

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Larbi Tébessi-Tébessa Faculté des Sciences et de la Technologie Département de Génie Mécanique

MEMOIRE DE MASTER Option

Construction Mécanique

Thème :

Etude du comportement vibratoire des plaques composites rectangulaires minces

Présenté par : CHAOUCHI Djawhar Eddine

Dirigé par : DEGHBOUDJ Samir

Devant le jury

DIHA Abdallah	M.C.A	Université	de Tébessa	Président
DEGHBOUDJ Samir	M.C.A	Université	de Tébessa	Rapporteur
MAALIM Madani	M.A.A	Université	de Tébessa	Examinateur

Date de soutenance : Juin 2020

« Que dites-vous ?... C'est inutile ?... Je le sais ! Mais on ne se bat pas dans l'espoir du succès ! Non ! Non, c'est bien plus beau lorsque c'est inutile ! » (Rostand Edmond, Cyrano de Bergerac, 1897, acte II, scène 8)

A mes chers parents, Mohammed Salah et Noura A ma sœur Aya et mes frères, Kaythem, Okba et Aidh A ma grand-mère, Ourida A tout mes amis surtout, Youcef, Mohammed et Ala A mon oncle, Abess A tous les membres de ma famille...

Remerciements

Mes premiers remerciements vont naturellement à mon encadreur, M. Samir DEGHBOUDJ Docteur à l'université de Tébessa. Je voudrais lui exprimer ma profonde gratitude et mon admiration pour ses valeurs tant humaines que professionnelles dont il a fait preuve tout au long de ce mémoire.

J'adresse mes remerciements à M. Abdallah DIHA, Docteur à l'université de Tébessa, pour avoir accepté de présider mon jury de mémoire.

Je suis très reconnaissant envers M. Madani MAALIM, Docteur à l'université de Tébessa qui m'a fait l'honneur d'être examinateur de ce travail.

Je n'oublierai jamais le soutien de ma famille. Leur soutien, leur amour, leur confiance m'ont permis d'arriver là où je suis. Je profite de ces lignes pour adresser une affection particulière à mes chers parents Mohammed Salah et Noura, c'est grâce à eux que j'ai eu la force de me relever et remonter toutes les difficultés. Merci à vous pour avoir fait de moi ce que je suis aujourd'hui. Je remercie aussi ma sœur Aya et mes frères Haythem, Okba et Aidh.

Un immense merci aussi pour tous mes amis avec qui j'ai partagé de très bons moments : Youcef, Mohammed, Ala, Abess et tous ceux qui ont pensé à moi très fort le jour de ma soutenance.

Un grand remerciement a tous les enseignants du département de Génie mécanique et mes collègues, je ne vous oublie pas et je vous serai éternellement reconnaissant.

Remerciements	ii
Nomenclatures	ix
Liste des figures	xi
Liste des tableaux	xvi
Introduction générale	1
Problématique	2
Articulation du mémoire	2

Chapitre I : Généralités sur les matériaux composites

I.1 Introduction	;
I.2 Classification des matériaux composites	;
I.2.1 Classification suivant la forme des constituants4	ŀ
I.2.1.1 Composites à particules4	ŀ
I.2.1.2 Composites à renforts de paillettes4	ŀ
I.2.1.3 Composites à fibres	ŀ
I.2.2 Classification suivant la nature des constituants5	;
I.2.2.1 Composites à matrice organique5	;
I.2.2.2 Composites à matrice métallique5	;
I.2.2.3 Composites à matrice minérale5	;
I.3 Intérêt des matériaux composites5	;
I.4 Constituants de base des matériaux composites6)
I.5 Les renforts)
I.5.1 Les principales fibres7	7
I.5.1.1 Fibres de verre7	7
I.5.1.2 Fibre de carbone7	7
I.5.1.3 Fibre d'aramide7	,
I.5.1.4 Fibre de bore7	7
I.5.1.5 Fibre de silice (ou de quartz)7	7

I.5.1.6 Les fibres synthétiques thermostables	7
I.5.1.7 Autres fibres	7
I.5.1.8 Principales caractéristiques mécaniques des fibres de base	8
I.5.1.9 Architecture des renforts	9
I.6 La matrice	10
I.6.1 Différents types de matrice	
I.6.1.1 Les résines thermodurcissables	
I.6.1.2 Les matrices thermoplastiques	12
I.7 Charges et additifs	
I.8 Les Procédées de fabrication	
I.8.1 Les technologies dites en moule ouvert	
I.8.1.1 Moulage au contact	15
I.8.1.2 Moulage par projection simultané	16
I.8.2 Les technologies dites en moule fermé	
I.8.2.1 Moulage sous vide	16
I.8.2.2 Moulage par injection basse pression de résine (RTM)	
I.8.2.3 Moulage à froid	
I.8.2.4 Moulage par injection de compound BMC	
I.8.2.5 Moulage par compression de mat pré imprégné SMC	
I.8.2.6 Moulage par enroulement filamentaire	
I.9 Architecture du composite	
I.9.1 Les monocouches	
I.9.2 Les stratifiées	
I.9.2.1 Stratifiés unidirectionnels	21
I.9.2.2 Les stratifiés hybrides	21
I.9.2.3 Désignation des structures stratifiées	21
I.9.2.4 Stratifié symétrique	23
I.9.2.5 Séquence	23
I.9.2.6 Stratifiés hybrides	24
I.9.2.7 Structure générale d'un stratifié	24
I.9.3 Les sandwichs	24
I.10 Conclusion	

Chapitre II : Comportement élastique des matériaux composites

II.1 Loi de comportement élastique	25
II.2 Loi de Hooke généralisée pour un milieu isotrope	26
II.3 Notation de l'ingénieur	27
II.4 Différents types des matériaux	28
II.4.1 Matériaux anisotropes	28
II.4.2 Matériau monoclinique	28
II.4.3 Matériau unidirectionnel	29
II.4.4 Matériau orthotrope	29
II.4.5 Matériaux transversalement isotrope	31
II.4.6 Matériau quasi isotrope transverse	31
II.4.7 Matériau quasi isotrope	31
II.4.8 Matériau isotrope	32
II.5 Loi de comportement d'un composite en dehors des axes d'orthotropie	32
II.6.1 Etat de contraintes planes	35
II.7 Approche théorique pour la détermination des modules élastiques d'	un
composite unidirectionnel	37
II.8 Comportement local décrit par la loi des mélanges	37
II.8.1 Module d'élasticité longitudinal	37
II.8.2 Module d'élasticité transversal	39
II.8.3 Coefficient de Poisson υ _{LT}	39
II.8.4 Module de cisaillement <i>G_{LT}</i>	40
II.9 Méthodes analytiques pour la détermination des modules d'élasticité du pli	41

Chapitre III : Généralités sur la théorie des plaques

III.1 Introduction	
III.1.1 Définition d'une plaque	43
III.1.2 Classification des plaques	44
III.2 Champ de déplacement	44
III.3 Schémas du premier ordre	
III.4 Champ de déformation	45
III.5 Champ de contraires	

III.6 Résultantes et moments	
III.7 Résultantes en cisaillement	
III.8 Moments de flexion-torsion	
III.9 Relations fondamentales des plaques dans le cas d'un schéma d	u premier
ordre	
III.9.1 Equations du mouvement	
III.9.2 Equations de mouvement relatives aux résultantes en membranes	51
III.9.3 Equations de mouvement relatives aux résultantes de cisaillement	53
III.9.4 Equations de mouvement relatives aux moments	54
III.10 Théorie classique des stratifiés	
III.11 Champ de déformations	
III.12 Champ de contraintes	
III.13 Expressions des résultantes et moments	
III.13.1 Résultantes en membranes	60
III.13.2 Moments de flexion et de torsion	61
III.14 Equation constitutive d'un stratifié	
III.15 Expression des conditions aux limites	
III.16 Formulation énergétique de la théorie des stratifiés	
III.16.1 Energie de déformation	65
III.16.2 Énergie cinétique	

Chapitre IV : Etude analytique du comportement vibratoire des plaques composites minces

IV.1 Introduction	5 7
IV.2 Vibrations de flexion des plaques minces symétriques	57
IV.2.1 Equation du mouvement6	57
IV.2.2 Fréquences et déformées propres des plaques rectangulaires ϵ	59
IV.2.3 Méthode de Rayleigh-Ritz	72
IV.2.4 Détermination des fréquences et modes propres des plaques par la méthode c	le
Rayleigh-Ritz	72
IV.2.5 Application au problème de vibrations des plaques stratifiées symétriques 7	73
IV.2.6 Construction de la base fonctionnelle7	76
IV.2.7 Calcul analytique des fréquences et modes propres	77

IV.2.7.1 Plaque rectangulaire orthotrope simplement appuyée (AAAA)	77
IV.3 Calcul des fréquences et modes propres des plaques composites avec di	verses
conditions aux limites	81
IV.3.1 Plaque monocouche unidirectionnelle	81
IV.3.1.1 Influence des conditions aux limites	
IV.3.1.2 Influence du type de matériau	
IV.3.1.3 Influence du facteur de forme sur le comportement vibratoire des plaque	
IV.3.1.4 Effet de l'angle d'orientation des fibres	91
IV.3.2 Plaque monocouche orthotrope	94
IV.3.2.1 Influence des conditions aux limites	94
IV.3.3 Plaque stratifiée multicouches	98

Chapitre V : Etude et simulation du comportement vibratoire des plaques composites minces par le code de calcul ABAQUS

V.1 Introduction	
V.1.1 Code de calcul ABAQUS	107
V.2 Définition d'ABAQUS	
V.3 Description du problème	
V.4 Modélisation sous ABAQUS	
V.4.1 Système d'unités	
V.4.2 Hypothèse de la modélisation	
V.4.3 Dimensions et caractéristiques mécaniques	109
V.4.4 Conditions aux limites	109
V.4.5 Maillage	110
V.5 Calcul numérique des fréquences et modes propres des plaque	s composites
avec diverses conditions aux limites	
V.5.1 Plaque monocouche unidirectionnelle (verre/époxyde)	111
V.5.2 Plaque monocouche unidirectionnelle (carbone/époxyde)	113
V.5.3 Plaque monocouche unidirectionnelle (kevlar/époxyde)	113
V.6.1 Plaque monocouche orthotrope (verre/époxyde)	115
V.6.2 Plaque monocouche orthotrope (carbone/époxyde)	118
V.6.3 Plaque monocouche orthotrope (kevlar/époxyde)	118
V.7 Plaque stratifiée multicouche	

V.7.1 Stratifié équilibré (verre/époxyde)	
V.7.2 Stratifié équilibré (carbone/époxyde)	
V.7.3 Stratifié équilibré (kevlar/époxyde)	
V.7.4 Stratifié symétrique (verre/époxyde)	
V.7.5 Stratifié symétrique (carbone/époxyde)	
V.7.6 Stratifié symétrique (kevlar/époxyde)	
V.7.7 Stratifié croisé (verre/époxyde)	
V.7.8 Stratifié croisé (carbone/époxyde)	
V.7.9 Stratifié croisé (kevlar/époxyde)	
V.7.10 Stratifié orthogonal (verre/époxyde)	
V.7.11 Stratifié orthogonal (carbone/époxyde)	
V.7.12 Stratifié orthogonal (kevlar/époxyde)	
Conclusion générale	141
Références bibliographiques	142
Annexe1	
Annexe2	

Nomenclatures

σ_{ij}	tenseur de contrainte.
$\boldsymbol{\varepsilon}_{ij}$	tenseur de déformation.
C _{ijkl}	tenseur de constante élastique.
E_i	module d'Young dans la direction <i>i</i> du matériau.
v_{ij}	coefficient de Poisson dans le plan correspondant.
G _{ij}	module de cisaillement dans le plan correspondant.
[C]	matrice de rigidité.
[S]	matrice de souplesse.
{ σ }	vecteur de contrainte.
{ ɛ }	vecteur de déformation.
$\{\sigma_f\}$	vecteur de contrainte de flexion.
$\{m{arepsilon}_f\}$	vecteur de déformation de flexion.
$\{m{\epsilon}\},\{m{\gamma}\}$	vecteurs des déformations de cisaillement transversal.
u , v	déplacements suivant x,y.
W	déplacement transversal suivant z.
$\boldsymbol{\theta}_{x}$, $\boldsymbol{\theta}_{y}$	rotations autour des axes x et y.
$\boldsymbol{\beta}_x, \boldsymbol{\beta}_y$	rotations de la normale dans les plans (x-z), (y-z) respectivement.
h	Epaisseur de la plaque.
а	Longueur de la plaque.
b	Largeur de la plaque.
u ₀ , v ₀	déplacement en membrane.
w ₀	déplacement transversal (flèche).
ϕ_x , ϕ_y	rotations des sections droites respectivement dans les plans (x, z) et (y, z) .
$\mathbf{f}_{\mathbf{x}}, \mathbf{f}_{\mathbf{y}}$ et $\mathbf{f}_{\mathbf{z}}$	les forces volumiques appliquées.
a _x , a _y et a _z	les composantes du vecteur d'accélération.
P _x	la composante des moments des forces volumiques exercées.

