed in the previous chapter, major differences in their behaviours can be seen 

as depicted in relative Figures. 

 All considered sections show almost the same behaviour in the elastic range, with of course different 

value of Pcr with larger values for S1 to S3 which can be attributed to the flange class.  

 Independently of the used geometric properties, S1 shows quiet-different behaviour compared to S2 

and S3 with flanges belonging to class 3 and 4 respectively.   

 Better performance of S1 can be noticed followed by S2 and at last S3 showed poorer behaviour with 

regard to LTB resistance.   

 The class of flange plays an important and determinant role with high values of Pcr despite the location 

of the applied load for S1 compared to other sections, i.e. S2 and S3.   

 An interaction between the LB and LTB was observed in S3, with less significance in S2 but no 

interaction in S1. This prove, once more, that the global behaviour of cross section in flexure is 

governed by flange class section.  

 It seems that providing a class 1 flange, the bending performance capacity is not greatly affected by 

web class 4.   

 For all sections, the effective properties calculated seem to not have large influence for a beam mainly 

bent, even if some differences are being noticed for S3   with flange and web belonging to class 4.  

 Some kind of interaction between the LB and LTB has been detected in upper flange of S3. 

2. Recommendations suggestions for future work: 

It seems to be interesting to carry out a particular study in order: 

- To assess the effect of steel grade: S235 ductile material on slender sections. 

- To evaluate the effect other loading:  dynamic, cyclic and even seismic on slender section. 

-  To explore the contribution of the web in high flexure loaded slender sections. 
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