σ_k	les contraintes dans la couche (k).						
h_k et h_{k-1}	les bornes supérieures et inferieures de la couche (k).						
$Q_n dt$	le moment résultant dû à l'effort de cisaillement.						
ρ_s	Masse surfacique du stratifié au point (X,Y).						
I_{xy}	Moment d'inertie par rapport au plan (XOY) de l'élément unitaire de plaque						
-	situé au point (X, y).						
${f Q}_x$, ${f Q}_y$	Rotations des sections droites respectivement dans les plans (x, z) et (y, z).						
$\mathbf{N_x}$, $\mathbf{N_y}$, $\mathbf{N_{xy}}$	les résultantes par unité de longueur, respectivement des contraintes						
	normales selon x, y et des contraintes de cisaillement dans le plan (x,y).						
A _{ij}	la matrice de rigidité en membrane.						
B _{ij}	la matrice de couplage membrane-flexion-torsion.						
D _{ij}	la matrice de rigidité en flexion-torsion.						
F _{ij}	la matrice de rigidité en cisaillement transverse.						
u _i	le vecteur déplacement de composantes : u, v, w.						
ω	la pulsation ou fréquence circulaire du mouvement.						
$w_0(x,y)$	la solution spatiale ou déformée.						
E _c	Energie cinétique totale.						
W	Travail des forces extérieures.						
U _d	Energie de déformation totale.						
$X_m(x), Y_m(y)$	fonctions vérifiant les conditions aux limites des deux plaques reposant						
	respectivement le long des directions x et y.						
V	Volume du corps.						
dS, dV	éléments d'aire et de volume.						
Ε	Encastré.						
A	Simplement appuyé.						

Liste des figures

Chapitre I : Généralités sur les matériaux composites

Fig. I.1 Différents types de matériaux composites	4
Fig. I.2 Différentes familles du renfort	6
Fig. I.3 Exemples des fibres utilisées comme renfort de composites	8
Fig. I.4 Pli unidirectionnel d'un composite à fibres longues	9
Fig. I.5 Les principaux types d'armures utilisées pour le tissage des tissus	10
Fig. I.6 Déférentes familles de matrice	10
Fig. I.7 Structures moléculaires thermoplastiques et thermodurcissables	13
Fig. I.8 Exemples des charges: (a) microbilles de verre, (b) noir de carbone, (c) silice	14
Fig. I.9 Principe du moulage au contact.	15
Fig. I.10 Principe de moulage par projection simultanée	16
Fig. I.11 Moulage sous vide	17
Fig. I.12 Principe de moulage par injection de résine (RTM)	17
Fig. I.13 Principe de moulage à la presse à froid.	18
Fig. I.14 Principe de moulage par compression	19
Fig. I.15 Enroulement filamentaire	19
Fig. I.16 Pli unidirectionnel	20
Fig. I.17 Composite stratifié	21
Fig. I.18 Désignation d'un stratifié	22
Fig. I.19 Convention de signe pour la désignation des stratifiés	23
Fig. I.20 Matériaux sandwiches à âmes pleines	25
Fig. I.21 Matériaux sandwiches à âmes creuses	26

Chapitre II : Comportement élastique des matériaux composites

Fig. II.1 Symétrie par rapport un plan	29
Fig. II.2 Matériau unidirectionnel	29

Fig. II.3 Matériau orthotrope	30
Fig. II.4 Matériau isotrope transverse	31
Fig. II.5 Axes principaux (1,2,3) d'une couche et référentiel (l',2',3') du stratifié	33
Fig. II.6 Etat de contraintes planes dans le plan (1,2)	35
Fig. II.7 Chargement longitudinal	38
Fig. II.8 Chargement transversal	39
Fig. II.9 Changement de cisaillement	40

Chapitre III : Généralités sur la théorie des plaques

Fig. III.1	Caractéristiques géométriques d'une plaque	40
Fig. III.2	Elément de plaque4	40
Fig. III.3	Déformation d'une section dans le cas d'un schéma au premier degré	40
Fig. III.4	Schématisation des déformations dans le cas des théories du premier ordre4	40
Fig. III.5	Résultantes en membrane par unité de longueur de la plaque des actions exercée.4	40
Fig. III.6	Résultante de l'action exercée sur un élément de surface de la plaque4	40
Fig. III.7	Représentation schématique des résultantes en cisaillement4	40
Fig.III.8	Représentation schématique des moments de flexion et de torsion4	40
Fig. III.9	Elément de frontière de la plaque et repère associé	40
Fig. III.10	Schématisation d'un appui simple	40
Fig. III.1	Représentation d'un encastrement4	40
Fig. III.12	2 Variation du moment de torsion le long d'un bord	40

Chapitre IV : Etude analytique du comportement vibratoire des plaques composites minces

Fig.IV.1	Plaque rectangulaire	59
Fig.IV.2	Modèle de la plaque monocouche (Np=1)	31
Fig.IV.3	Variation de la fréquence en fonction des modes vibratoires (Verre /Epoxyde)	36
Fig.IV.4	Variation de la fréquence en fonction des modes vibratoires (Carbone /Epoxyde)	36
Fig.IV.5	Variation de la fréquence en fonction des modes vibratoires (Kevlar /Epoxyde)	37
Fig.IV.6	Influence du type de matériau sur le comportement vibratoire des plaques (AAA	4)
		38
Fig.IV.7	Influence du type de matériau sur le comportement vibratoire des plaques (EEEE)	38

Fig.IV.8 Effet du rapport (a/b) sur les fréquences correspondantes au premier mode plaque (EEEE)
Fig. IV.9 Effet du rapport (a/b) sur les fréquences correspondantes au premier mode plaque
(AAAA)
Fig.IV.10 Influence du rapport (a/b) sur le comportement vibratoire de la plaque en verre/époxyde pour diverse des conditions aux limites
Fig.IV.11 Variation des fréquences propres en fonction de l'angle d'orientation des fibres de
la plaque monocouche pour diverses conditions aux limites
Fig.IV.12 Variation des fréquences propres en fonction de l'angle d'orientation des fibres de
la plaque monocouche (AAAA) pour différents type de matériaux
Fig.IV.13 Variation des fréquences propres en fonction de l'angle d'orientation des fibres de
la plaque monocouche (EEEE) pour différents type de matériaux
Fig.IV.14 Variation de la fréquence en fonction des modes vibratoires de la plaque
orthotrope (Verre /Epoxyde)
Fig.IV.15 Variation de la fréquence en fonction des modes vibratoires de la plaque
orthotrope (Carbone /Epoxyde)
Fig.IV.18 Variation de la fréquence en fonction des modes vibratoires de la plaque
orthotrope (Kevlar /Epoxyde)
Fig.IV.19 Comparaison entre deux plaques unidirectionnelle et orthotrope Verre /Epoxyd.98
Fig.IV.20 Stratifié équilibré (Np=6)
Fig.IV.21 Variation de la fréquence en fonction des modes vibratoires de la plaque
stratifié équilibré (Verre /Epoxyde) 100
Fig.IV.22 Stratifié symétrique (Np=7) 101
Fig.IV.23 Variation de la fréquence en fonction des modes vibratoires de la plaque
stratifié symétrique (Verre /Epoxyde)
Fig.IV.24 Stratifié croisé (Np=5)
Fig.IV.25 Variation de la fréquence en fonction des modes vibratoires de la plaque
stratifié croisé (Verre /Epoxyde)103
Fig.IV.26 Stratifié orthogonal (Np=6)
Fig.IV.27 Evolution du facteur de fréquence en fonction du numéro modale (Verre
(E)/Epoxyde)
Fig.IV.28 Comparaison du comportement vibratoire des stratifiés Verre /Epoxyde (équilibré,
symétrique, croisé et orthogonal) : plaques AAAA

Chapitre V : Etude et simulation du comportement vibratoire des plaques composites minces par le code de calcul ABAQUS

Fig.V.1 Modèle plaque monocouche unidirectionnelle
Fig.V.2 Conditions aux limites imposées à la plaque simplement appuyée 109
Fig.V.3 Maillage la plaque par des éléments shell de type SR4 (Discrétisation avec 1575
éléments) 110
Fig.V.4 Déformées modales de la plaque monocouche unidirectionnelle enVerre(E)/Epoxyde
(AAAA) : (quatre premiers modes)
Fig.V.5 Comparaison des fréquences propres calculées par la méthode de Rayleigh et
numériques fournies par ABAQUS : cas des plaques (verre/époxyde -carbone-époxyde-
kevlar-époxyde) pour la configuration (AAAA)
Fig.V.6 Déformées modales de la plaque monocouche orthotrope en Verre(E)/Epoxyde
(AAAA): (quatre premier modes)
Fig.V.7 Comparaison des fréquences propres calculées par la méthode de Rayleigh et
numériques fournies par ABAQUS : cas des plaques (verre/époxyde -carbone-époxyde-
kevlar-époxyde) pour la configuration (AAAA)120
Fig.V.8 Maillage la plaque par des éléments shell de type SR4 (Discrétisation avec 84
éléments) 121
Fig.V.9 Déformées modales de la plaque multicouche (stratifié équilibré) en
Verre(E)/Epoxyde (AAAA) : (quatre premier modes)
Fig.V.10 Comparaison des fréquences propres calculées par la méthode de Rayleigh et
numériques fournies par ABAQUS : cas des plaques (verre/époxyde -carbone-époxyde-
kevlar-époxyde) pour la configuration (AAAA)125
Fig.V.11 Déformées modales de la plaque multicouche (stratifié symétrique) en
Verre(E)/Epoxyde (AAAA) : (quatre premier modes)
Fig.V.12 Comparaison des fréquences propres calculées par la méthode de Rayleigh et
numériques fournies par ABAQUS : cas des plaques (verre/époxyde -carbone-époxyde-
kevlar-époxyde) pour la configuration (AAAA)
Fig.V.13 Déformées modales de la plaque multicouche (stratifié croisé) en
Verre(E)/Epoxyde (AAAA) : (quatre premier modes)
Fig.V.14 Comparaison des fréquences propres calculées par la méthode de Rayleigh et
numériques fournies par ABAQUS : cas des plaques (verre/époxyde -carbone-époxyde-
kevlar-époxyde) pour la configuration (AAAA)

Fig.V.15	Déformées	modales	de la	a plaqu	e multicouche	e (stratifié	orthogonal)	en
Verre(E)/I	Epoxyde (AA	AA) : (qua	atre pro	emier mo	des)		•••••	137
Fig. V.16	Comparaiso	n des fréq	uences	propres	calculées par	la méthode	de Rayleig	h et
numérique	es fournies j	par ABA	QUS :	cas des	plaques (verre	e/époxyde –c	arbone-époxy	yde-
kevlar-épo	oxyde) pour l	a configur	ation (AAAA).				140

Liste des tableaux

Chapitre I : Généralités sur les matériaux composites

Tableau I.1	Caractéristiques des fibres et renforts	8
Tableau I.2	Caractéristiques mécaniques des matrices thermodurcissables1	.2
Tableau I.3	Caractéristiques mécaniques des matrices thermoplastiques 1	.3
Tableau I.4	Stratifié symétrique (paire)2	23
Tableau I.5	Stratifié symétrique (impaire)2	23
Tableau I.6	Stratifié avec séquences2	24
Tableau I.7	Stratifiés hybrides2	24

Chapitre II : Comportement élastique des matériaux composites

Tableau II.1 Caractéristiques mécaniques pour quelques matériaux usuels	27
Tableau II.2 Les constantes de rigidité et de souplesse	34
Tableau II.3 Caractéristiques mécaniques de la fibre et de la matrice	37

Chapitre IV : Etude analytique du comportement vibratoire des plaques composites minces

Tableau IV.1 Différentes fonctions de formes pour différent variantes de conditions aux
limites
Tableau IV.2 Caractéristiques géométriques du model plaque monocouche
Tableau IV.3 Caractéristiques mécaniques du model plaque composite monocouche
Tableau IV.4 Pulsations et fréquences propres de la plaque monocouche verre (E)/époxyde
(AAAA)
Tableau IV.5 Pulsations et fréquences propres de la plaque monocouche carbone
(HM)/époxyde (AAAA)
Tableau IV.6 Pulsations et fréquences propres de la plaque kevlar/époxyde (AAAA)

Tableau IV.7 Fréquences naturelles de la plaque monocouche unidirectionnelle en
verre(E)/époxyde avec différents rapport (R=a/b) : AAAA
Tableau IV.8 Fréquences propres de la plaque unidirectionnelle (AAAA) enVerre/époxyde
avec différentes angles d'orientation des fibres (θ)
Tableau IV.9 Caractéristiques mécaniques de la plaque monocouche orthotrope
Tableau IV.10 Pulsations et fréquences propres de la plaque monocouche orthotrope en
verre/époxyde (AAAA)
TableauIV.11Pulsations et fréquences naturelles de laplaque orthotrope
carbone(HM)/époxyde (AAAA)96
Tableau IV.12 Pulsations et fréquences naturelles de la plaque orthotrope en
kevlar(49)/époxyde (AAAA)
Tableau IV.13 Caractéristiques mécaniques de la plaque stratifiée multicouches
Tableau IV.14 Types de stratification 98
Tableau IV.15 Pulsations et fréquences propres de la plaque stratifié équilibré en
verre(E)/époxyde (AAAA)
Tableau IV.16 Pulsations et fréquences propres de la plaque stratifié symétrique en
verre(E)/époxyde (AAAA)101
Tableau IV.17 Pulsations et fréquences propres de la plaque stratifié croisé en
verre(E)/époxyde (AAAA)103
Tableau IV.18 Pulsations et fréquences naturelles d'une plaque multicouche (Stratifié
orthogonal) en Verre(E)/époxyde (AAAA)

Chapitre V : Etude et simulation du comportement vibratoire des plaques composites minces par le code de calcul ABAQUS

Tableau V.6 Comparaison des résultats numériques et analytiques cas de la plaque
monocouche orthotrope Verre(E)/Epoxyde : AAAA116
Tableau V.7 Comparaison des résultats numériques et analytiques cas de la plaque
monocouche orthotrope Carbone(E)/Epoxyde : AAAA118
Tableau V.8 Comparaison des résultats numériques et analytiques cas de la plaque
monocouche orthotrope Kevlar (49)/Epoxyde : AAAA119
Tableau V.9 Comparaison des résultats numériques et analytiques cas de la plaque stratifié
équilibré Verre(E)/Epoxyde : AAAA
Tableau V.10 Comparaison des résultats numériques et analytiques cas de la plaque stratifié
équilibré Carbone(E)/Epoxyde : AAAA123
Tableau V.11 Comparaison des résultats numériques et analytiques cas de la plaque stratifié
équilibré Kevlar (49)/Epoxyde : AAAA124
Tableau V.12 Comparaison des résultats numériques et analytiques cas de la plaque
multicouche stratifié symétrique Verre(E)/Epoxyde : AAAA126
Tableau V.13 Comparaison des résultats numériques et analytiques cas de la plaque
multicouche stratifié symétrique Carbone(E)/Epoxyde : AAAA128
Tableau V.14 Comparaison des résultats numériques et analytiques cas de la plaque
multicouche stratifié symétrique Kevlar (49)/Epoxyde : AAAA
Tableau V.15 Comparaison des résultats numériques et analytiques cas de la plaque stratifié
croisé Verre(E)/Epoxyde : AAAA
Tableau V.16 Comparaison des résultats numériques et analytiques cas de la plaque stratifié
croisé Carbone(E)/Epoxyde : AAAA
Tableau V.17 Comparaison des résultats numériques et analytiques cas de la plaque stratifié
croisé Kevlar (49)/Epoxyde : AAAA
Tableau V.18 Comparaison des résultats numériques et analytiques cas de la plaque stratifié
orthogonal Verre(E)/Epoxyde : AAAA
Tableau V.19 Comparaison des résultats numériques et analytiques cas de la plaque stratifié
orthogonal Carbone(E)/Epoxyde : AAAA138
Tableau V.20 Comparaison des résultats numériques et analytiques cas de la plaque stratifié

ملخص

يركز هذا العمل على دراسة السلوك الاهتزازي للألواح المستطيلة الرقيقة المصنوعة من مواد مركبة ذات طبقة واحدة و متعددة الطبقات و تمت الدراسة بأنواع مختلفة من المواد (الزجاج/الإيبوكسي، الكربون/الإيبوكسي، الكيفلار/الإيبوكسي) و بخصائص هندسية مختلفة تعتمد دراسة الاهتزاز الانحنائي لهذه اللوحات بشكل أساسي على البحث عن مختلف الترددات و أنماطها تم حساب وتحديد الترددات الطبيعية بشكل تحليلي بناءً على طريقة رايلي-ريتز من خلال برنامج حساب مكتوب بلغة ماطلاب واستعمال التحاكي الرقمي الحساب النظامي بطريقة العناصر المنتهية وذلك بواسطة برنامج أباكوس حيث أظهرت النتائج التي تم الحصول عليها توافقًا جيدًا جدًا بين الطريقة التحليلية و المحاكاة العددية.

كلمات دالة: السلوك الاهتزازي، المواد المركبة، الزجاج، الكربون، الكيفلار، الإيبوكسي، الترددات الطبيعية، رايلي ريتز، الحساب النظامي.

Abstract

This work is focused on the study of the free vibratory behavior of thin rectangular single-layer composite and laminated plates with different geometric configurations and different materials (glass/epoxy, carbon/epoxy and kevlar/epoxy). The study of the flexural vibration of this plate is mainly based on the search for natural frequencies and eigen modes. We computed and determined the natural pulsations and frequencies analytically based on the Rayleigh-Ritz method, using a computer program written in MATLAB language and numerically by ABAQUS finite element code. The results obtained showed a very good agreement between the analytical approach and the numerical simulations.

Keys words: the free vibratory behavior, composite materials, glass, carbon, Kevlar, epoxy, natural frequencies, Rayleigh-Ritz, numerical simulation.

Résumé

Ce travail est concentré à l'étude du comportement vibratoire des plaques minces rectangulaire composites monocouches et stratifiées avec différentes configurations géométriques et différents types de matériaux (verre/époxyde, carbonne/époxyde et kevlar/époxyde). L'étude de la vibration en flexion de cette plaque repose principalement sur la recherche des fréquences et des modes propres. Nous avons calculé et déterminer les pulsations et les fréquences naturelles analytiquement en se basant sur la méthode de Rayleigh-Ritz par un programme de calcul écrit en langage MATLAB et numériquement grâce au code de calcul par éléments finis ABAQUS. Les résultats obtenus ont montré une très bonne concordance entre l'approche analytique et les simulations numériques.

Mots clés : comportement vibratoire, matériaux composites, verre, carbonne, kevlar, époxyde, fréquence naturelle, Rayleigh-Ritz, simulation numérique.

Introduction générale

La recherche de nouveaux matériaux occupe une place importante dans l'histoire de la technologie, en vue de concevoir, développer et caractériser de nouveaux matériaux destinés à l'usage dans les secteurs de la technologie de haute pointe tels que l'aéronautique et l'aérospatial et dans les applications ordinaires comme l'automobile, les loisirs et le bâtiment [1].

Depuis les deux dernières décennies, les matériaux composites sont de plus en plus utilisés comme alternative aux matériaux traditionnels dans différentes structures, en raison de leur haute résistance, rigidité spécifique, du gain de poids, ainsi que pour leurs propriétés mécaniques que l'on peut ajuster à sa guise. Les composantes essentielles des structures sont souvent sollicitées par des chargements dynamiques qui peuvent causer un endommagement assez sérieux et entraver leur bon fonctionnement. De ce fait, le contrôle continu de ces derniers est devenu une nécessité pour garantir l'intégrité, la fiabilité et la sécurité de ces structures. Le comportement dynamique est un paramètre important dont il faut tenir compte lors de la conception des structures et mécanismes.

En effet, les mouvements vibratoires sont à l'origine de nombreux problèmes typiques pouvant conduire à la ruine de la structure, tels que la résonance et la fatigue, à une limitation d'exploitation en raison d'un niveau de bruit élevé ou d'une perturbation des performances de la structure par la présence de vibrations indésirables. Dans le cas des vibrations linéaires la détermination des paramètres modaux d'une structure, à savoir les fréquences et déformées propres des modes de résonance ainsi que les amortissements modaux associés, permet de localiser les problèmes liés aux vibrations et de construire un modèle de comportement en basses fréquences de cette structure, servant à prédire la réponse de celle-ci aux différents types de chargements dynamiques, et ainsi à vérifier les solutions apportées pour le contrôle de ces problèmes [2].

Dans cette étude nous nous impliquons à ce vaste et important domaine de la technologie, afin de contribuer à la compréhension de quelques aspects du comportement vibratoire des plaques minces composites. L'étude est effectuée sur des structures constituées essentiellement de plaques composites monocouche et stratifiées dans le but de déterminer et calculer les fréquences et les pulsations propres, analytiquement par la méthode de Rayleigh-Ritz et numériquement grâce au code de calcul par éléments finis ABAQUS.

Problématique

L'objectif fondamental de ce mémoire est d'étudier et d'examiner l'influence de certains paramètres sur le comportement vibratoire des plaques composites et la détermination des pulsations et fréquences naturelles par deux approches :

- > La méthode de Rayleigh-Ritz programmée sous MATLAB
- La méthode des éléments finis en utilisant logiciel de calcul ABAQUS.

Nous nous somme intéressés en particulier aux plaques rectangulaires composites, monocouches et stratifiées, avec six différentes configurations de conditions aux limites (EEEE, AAAA, AAEE, AEAE, EEAE, AAAE)

Articulation du mémoire

Après une introduction générale, ce mémoire est compose de cinq chapitres.

- Le premier chapitre présente quelques généralités sur les matériaux composites, leurs caractéristiques et propriétés mécaniques. Un accent à été mis sur les différents types de matériaux avec une vision assez large des différents constituants de base d'un matériau composite.
- Le second chapitre est consacré aux concepts fondamentaux de la théorie de l'élasticité anisotrope appliquée aux matériaux composites.
- Le troisième chapitre est réservé à la présentation des diverses théories des plaques en général et sur la théorie classique des stratifiées (CLT) en particulier.
- Le chapitre quatre traites le problème des vibrations de flexion des plaques minces composites pour six configurations de base des conditions aux limites. La recherche des fréquences et pulsations propres est menée en se basant sur la méthode analytique de Rayleigh-Ritz, programmée sous MATLAB.
- Le chapitre cinq est une analyse modale est comparative du comportement vibratoire des plaques composites pour différents types de matériaux et pour diverses configurations géométriques pour six configurations de base des conditions aux limites. Les résultats du calcul des fréquences et pulsations propres par la méthode de Rayleigh-Ritz, programmée sous MATLAB ont été comparés à d'autres fournis suite aux simulations numériques par le code de calcul par éléments finis ABAQUS.

Les divers résultats obtenus sont repris enfin dans la conclusion qui constitue la clôture de ce travail.

Chapitre I Généralités sur les matériaux composites

I.1 Introduction

Un composite est l'assemblage de plusieurs matériaux non miscibles de nature différente et dont les qualités se complètent afin d'obtenir un matériau hétérogène dont les performances sont supérieures à celles de ses composants. Il est généralement constitué de différentes phases nommées renforts et matrice. Lorsque le matériau composite est non endommagé, les renforts et la matrice sont parfaitement liés et il ne peut pas y avoir ni glissement ni séparation entre les différentes phases.

Les renforts se présentent sous forme de fibres continues ou discontinues. Le rôle du renfort est d'assurer la fonction de résistance mécanique aux efforts. La matrice assure quant à elle la cohésion entre les renforts de manière à répartir les sollicitations mécaniques. L'arrangement des fibres, leur orientation permettent de renforcer les propriétés mécaniques de la structure. Nous étudions plus particulièrement les matériaux composites à renfort fibre longue continue utilisés dans l'industrie nautique, automobile, aéronautique et spatiale. Les pièces structurelles sont réalisées par empilement de nappes en optimisant les directions des renforts en fonction de charges qu'elles doivent subir. La nature de la résine ou du renfort est choisie en fonction de l'application finale visée [3].

I.2 Classification des matériaux composites

On distingue deux types de matériaux composites : les composites grandes diffusions et les composites hautes performances.

• Grande diffusion (GD)

Les matériaux composites à grande diffusion offrent des avantages essentiels, qui sont optimisation des coûts par diminution des prix de revient, sa composition de polyester avec des fibres de verre longues ou courtes (sous forme de mat ou tissu) et la simplicité du principe d'élaboration des matériaux (moulage par contact, SMC et injection).

• Hautes performances (HP)

Les matériaux composites à hautes performances sont utilisés dans le domaine d'aéronautique où le besoin d'une grande performance déduite des hautes valeurs ajoutées.

Les renforts sont plutôt des fibres longues. Le taux de renfort est supérieur à 50%.

Ces composites sont élaborés par les procédures suivantes:

- drapage autoclave, enroulement filamentaire, RTM.
- beaucoup de procédés encore manuels.

- CMM, CMC.

Les composites peuvent aussi être classés suivant la forme des composants ou suivant la nature des composants.

I.2.1 Classification suivant la forme des constituants

En fonction de la forme des constituants, les composites sont classés en deux grandes classes: les matériaux composites à particules et les matériaux composites à fibres

I.2.1.1 Composites à particules

Un matériau composite se dit à particules lorsque le renfort se trouve sous forme de particules. Une particule, par opposition aux fibres, ne possède pas de dimension privilégiée. Les particules sont généralement utilisées pour améliorer certaines propriétés des matériaux ou des matrices, comme la rigidité, la tenue à la température, la résistance à l'abrasion, la diminution du retrait, réduction du prix sans diminution des caractéristiques etc.

I.2.1.2 Composites à renforts de paillettes

Les paillettes ont une dimension très faible par rapport aux autres dimensions. La dispersion de ces particules minces est généralement aléatoire. Cependant, les paillettes peuvent être rangées parallèlement l'un à l'autre afin d'avoir des propriétés plus uniformes dans le plan.

I.2.1.3 Composites à fibres

Un matériau composite est appelé composite à fibres, si le renfort se trouve sous forme de fibres. Les fibres utilisées se présentent soit sous forme de fibres continues, soit sous forme de fibres discontinues : fibres coupées, fibres courtes, etc. L'arrangement des fibres, leur orientation permettent de moduler à la carte les propriétés mécaniques des matériaux composites, pour obtenir des matériaux allant de matériaux fortement anisotropes à des matériaux isotropes dans un plan.

a) composite à renforts de particules

b. composite à renforts de paillettes

c. composite à renforts de fibres

Fig. I.1 Différents types de matériaux composites

I.2.2 Classification suivant la nature des constituants

Selon la nature de la matrice, les matériaux composites sont classés en composites à matrice organique, à matrice métallique ou à matrice minérale. Les matériaux composites à matrice organique ne peuvent être utilisés dans le domaine des températures dépassant 200 à 300 °C, alors que les matériaux composites à matrices métallique ou minérale sont utilisés au-delà : jusqu'à 600 °C pour une matrice métallique, jusqu'à 1000 °C pour une matrice céramique. Divers renforts sont associés à ces matrices. Parmi ces composites, on peut citer :

I.2.2.1 Composites à matrice organique

Dans ce cas la matrice est en général de nature organique et peut être associée à différents types de fibres, à savoir : les fibres minérales comme les fibres de verre, de carbone, etc., les fibres organiques comme celles du Kevlar, des polyamides, etc. et les fibres métalliques comme par exemple les fibres de bore, d'aluminium, etc.

I.2.2.2 Composites à matrice métallique

Dans ce type de composites, la matrice est en général de nature organique utilisée souvent avec des fibres minérales : carbone, carbure de silicium (SiC), des fibres métalliques : bore et des fibres métallo-minérales : fibres de bore revêtues de carbure de silicium (BorSiC).

I.2.2.3 Composites à matrice minérale

Les matériaux composites à matrice minérale sont souvent combinées à : des fibres métalliques : bore, à des particules métalliques : cermets ou à des particules minérales : carbures, nitrures, etc.

I.3 Intérêt des matériaux composites

En fonction de leurs constituants, les matériaux composites, présentent un grand nombre d'atouts et d'avantages : D'un point de vue mécanique, ils offrent d'excellentes propriétés en traction, flexion, compression, cisaillement plan et transverse ainsi qu'une excellente absorption et résistance aux chocs. Leur résistance mécanique combinée à leur faible densité en fait un élément incontournable des conceptions actuelles qu'elles soient structurelles ou non. D'un point de vue physico-chimique, ils s'adaptent parfaitement à différents milieux ambiants et peuvent être très performants en termes de résistance aux produits chimiques, au feu, ou à la corrosion. Néanmoins, leur plus grand intérêt réside dans la possibilité de pouvoir intégrer plusieurs fonctions en une seule opération réduisant ainsi et d'une façon conséquente, le nombre de pièces d'un ensemble mécanique ou d'une conception et par conséquent son coût de revient. Bien que leur fabrication nécessite des investissements parfois lourds en termes d'outillages de moulage, ils constituent un compromis technico-économique intéressant lorsqu'ils sont fabriqués en série [4].

I.4 Constituants de base des matériaux composites

Un matériau composite est constitué d'un renfort (ossature du matériau) qui assure la tenue mécanique et d'une matrice (enveloppe ou peau du matériau) qui est généralement polymérique (résine thermoplastique ou thermodurcissable) ou métallique, qui assure la cohésion de la structure et la retransmission des efforts vers le renfort.

I.5 Les renforts

Phase discontinue et souvent filamentaire à très hautes caractéristiques mécaniques, qui assure le principal des caractéristiques mécaniques du composite (résistance et rigidité, tenue aux chocs). Les renforts sont des composants qui se présentent le plus souvent sous formes fibreuses ou filamentaires, c'est eux qui confèrent au composite l'essentiel de ces propriétés mécaniques. Les renforts les plus utilisés se présentent sous forme de fibres ou formes dérivées et constituent une fraction volumique de matériau composite généralement comprise entre 0.3 et 0.7. Les renforts fibres se présentent sous diverses formes commerciales. Sous forme de roving (fils, mèches, etc. ...) : le roving est un assemblage de fils de bases parallèles groupés sans torsion. Sous forme de tissus (tissus taffetas, toiles, serge, etc. ...): le tissu est forme par l'entrecroisement perpendiculaire des roving. Les tissus de roving peuvent peser jusqu'à 800 g/m². Sous forme de mat (a fil coupé, a fil continu):le mat est un matelas de fils coupés ou continu à ensimage plastique, agglomérés par un liant à solubilité rapide ou lente dans la résine [5].

Fig. I.2 Différentes familles du renfort.

I.5.1 Les principales fibres

I.5.1.1 Fibres de verre

Elles constituent le renfort essentiel des composites de grande diffusion. Elle est obtenue à partir de sable (silice) et d'additifs (alumine, carbonate de chaux, magnésie, oxyde de bore).

I.5.1.2 Fibre de carbone

C'est la fibre la plus utilisée dans les applications hautes performances. Elle est issue de la carbonisation de la fibre de PAN (poly acrylonitrile). Selon la température de combustion, on distingue deux types de fibres:

- Fibres à hautes résistance (HR): pour une combustion de 1000 à 1500°C
- Fibres à haut module (HM): pour une combustion de 1800 à 2000°

I.5.1.3 Fibre d'aramide

Souvent appelée KEVLAR, la fibre d'aramide est issue de la chimie des polyamides aromatiques. Il est possible de trouver deux types de fibres d'aramide de rigidités différentes: Les fibres à bas module utilisées pour les câbles et les gilets pare-balles. Les fibres à haut module, employées dans les renforcements pour les composites hautes performances.

I.5.1.4 Fibre de bore

Fibres de haut module et insensibles à l'oxydation à hautes températures, elles sont obtenues par dépôt en phase gazeuse sur un substrat en tungstène.

I.5.1.5 Fibre de silice (ou de quartz)

Elles sont produites comme le verre, par fusion et sont essentiellement utilisées pour leur haute tenue chimique et thermique dans la conception des tuyères pour moteur de fusée.

I.5.1.6 Les fibres synthétiques thermostables

Les fibres synthétiques thermostables sont des fibres organiques obtenues par synthèse, et qui conservent leurs caractéristiques mécaniques à températures élevées. Associées à des résines thermostables, elles permettent d'obtenir des matériaux dont les caractéristiques mécaniques en température sont conservées. Les caractéristiques mécaniques de ces fibres sont toutefois nettement plus faibles que celles des fibres usuelles. Elles sont utilisées dans les isolants électriques et thermiques, les protections thermiques: boucliers de missiles, cônes de rentrée de véhicule spatial, etc.

I.5.1.7 Autres fibres

Il existe diverses autres fibres utilisées pour des applications particulières. Ces fibres sont généralement à faibles module et contrainte à la rupture, excepté les fibres métalliques. Généralement, leur utilisation est réservée à une recherche de produits à bas prix de revient, des produits à haute isolation thermique, des produits à bonne conductibilité thermique ou électrique et des produits à haute absorption acoustique,

Parmi ces fibres nous avons:

- Les fibres d'origine végétale: telles que le bois utilisé sous forme de fibres orientées, le sisal, le jute, le lin, etc.
- 2. Les fibres synthétiques: telles les fibres polyester (tergal, dacron, térylène, etc.), les fibres polyamides, les fibres polyéthylène, les fibres polypropylène, etc.
- Les fibres métalliques: comme les fibres d'acier, de cuivre, d'aluminium. Ces fibres sont utilisées avec des matrices métalliques pour leurs bonnes conductibilités thermique et électrique et leurs caractéristiques thermomécaniques élevées [5].

I.5.1.8 Principales caractéristiques mécaniques des fibres de base

Dans le tableau ci-dessous, sont présentées quelques caractéristiques mécaniques des fibres de base les plus employées dans l'industrie des matériaux composites.

Renforts	d (µm)	$ ho(Kg/m^3)$	E(Mpa)	G(Mpa)	υ	σ _r (Mpa)	Δl (%)	α
Verre E	16	2600	74000	30000	0.25	2500	3.5	0.5.10 ⁵
Verre R	10	2500	86000		0.2	3200	4	0.3.10 ⁵
Carbone HM	6.5	1800	390000	20000	0.35	2500	0.6	0.08.10 ⁵
Carbone HR	7	1750	230000	50000	0.3	3200	1.3	0.02.10 ⁵
Kevlar 49	12	1450	180000	12000	0.4	2900	2.3	$-0.2.10^{5}$
Bore	100	2600	400000			3400	0.8	0.4.10 ⁵
Silicate d'alumine	10	2600	200000			3000	1.5	
Polyéthylène		960	100000			3000		

 Tableau. I.1
 Caractéristiques des fibres et renforts [5]

a. fibre de verre b. fibre de carbone c. fibre d'aramide d. fibre de sisal e. fibre de polyamide
 Fig. I.3 Exemples des fibres utilisées comme renfort de composites

I.5.1.9 Architecture des renforts

Les structures composites sont anisotropes. La plupart des renforts travaillent bien en traction, mais offrent de moins bonnes performances en compression et en cisaillement. Il est donc impératif de jouer sur la texture et la géométrie des renforts pour créer une architecture adaptée. Il existe différentes géométries et textures de renforts :

1. Les unidirectionnels (UD)

Dans une nappe UD, les fibres sont assemblées parallèlement les unes par rapport aux autres à l'aide d'une trame très légère.

2. Les tissus

Le tissu destiné au renfort de composites est une surface souple, constituée par un assemblage régulier de fils tissés ou torsadés, obtenue par entrecroisement des mèches selon deux directions perpendiculaires, chaîne et trame. Ils peuvent avoir différentes armures. On distingue principalement :

- **Toile ou taffetas :** Chaque fil de chaîne passe dessus puis dessous chaque fil de trame, et réciproquement. Le tissus présente une bonne planéité et une relative rigidité, mais est peu déformable pour la mise en œuvre. Les nombreux entrecroisements successifs génèrent un embuvage important et réduisent les propriétés mécaniques.
- Sergé : Chaque fil de chaîne flotte au dessus de plusieurs (n) fils de trame et chaque fil de trame flotte au dessus de (m) fils de chaîne. Armure de plus grande souplesse que le taffetas ayant une bonne densité de fils.
- Satin : Chaque fil de chaîne flotte au dessus de plusieurs (n-1) fils de trame et réciproquement. Ces tissus ont des aspects différents de chaque côté. Ces tissus sont assez souples et adaptés à la mise en forme de pièces à surfaces complexes. Ce type de tissus présente une forte masse spécifique.

Il existe aussi d'autres types d'architectures destinées à des utilisations spécifiques celles-ci sont bi ou tridimensionnelles. Il est également possible de réaliser des structures de renforts hybrides en tissant des fibres de natures différentes ou, en superposant des tissus ou nappes de renforts de fibres différentes.

I.6 La matrice

La matrice est l'un des deux principaux constituants de base des matériaux composites. Le rôle principal de la matrice est de maintenir les renforts en place et de leur assurer la cohésion et la protection. Elle permet également la transmission des efforts mécaniques vers les renforts. On distingue les matrices minérales (céramiques, métalliques) et les matrices organiques (composites plastiques).

Fig. I.6 Déférentes familles de matrice.

I.6.1 Différents types de matrice

Il est important de bien situer les différences fondamentales de ces deux types de matrices.

- La structure des thermoplastiques TP se présente sous forme de chaînes linéaires, il faut les chauffer pour les mettre en forme (les chaînes se plient alors), et les refroidir pour les fixer (les chaînes se bloquent). Cette opération est réversible.
- La structure des thermodurcissables TD a la forme d'un réseau tridimensionnel qui se ponte (double liaison de polymérisation) pour durcir en forme de façon définitive, lors d'un échauffement. La transformation est donc irréversible [5].

I.6.1.1 Les résines thermodurcissables

Ces plastiques prennent une forme définitive au premier refroidissement. Ils deviennent durs et ne se ramollissent plus une fois moulés. La technique de fabrication est difficile à mettre en œuvre mais elle produit des matériaux très solides et très résistants aux agressions chimiques et à la chaleur.

a) Résines polyesters insaturés

C'est la résine la plus utilisée dans l'application composite de grande distribution. Une résine de polyester insaturé contenant un monomère (généralement le styrène) est réticulée à température ambiante par addition d'un catalyseur de type peroxyde organique et d'un accélérateur. Elle passe successivement de l'état liquide visqueux initial à l'état de gel, puis à l'état de solide infusible. La réaction est exothermique et la température de la résine augmente progressivement depuis le gel jusqu'à un maximum pour redescendre ensuite lentement à la température ambiante.

b) Résines vinylesters

On peut la considérer comme une variante des polyesters produite à partir d'acides acryliques. Elles possèdent une bonne résistance à la fatigue et un excellent comportement à la corrosion, mais demeure combustible.

c) Résines Phénoliques

Elles sont issues de la polycondensation du phénol et du formol et se caractérisent par une bonne tenue au feu, sans fumée. Elles restent fragiles, sensibles à l'humidité, difficiles à colorer et à mettre en œuvre.

d) Résines Epoxydes

Elles résultent de la polyaddition de l'épichlorhydrine sur un polyalcool et constitue la résine type des composites hautes performances HP.

e) Résines Polyuréthannes et polyurées

Dans la fabrication de pièces composites, on utilise surtout des formules élastomériques dont la faible viscosité permet un bon remplissage du moule. Les constituants sont livrés à l'état de pré polymères liquides:

- Polyols + polyisocyanates = polyuréthannes
- Polyéthers + polyamines = polyurées

Matrices TD	$ ho(Kg/m^3)$	E(Mpa)	G(Mpa)	υ	$\sigma_r(Mpa)$	Δl (%)	α
Epoxyde	1200	4500	1600	0.4	130	2	11.10 ⁻³
Phénolique	1300	3000	1100	0.4	70	2.5	1.10 ⁻³
Polyester	1200	4000	1400	0.4	80	2.5	8. 10 ⁻³
Polycarbonate	1200	2400		0.35	60		6. 10 ⁻³
Vinylesters	1150	3300			75	4	5. 10 ⁻³
silicone	1100	2200		0.5	35		
Uréthanne	1100	700 - 7000			30	100	
Polyamide	1400	4000 -19000	1100	0.35	70	1	8.10 ⁻³

 Tableau. I.2
 Caractéristiques mécaniques des matrices thermodurcissables
 [5]

I.6.1.2 Les matrices thermoplastiques

Sous l'effet de la chaleur, les thermoplastiques ramollissent et deviennent souples. On peut alors leur donner une forme qu'ils garderont en refroidissant. La transformation est réversible et renouvelable un grand nombre de fois, les thermoplastiques sont ainsi facilement recyclables. Cependant ils ne sont pas biodégradables et ont une « durée de vie » de plusieurs centaines d'années. Ce sont les matières plastiques les plus utilisées (notamment le polyéthylène PE et le poly chlorure de vinyle PVC). Les principales matrices TP utilisées (possédant tous une tenue en température supérieure à 100°C, hors POM) sont les suivantes:

- Polyamide (PA) : tenue au choc, bonne résistance à la fatigue et aux hydrocarbures
- Poly téréphtalate éthylénique et butylénique (PET, PBT) : bonne rigidité, bonne ténacité
- Polycarbonate (PC) : tenue au choc
- Polysulfure de phénylène (PPS) : résistance à l'hydrolyse
- Polyoxyméthylène (POM) : bonne tenue à la fatigue

- Polysulforés (PSU et PPS) : bonne stabilité chimique et à l'hydrolyse, peu de fluage, tenue au chaud
- Polypropylène (PP) : peu onéreux et assez stable en température, mais combustible
- De plus en plus, on utilise des thermoplastiques thermostables (tenue en température >200°C et bonnes propriétés mécaniques), en particulier les suivants:
 - Polyamide-imide (PAI)
 - Polyéther-imide (PEI)
 - Polyéther-sulfone (PES)
 - Polyéther-éther-cétone (PEEK)

 Tableau. I.3
 Caractéristiques mécaniques des matrices thermoplastiques
 [5]

Matrices TP	$ ho(Kg/m^3)$	E(Mpa)	G(Mpa)	υ	$\sigma_r(Mpa)$	Δl (%)	α
РР	900	1200		0.4	30	20-400	9.10 ⁻³
PPS	1300	4000			65	100	5.10 ⁻³
PA	1100	2000		0.35	70	200	8.10 ⁻³
PES	1350	3000			85	60	6.10 ⁻³
PEI	1150	3300			105	60	6.10 ⁻³
PEEK	1300	4000			90	50	5.10 ⁻³

a. polymère thermoplastique
 b. polymère thermodurcissable
 Fig. I.7 Structures moléculaires thermoplastiques et thermodurcissables
I.7 Charges et additifs

Les charges et additifs ont principalement comme rôle de donner des propriétés particulières aux matériaux composites. Ainsi, ils servent à attribuer la couleur, à réduire le coût, à facilité le démoulage, à changer les propriétés (résistance au feu, conductibilité thermique ou électrique, etc.), ... On définit arbitrairement les charges et les additifs avec les quantités que l'on utilise: plus petit que 5% massique on dit que c'est un additif. Plus grand que 5% massique on dit que c'est une charge

a. microbilles de verre

b. noir de carbone

c. silice

Fig. I.8 Exemples des charges: (a) microbilles de verre, (b) noir de carbone, (c) silice

Les additifs possibles sont encore plus nombreux. Une classe d'additifs que l'on rencontre systématiquement est celle des agents d'interface, que l'on dépose sur les fibres pour les faire adhérer à la matrice. On rencontre également, des stabilisants, qui retardent les dégradations dues à l'oxygène, aux UV ou encore à l'ozone, des ignifugeants ou retardateurs de flamme (la plupart des polymères sont inflammables), des agents de démoulage et des colorants... Il est ainsi possible de conférer de nombreuses fonctions techniques au composite, et d'adapter finement ses propriétés aux besoins du concepteur [6].

I.8 Les Procédées de fabrication

Les techniques de fabrication jouent un rôle primordial lors de la conception des composites car chacune des opérations et techniques de fabrication influence et de manière considérable sur la qualité du produit final [7]. De nombreuses méthodes de fabrication on été développées pour répondre aux besoins, leurs choix dépend surtout des caractéristiques mécaniques dérivées et de la géométrie du produit.

I.8.1 Les technologies dites en moule ouvert

I.8.1.1 Moulage au contact

Le principe est de procéder manuellement à la réalisation des pièces à partir des résines thermodurcissables, à température ambiante et sans pression. Les renforts sont déposés sur le moule et imprégnés de résine liquide, accélérée et catalysée. Après durcissement de la résine, la pièce est démoulée et détourée.

Fig. I.9 Principe du moulage au contact.

On utilise cette technologie de moulage dans le cas de fabrication des petites séries des pièces de 1 à 1000 unités/an et pour les pièces de très grandes dimensions. Ce type de type de moulage présente beaucoup d'avantages tels que :

- 1. Très larges possibilités de forme.
- 2. Pas de limite dimensionnelle.
- 3. Une surface lisse gélocatée
- 4. Propriétés mécaniques moyennes à bonnes
- 5. Investissements spécifiques très faibles
- 6. Moule simples, peu onéreux, rapide à réaliser

Mais aussi il se limite à :

- 1. Une seule face lisse.
- 2. Nécessité de finition (détourage, perçage, etc.).
- 3. Qualité tributaire de la main d'œuvre.
- 4. Faible cadence de production par moule.
- 5. Espace de travail important.

6. Conditions de travail médiocres.

I.8.1.2 Moulage par projection simultané

Les matières premières sont mises en œuvre à l'aide d'une machine dite de projection comprenant :

- un dispositif de coupe
- projection du renfort (roving)
- un ou deux pistolets projetant simultanément la résine

Les fils coupés et la résine sont projetés sur la surface du moule puis compactés et éboulés à l'aide de rouleaux et d'ébulleurs. La résine pré accélérée est catalysée en continu lors de sa projection.

Parmi les avantages associés à ce type de moulage on retrouve :

- 1. Très larges possibilités de forme et dimensions
- 2. Travail simplifié, suppression de la mise en forme obtenue directement par la projection
- 3. Investissements très modérés
- 4. Moule simples, peu onéreux, rapides à réaliser en interne

En plus des limites rencontrées par le moulage au contact, celui-ci se limite à des Propriétés mécaniques moyennes.

Fig. I.10 Principe de moulage par projection simultanée

I.8.2 Les technologies dites en moule fermé

I.8.2.1 Moulage sous vide

Le moulage sous vide s'effectue en utilisant un moule ouvert sur lequel on dispose les couches de renfort imprégné. Une fois que le renfort (mat, tissu, préforme) est placé à l'intérieur du moule et la résine catalysée est versée sur ce dernier, une feuille de plastique souple vient couvrir le tout hermétiquement (pose d'un joint d'étanchéité sur le périmètre de la pièce). On fait le vide sous la feuille de plastique des bulles d'air, fluage de l'excédent de résine qui est absorbé par un tissu de pompage. L'ensemble est ensuite soumis à polymérisation en étuve ou en autoclave. La résine peut également être injectée par l'aspiration consécutive au vide.

On utilise ce type de moulage dans le cas d'une production en petites séries de pièces nécessitant deux faces lisses.

Fig. I.11 Moulage sous vide

I.8.2.2 Moulage par injection basse pression de résine (RTM)

Le moulage par injection de résine liquide RTM (Résine Transfert Molding) s'effectue entre moule et contre-moule rigides. Le renfort (mats, préforme, éventuellement tissus) est mis en place dans le moule, une fois celui-ci solidement fermé, la résine, accélérée et catalysée, est injectée sous faible pression (1.5 à 4 bars) à travers le renfort jusqu'au remplissage complet de l'empreinte. La pression de moulage est faible. Le procédé convient pour des cadences jusqu'à 30 pièces par jour.

Fig. I.12 Principe de moulage par injection de résine (RTM)

I.8.2.3 Moulage à froid

C'est un moulage à l'aide d'une presse à compression entre moule et contre moule rigides, initialement sans apport thermique extérieur. Le renfort (mat) est posé sur la partie inférieure du moule, la résine dotée d'un système catalytique très réactif, est tout de suite versée en vrac. La fermeture du moule sous pression (2 à 4 bars) entraîne la répartition de la résine dans l'empreinte et l'imprégnation du renfort. Le durcissement de la résine est accéléré progressivement par l'élévation de température du moule, car la réaction exothermique. Ce qui permet un démoulage rapide.

Fig. I.13 Principe de moulage à la presse à froid.

I.8.2.4 Moulage par injection de compound BMC

Le compound (Bulk Molding Compound), préparé dans un malaxeur, est une masse à mouler constituée de résine, de charges et d'adjuvants divers, renforcée par des fils de verre coupés. Le moulage ce fait à chaud (130 - 150 °C) par injection (principalement) entre moule et contre moule en acier usiné. La pression (50 à 100 bars) de fermeture du moule entraîne le fluage de la matière préalablement dosée et le remplissage de l'empreinte. Le temps de durcissement très court permet un démoulage rapide. On utilise ce type de moulage pour une production en grandes séries, et pour des pièces de taille petite et moyenne, plus ou moins épaisses.

I.8.2.5 Moulage par compression de mat pré imprégné SMC

Le mat pré imprégné (Sheet Molding Compound) est une nappe de fils coupés ou continus, imprégnée par un mélange de résine polyester, de charges et d'adjuvants spécifiques divers. Découpé en flans de masse et dimensions déterminées, le mat pré imprégné est moulé à chaud (140 à 160 °C) par compression entre un moule et un contre moule en acier usiné.

Fig. I.14 Principe de moulage par compression

I.8.2.6 Moulage par enroulement filamentaire

Suivant le schéma ci-après, il peut être intégré dans une chaîne de fabrication en continu, et ainsi autoriser l'obtention de tubes de grande longueur. Application aux enveloppes de fusées, de torpilles, de conteneurs etc... Pour des pièces de révolution à méridienne quelconque, l'enroulement est réalisé sur un mandrin de forme démontable, puis polymérisé en étuve ou en autoclave. Ce procédé est utilisé pour la fabrication de pièces devant résister aux pressions internes, (réservoirs, corps de propulseur etc.)

Fig. I.15 Enroulement filamentaire.

I.9 Architecture du composite

I.9.1 Les monocouches

Le composite monocouche correspond à l'unité élémentaire d'épaisseur, elle est constituée d'un ou plusieurs plis identiques (tissé, UD, mats,...) assemblés sans aucune orientation. Un pli est un semi produit de composites (fibres+matrice) présenté sous forme quasibidimensionnelle, feuille d'épaisseur faible (≈ 0.125 mm). On distingue le pli UD (le renfort est à structure UD), le pli tissé (le renfort est à structure orienté) et le pli mat (le renfort est à structure aléatoire). La superposition de la monocouche dans l'ordre du plan de drapage va constituer le stratifié

Fig. I.16 Pli unidirectionnel

I.9.2 Les stratifiées

Les structures composites stratifiées sont constituées de couches successives de renforts imprégnés de résines. Les couches sont également nommées plis. Les structures stratifiées réalisées à partir de matériaux composites sont constituées d'empilements de nappes unidirectionnelles ou bidirectionnelles. Ces nappes sont formées de renforts en fibres longues liées par de la résine. Le rôle du renfort est d'assurer la fonction de résistance mécanique aux efforts. La résine assure quant à elle la cohésion entre les renforts de manière à répartir les sollicitations mécaniques. Les pièces structurelles sont réalisées par empilement de nappes en optimisant les directions des renforts en fonction des charges qu'elles doivent subir.

Les matériaux composites sont modélisés à une échelle intermédiaire entre l'échelle microscopique associée aux constituants de base du composite (le renfort et la matrice) et l'échelle macroscopique liée à la structure. À cette échelle, appelée méso échelle, une structure stratifiée est schématisée par un empilement de monocouches homogènes dans l'épaisseur et d'interfaces inter laminaires. La couche et l'interface sont les deux entités appelées méso constituants, comme illustré sur (**Fig. I.17**), qui forment les bases des modèles dédiés à l'étude des structures stratifiées. L'interface inter laminaire est une entité surfacique

assurant le transfert des déplacements et des contraintes normales d'une couche à une autre. En élasticité, les couches sont parfaitement liées et l'interface ne joue aucun rôle particulier. L'étude des composites jusqu'à la phase ultime de la rupture montrera l'utilité d'employer un modèle d'interface pour simuler les phénomènes de délaminage (séparation progressive des couches) [5].

Fig. I.17 Composite stratifié

I.9.2.1 Stratifiés unidirectionnels

Les stratifiés unidirectionnels sont constitués de couches avec des fibres unidirectionnels, dont la direction est décalée dans chaque couche.

I.9.2.2 Les stratifiés hybrides

Les stratifiés hybrides sont constitués de couches successives comportant des fibres de natures différentes. Il sera alors nécessaire de les mentionner dans la désignation. Les stratifiés hybrides permettent d'être plus performants en utilisant au mieux les propriétés des diverses fibres disponibles. Parmi les différents hybrides, on peut distinguer :

- des hybrides inter-couches, constitués d'une suite de couches, chacune de nature différente
- des hybrides intra-couches, constitués par une séquence de couches identiques, chaque couche étant constituée de renforts différents; des couches métalliques peuvent également être intercalées entre les couches

I.9.2.3 Désignation des structures stratifiées

Les structures stratifiées à base de tissus unidirectionnels sont constituées d'un grand nombre de couches ou plis. L'épaisseur d'une couche dépend de son grammage. L'épaisseur de chacune des couches est généralement très faible, de l'ordre de 0,125 mm pour un matériau carbone époxy de type Aéronautique et 0,3 mm pour ceux qui sont utilisés dans l'Industrie Nautique. Ces structures stratifiées sont constituées de couches unidirectionnelles avec des fibres orientées de façon différente d'une couche à l'autre afin d'obtenir les propriétés mécaniques souhaitées pour la structure finale.

La désignation des structures stratifiées est délicate car il faut préciser les axes de référence. Un stratifié est codifié de la façon suivante :

- chaque couche est désignée par un nombre indiquant la valeur en degré de l'angle que fait la direction des fibres avec l'axe de référence x. sur (Fig. I.17.a) et (Fig. I.17.b), les couches sont représentées décalées les unes par rapport aux autres. La structure stratifiée est décrite de bas en haut;
- les couches sont nommées successivement entre crochet en allant de la face inférieure à la face supérieure. Les couches successives sont séparées par le symbole « / » comme l'exemple de (Fig. I.18.a) : [-45/45/-45/45/-45];
- les couches successives d'un même matériau et de même orientation sont désignées par un indice numérique, comme l'exemple de (Fig. I.17.b) : [0/45₂/90/-45₂/0];
- en cas de stratification hybride (différents matériaux dans un même stratifié), il faut préciser par un indice la nature de la couche;
- en cas de structures symétriques, la moitié est codifiée et le symbole s indique la symétrie: [-45/45/-45/-45/-45] devient [-45/45/-45]_s et [0/45/45/90/-45/-45/0] devient [0/45₂/90/-45₂/0].

a. [-45/45/-45/-45/45/-45]

b. [0/45/45/90/-45/-45/0]

Fig. I.18 Désignation d'un stratifié

Fig. I.19 Convention de signe pour la désignation des stratifiés.

I.9.2.4 Stratifié symétrique

Un stratifié est symétrique si son plan moyen est un plan de symétrie. Sa désignation ne nécessite alors que la moitié des couches successives. Si le stratifié a un nombre pair de couches, la désignation débute sur une face pour finir au plan de symétrie. Un indice (s) indique que le stratifié est symétrique.

 Tableau I.4
 Stratifié symétrique (paire)

Orientation des fibres	Notations du stratifié
90°/45°/45°/0°/0°/45°/45°/90°	[90/452/0] s

Si le stratifié comporte un nombre impair de couches, la désignation est semblable à la précédente, la couche centrale étant surlignée. Par exemple :

fubicut no statific symetrique (impane)	Tableau I.5	Stratifié	symétrique	(impaire)
---	-------------	-----------	------------	-----------

Orientation des fibres	Notations du stratifié
90°/45°/45°/0°/45°/45°/90°	[90/45 ₂ / <u>0</u>] _S

I.9.2.5 Séquence

La répétition de séquences peut être indiquée par un indice indiquant le nombre de fois où une séquence est successivement répétée.

Orientation des fibres	Notations du stratifié
0°/45°/90°/0°/45°/90°/90°/45°/0°/90°/45°/0°	[(0°/45°/90°) ₂] _S ou [(0/45/90)] _{2S}
0°/45°/90°/0°/45°/90°/60°/30°/60°/30°/60°/30°	[(0°/45°/90°) ₂ (60°/30°) ₃]

Tableau I.6Stratifié avec séquences

I.9.2.6 Stratifiés hybrides

Etant donné que les stratifiés hybrides sont constitués de couches successives ayant des fibres de natures différentes. Nous somme dans la nécessité de designer les matériaux de renfort de chaque pli. Par exemple, pour des stratifiés avec la même résine :

Tableau I.7 Stratifiés hybrides

Orientation des fibres	Notations de stratifié
0°V/45°C/-45°C/90°C/90°C/-45°C/45°C/0°V	[(0V/ 45C/90C) 2] s ou [(0V/ 45/90C)] 2s

I.9.2.7 Structure générale d'un stratifié

Dans le cas général, le renfort de chaque couche est de natures diverses : fils, stratifiés, mats, tissus, fibres de verre, fibres de carbone, etc. Chaque couche doit alors être désignée par l'indication de la nature des fibres, du type de renfort : fils, mat, tissu avec indication de la proportion de fibres suivant le sens chaîne et trame. Le choix de la nature et de la séquence des couches dépendra de l'utilisation du matériau composite, en l'adaptant au mieux au champ des contraintes imposé :

- les couches unidirectionnelles ont de bonnes performances mécaniques dans la direction des fibres
- les mats sont peu résistants en traction et devront être réservés aux zones comprimées
- une stratification croisée sera sensible au délaminage inter laminaire
- une stratification avec au moins trois directions de fibres sera nécessaire pour avoir une pseudo-isotropie dans le plan du stratifié

Enfin, il est intéressant de noter qu'une stratification symétrique garantira généralement une bonne planéité du stratifié après démoulage.

I.9.3 Les sandwichs

Le principe du technique sandwich consiste à appliquer sur une âme (constituée d'un matériau ou d'une structure légère possédant de bonnes propriétés en compression) deux "feuilles",

appelées peaux, possédant de bonnes caractéristiques en traction. L'objectif d'un tel procédé est de constituer une structure permettant de concilier légèreté et rigidité [6].

Généralement, le choix des matériaux est fait avec pour objectif initial d'avoir une masse minimale en tenant compte ensuite des conditions d'utilisation (conditions thermiques, corrosion, prix, etc.).

Les matériaux les plus couramment utilisés sont :

- pour les âmes pleines (Fig. I.20) :
- le balsa ou bois cellulaire
- diverses mousses cellulaires
- des résines chargées de microsphères creuses de verre, appelées mousses syntactiques
- pour les âmes creuses (Fig. I.21), essentiellement nid d'abeilles et profilés :
- des alliages métalliques légers
- du papier kraft (enduit ou non de résine)
- du papier polyamide, type papier Nomex

Des âmes mixtes peuvent être utilisées. Les peaux sont le plus souvent des stratifiés (verre, carbone, Kevlar) ou des feuilles d'alliages légers. Pour que les structures sandwiches jouent pleinement leur rôle, il est nécessaire de veiller à avoir une solidarisation parfaite de l'ensemble âme-peaux, de manière à répartir les efforts entre âme et peaux. L'assemblage est réalisé par un collage à l'aide de résines compatibles avec les matériaux en présence.

Fig. I.20 Matériaux sandwiches à âmes pleines

Fig. I.21 Matériaux sandwiches à âmes creuses.

I.10 Conclusion

Dans ce chapitre nous avons réalisé une recherche bibliographique sur les matériaux composites et de leur constituants de base. Nous avons un aperçu général sur les matériaux composites, définition, classification.

Chapitre II Comportement élastique des matériaux composites

II.1 Loi de comportement élastique

C'est grâce à la propriété élastique des corps déformables qu'on a pu relier la déformation à la contrainte et établir une relation entre les deux phénomènes (loi de Hooke). Dans un milieu continu, les champs de déformations ε_{ij} et de contraintes σ_{ij} sont liés par les lois de comportement. Ces lois caractérisent le comportement mécanique de ce milieu. Dans le domaine de l'élasticité linéaire, les contraintes σ_{ij} et les déformations ε_{ij} sont reliées par le tenseur de constitution noté C.

$$[\sigma] = [C]. [\varepsilon] \tag{II.1}$$

En notation indicielle :

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl} \tag{II.2}$$

Le comportement élastique d'un milieu continu est aussi caractérisé par une relation linéaire liant les déformations aux contraintes:

$$[\varepsilon] = [S]. [\sigma] \tag{II.3}$$

En notation indicielle :

$$\varepsilon_{ij} = S_{ijkl}\sigma_{kl} \tag{II.4}$$

 C_{ijkl} et S_{ijkl} représentent respectivement les tenseurs de rigidité et de souplesse. Compte tenu de la symétrie des deux tenseurs σ_{ij} et ε_{ij} selon le principe de réciprocité de Cauchy [10], on peut dire que ces deux tenseurs sont aussi symétriques. A cause de sa symétrie, le tenseur d'élasticité fait apparaître (21) coefficients au lieu de (36).

$$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{32} \\ \sigma_{31} \\ \sigma_{12} \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{12} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{13} & C_{23} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{14} & C_{24} & C_{34} & C_{44} & C_{45} & C_{46} \\ C_{15} & C_{25} & C_{35} & C_{45} & C_{55} & C_{56} \\ C_{16} & C_{26} & C_{36} & C_{46} & C_{56} & C_{66} \end{pmatrix} \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{32} \\ \varepsilon_{31} \\ \varepsilon_{12} \end{pmatrix}$$
(II. 5)

Et :

$$\begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{32} \\ \varepsilon_{31} \\ \varepsilon_{12} \end{pmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \\ S_{12} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} \\ S_{13} & S_{23} & S_{33} & S_{34} & S_{35} & S_{36} \\ S_{14} & S_{24} & S_{34} & S_{44} & S_{45} & S_{46} \\ S_{15} & S_{25} & S_{35} & S_{45} & S_{55} & S_{56} \\ S_{16} & S_{26} & S_{36} & S_{46} & S_{56} & S_{66} \end{bmatrix} \begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{32} \\ \sigma_{31} \\ \sigma_{12} \end{pmatrix}$$
(II. 6)

II.2 Loi de Hooke généralisée pour un milieu isotrope

La loi de Hooke généralisée permet de définir le comportement d'un matériau élastique linéaire, homogène isotrope et pour un état de sollicitation quelconque. Elle peut être exprimée en notation indicielle par la relation suivante

$$\varepsilon_{ij} = 3p.\frac{\upsilon}{E}.\delta_{ij} + \frac{1+\upsilon}{E}.\sigma_{ij}$$
(II.7)

Les composantes du tenseur de déformations normales et tangentielles peuvent être exprimées grâce à la relation (II.7) comme suit :

$$\begin{cases} \varepsilon_{11} = \frac{\sigma_{11}}{E} + \frac{\upsilon}{E} (\sigma_{22} + \sigma_{33}) \\ \varepsilon_{22} = \frac{\sigma_{22}}{E} + \frac{\upsilon}{E} (\sigma_{11} + \sigma_{33}) \\ \varepsilon_{33} = \frac{\sigma_{33}}{E} + \frac{\upsilon}{E} (\sigma_{11} + \sigma_{22}) \end{cases}$$
(II.8)

Et :

$$\begin{cases} \varepsilon_{13} = \frac{(1+\upsilon)}{E} \sigma_{13} = \frac{\sigma_{13}}{2G} = \varepsilon_{31} \\ \varepsilon_{23} = \frac{(1+\upsilon)}{E} \sigma_{23} = \frac{\sigma_{23}}{2G} = \varepsilon_{32} \\ \varepsilon_{12} = \frac{(1+\upsilon)}{E} \sigma_{12} = \frac{\sigma_{12}}{2G} = \varepsilon_{21} \end{cases}$$
(II.9)

E, u, et G : représentent respectivement : le module de Young, le coefficient de Poisson et le module de cisaillement. L'expression (II.8) s'inverse sous la forme suivante, appelée équation de constitution d'un milieu élastique :

$$\sigma_{ij} = \frac{\sigma_{ij}}{(3\lambda + 2\mu)} \cdot \delta_{ij} + 2\mu \cdot \varepsilon_{ij}$$
(II. 10)

 μ (ou encore noté G), λ sont dit coefficients de Lamé et σ_{ij} le trace du tenseur de contraintes σ_{ij} . Ces coefficients sont donnés par les relations qui suivent :

$$E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu} = \frac{G(3\lambda + 2G)}{\lambda + G}$$
(II. 11)

Nous avons aussi :

$$\upsilon = \frac{\lambda}{2(\lambda + \mu)} = \frac{\lambda}{2(\lambda + G)}$$
(II. 12)

Et :

$$\mu = G = \frac{E}{2(1+\upsilon)} \tag{II. 13}$$

Et en fin :

$$\lambda = \frac{\upsilon E}{(1 - 2\nu)(1 + \upsilon)}$$
(II. 14)

La loi de comportement est caractérisée par deux écritures différentes. On utilise soit les coefficients de Lamé (μ) et (λ), soit le module de Young (E) et le coefficient de Poisson (υ). On préfère souvent l'emploi de ces deux dernières grandeurs qu'on peut facilement les déterminer par un simple essai de traction. Le tableau suivant résume la valeur de ses grandeurs pour quelques matériaux [10].

Matériaux	E (GPa)	υ	$ ho(kg/dm^3)$
Acier de construction	210	0.285	7.8
Acier Inox 18-12	203	0.29	7.9
Fonte grise	90 à 120	0.29	7.1 à 7.2
Alliage TA6V	105	0.25	7.8
Aluminium	71	0.34	2.6
Zinc	78	0.21	7.15
Titane	105	0.34	4.5
Verre	60	0.25	2.8
Béton en compression	10 à 13	0.15	2 à 2.4
Caoutchouc	0.2	0.5	1.8
Bois (Pin)	7	0.2	0.4
Marbre	26	0.3	2.8
Graphite	250 à 350	0.3 à 0.4	1.75 à 1.92
Elastomère	0.2	0.5	1

Tableau II.1 Caractéristiques mécaniques pour quelques matériaux usuels

II.3 Notation de l'ingénieur

Les composantes des tenseurs de contraintes et de déformations peuvent être réduites à six composantes indépendantes à cause de la propriété de symétrie de ses deux tenseurs. Pour des raisons de commodité et de simplification de l'écriture, la notation tensorielle peut être contractée en utilisant la notation suivante appelée notation de l'ingénieur [11]:

$$[\sigma] = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} \Longrightarrow (\sigma) = \begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} = \sigma_{32} \\ \sigma_{13} = \sigma_{31} \\ \sigma_{12} = \sigma_{21} \end{pmatrix} = \begin{pmatrix} \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{4} \\ \sigma_{5} \\ \sigma_{6} \end{pmatrix}$$
(II. 15)

$$[\varepsilon] = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{bmatrix} \Longrightarrow (\varepsilon) = \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{23} = \varepsilon_{32} \\ \varepsilon_{13} = \varepsilon_{31} \\ \varepsilon_{12} = \varepsilon_{21} \end{pmatrix} = \begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \varepsilon_{4} \\ \varepsilon_{5} \\ \varepsilon_{6} \end{pmatrix}$$
(II. 16)

II.4 Différents types des matériaux

II.4.1 Matériaux anisotropes

Ce sont des matériaux avec des propriétés qui varient selon une direction bien déterminée et ne présentent pas de plans de symétrie. Les tenseurs de rigidité et de souplesse sont caractérisés par 81 coefficients et en raison de la symétrie des tenseurs de contraintes σ_{ij} et de déformation ϵ_{ij} , il y a une réduction à 21 coefficients qui sont indépendants. Les distorsions angulaires sont exprimées en fonction des déplacements :

$$\gamma_{23} = 2\varepsilon_{23}$$

$$\gamma_{13} = 2\varepsilon_{13}$$

$$\gamma_{12} = 2\varepsilon_{12}$$

(II. 17)

La loi de Hooke s'écrit sous forme matricielle :

$$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{32} \\ \sigma_{31} \\ \sigma_{12} \end{pmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{12} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{13} & C_{23} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{14} & C_{24} & C_{34} & C_{44} & C_{45} & C_{46} \\ C_{15} & C_{25} & C_{35} & C_{45} & C_{55} & C_{56} \\ C_{16} & C_{26} & C_{36} & C_{46} & C_{56} & C_{66} \end{bmatrix} \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{32} \\ \varepsilon_{31} \\ \varepsilon_{12} \end{pmatrix}$$
(II. 18)

En inversant (II.18), on obtient :

$$\begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{32} \\ \varepsilon_{31} \\ \varepsilon_{12} \end{pmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \\ S_{12} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} \\ S_{13} & S_{23} & S_{33} & S_{34} & S_{35} & S_{36} \\ S_{14} & S_{24} & S_{34} & S_{44} & S_{45} & S_{46} \\ S_{15} & S_{25} & S_{35} & S_{45} & S_{55} & S_{56} \\ S_{16} & S_{26} & S_{36} & S_{46} & S_{56} & S_{66} \end{bmatrix} \begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{32} \\ \sigma_{31} \\ \sigma_{12} \end{pmatrix}$$
(II. 19)

II.4.2 Matériau monoclinique

Si le matériau a un plan de symétrie il est dit monoclinique, quelques constantes du tenseur de constitution sont nulles et le comportement peut être décrit par 13 constantes indépendantes:

$$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{32} \\ \sigma_{31} \\ \sigma_{12} \end{pmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & C_{16} \\ C_{12} & C_{22} & C_{23} & 0 & 0 & C_{26} \\ C_{13} & C_{23} & C_{33} & 0 & 0 & C_{36} \\ 0 & 0 & 0 & C_{44} & C_{45} & 0 \\ 0 & 0 & 0 & C_{45} & C_{55} & 0 \\ C_{16} & C_{26} & C_{36} & 0 & 0 & C_{66} \end{bmatrix} \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{32} \\ \varepsilon_{31} \\ \varepsilon_{12} \end{pmatrix}$$
(II. 20)

Fig. II.1 Symétrie par rapport un plan

II.4.3 Matériau unidirectionnel

Le matériau unidirectionnel est un matériau possédant un axe de symétrie, par exemple l'axe \vec{x}_1 , c'est le cas pour un ensemble de fibres unidirectionnelles dans une matrice (Fig. II.1). Il est souvent appelé orthotrope de révolution. Dans ce cas la relation d'élasticité s'écrit :

La forme inverse s'écrit :

$$\begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{32} \\ \varepsilon_{31} \\ \varepsilon_{12} \end{pmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{12} & 0 & 0 & 0 \\ S_{12} & S_{22} & S_{23} & 0 & 0 & 0 \\ S_{12} & S_{23} & S_{22} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2}(S_{22} - S_{23}) & 0 & 0 \\ 0 & 0 & 0 & 0 & S_{66} & 0 \\ 0 & 0 & 0 & 0 & 0 & S_{66} \end{bmatrix} \begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{32} \\ \sigma_{31} \\ \sigma_{12} \end{pmatrix}$$
(II.22)

Fig. II.2 Matériau unidirectionnel

II.4.4 Matériau orthotrope

Se sont des matériaux qui possèdent 3 plans de symétrie orthogonaux deux à deux (**Fig. II.2**), ces derniers ont les mêmes propriétés ou caractéristiques mécanique, ce qui réduit le nombre des coefficients indépendants à 9.

Fig. II.3 Matériau orthotrope

Pour ce type de matériaux, la relation d'élasticité s'écrit :

$$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{32} \\ \sigma_{31} \\ \sigma_{12} \end{pmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{32} \\ \varepsilon_{31} \\ \varepsilon_{12} \end{pmatrix}$$
(II. 23)

En inversant ce système on obtient :

$$\begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{32} \\ \varepsilon_{31} \\ \varepsilon_{12} \end{pmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & 0 & 0 & 0 \\ S_{12} & S_{22} & S_{23} & 0 & 0 & 0 \\ S_{13} & S_{23} & S_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & S_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & S_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & S_{66} \end{bmatrix} \begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{32} \\ \sigma_{31} \\ \sigma_{12} \end{pmatrix}$$
(II. 24)

En fonction des modules de l'ingénieur, les coefficients de souplesse sont définis comme suit :

$$\begin{pmatrix} \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{4} \\ \sigma_{5} \\ \sigma_{6} \end{pmatrix} = \begin{bmatrix} 1/E_{1} & -\upsilon_{12}/E_{1} & -\upsilon_{13}/E_{1} & 0 & 0 & 0 \\ -\upsilon_{12}/E_{2} & 1/E_{2} & -\upsilon_{23}/E_{2} & 0 & 0 & 0 \\ -\upsilon_{13}/E_{3} & -\upsilon_{23}/E_{3} & 1/E_{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/G_{23} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/G_{13} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/G_{12} \end{bmatrix} \begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \varepsilon_{4} \\ \varepsilon_{5} \\ \varepsilon_{6} \end{pmatrix}$$
(II. 25)

Avec :

- *E_{ij} et G_{ij}* sont respectivement : le module de Young ou élasticité longitudinal et Coulomb ou cisaillement transversal
- v_{ij} est le coefficient de Poisson

La relation entre les modules de Young et les coefficients de Poisson s'écrit en notation indicielle:

$$\frac{E_i}{v_{ij}} = \frac{E_j}{v_{ij}} \tag{II.25}$$

II.4.5 Matériaux transversalement isotrope

Un matériau isotrope transverse est un matériau orthotrope qui comporte un axe ou un plan d'isotropie. Les propriétés suivant les axes 2 et 3 sont identiques donc:

$$C_{22} = C_{33}$$

 $C_{12} = C_{13}$
 $C_{55} = C_{66}$
(II. 26)

Le nombre de coefficients indépendants se réduit à 5 coefficients indépendants et la loi de comportement s'écrit:

$$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{32} \\ \sigma_{31} \\ \sigma_{12} \end{pmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{C_{22} - C_{23}}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{C_{22} - C_{23}}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} \begin{pmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ \epsilon_{32} \\ \epsilon_{31} \\ \epsilon_{12} \end{pmatrix}$$
(II. 27)

Fig. II.4 Matériau isotrope transverse

II.4.6 Matériau quasi isotrope transverse

Dans ce type de matériaux, le nombre de coefficients indépendants se réduit à 6 coefficients et la loi de comportement s'écrit:

$$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{32} \\ \sigma_{31} \\ \sigma_{12} \end{pmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{32} \\ \varepsilon_{31} \\ \varepsilon_{12} \end{pmatrix}$$
(II. 28)

II.4.7 Matériau quasi isotrope

Dans ce cas, le nombre de coefficients indépendants se réduit à 3 coefficients et la loi de comportement s'écrit comme suit:

$$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{32} \\ \sigma_{31} \\ \sigma_{12} \end{pmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{12} & C_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{44} \end{bmatrix} \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{31} \\ \varepsilon_{12} \end{pmatrix}$$
(II. 29)

II.4.8 Matériau isotrope

~

Un matériau est dit isotrope lorsque ses propriétés physiques ou mécaniques sont identiques dans toutes les directions, soit :

$$E_{1} = E_{2} = E_{3} = E$$

$$v_{12} = v_{13} = v_{23} = v$$

$$G_{12} = G_{13} = G_{23} = G$$

(II. 30)

Ce qui réduit le nombre des coefficients élastiques indépendants à 2 (C_{11} et C_{12}).

$$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{32} \\ \sigma_{31} \\ \sigma_{12} \end{pmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{12} & 0 & 0 & 0 \\ c_{12} & c_{11} & c_{12} & 0 & 0 & 0 \\ c_{12} & c_{12} & c_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{c_{11} - c_{12}}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{c_{11} - c_{12}}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{c_{11} - c_{12}}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{c_{11} - c_{12}}{2} \end{bmatrix} \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{32} \\ \varepsilon_{31} \\ \varepsilon_{12} \end{pmatrix}$$
(II. 32)

En termes de constantes de l'ingénieur, la loi de comportement élastique d'un milieu isotrope s'écrit :

$$\begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{23} \\ \gamma_{12} \end{pmatrix} = \begin{bmatrix} \frac{1}{E} & \frac{-\upsilon}{E} & \frac{-\upsilon}{E} & 0 & 0 & 0 \\ \frac{-\upsilon}{E} & \frac{1}{E} & \frac{-\upsilon}{E} & 0 & 0 & 0 \\ \frac{-\upsilon}{E} & \frac{-\upsilon}{E} & \frac{1}{E} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G} \end{bmatrix} \begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \tau_{23} \\ \tau_{31} \\ \tau_{12} \end{pmatrix}.$$
(II. 33)

Avec :

$$G = \frac{E}{2(1+\upsilon)}$$
(II. 34)

II.5 Loi de comportement d'un composite en dehors des axes d'orthotropie

Dans le cas général, un stratifié est constitué de plusieurs couches orthotropes, chacune d'elles pouvant être orientée différemment par rapport au référentiel du stratifié. L'orientation d'une couche est mesurée par l'angle θ formé par son axe principal (1,L) avec l'axe (1',x) de référence (**Fig. II.5**). La notation (l',2',3') est utilisée dans les relations matricielles, tandis que la notation (x,y,z) trouve son application pour les relations tensorielles.

Fig. II.5 Axes principaux (1,2,3) d'une couche et référentiel (l',2',3') du stratifié La matrice de passage du système (1,2,3) au système de référence (x,y,z) est donnée par la relation suivante :

$$[T] = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(II. 35)

Les matrices de rigidité [C'] et de souplesse [S'] exprimée dans la base (1',2',3') sont obtenues en appliquant les relations de changement de base suivantes :

$$C' = T^{-1}{}_{\sigma}CT_{\varepsilon}$$
(II. 36)

$$S' = T^{-1}{}_{\varepsilon}ST_{\sigma}$$
 (II. 37)

Avec :

$$T_{\sigma} = \begin{bmatrix} c^2 & s^2 & 0 & 0 & 0 & 2sc \\ s^2 & c^2 & 0 & 0 & 0 & -2sc \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & c & -s & 0 \\ 0 & 0 & 0 & s & c & 0 \\ -sc & sc & 0 & 0 & 0 & c^2 - s^2 \end{bmatrix}$$
(II. 38)

Et :

$$T_{\varepsilon} = \begin{bmatrix} c^2 & s^2 & 0 & 0 & 0 & sc \\ s^2 & c^2 & 0 & 0 & 0 & -sc \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & c & -s & 0 \\ 0 & 0 & 0 & s & c & 0 \\ 2sc & 2sc & 0 & 0 & 0 & c^2 - s^2 \end{bmatrix}$$
(II. 39)

Avec :

$$c = \cos \theta \tag{II.40}$$

Et :

$$s = \sin \theta$$
 (II.41)

 $T^{-1}{}_{\varepsilon}$ et $T^{-1}{}_{\sigma}$ sont respectivement les matrices inverses de T_{ε} et T_{σ} . On considère (Fig.II.5) une couche de matériau composite unidirectionnel ou tissu de directions principales (1,2,3), le plan (1,2) étant confondu avec le plan de la couche, et la direction 1 confondue avec la direction des fibres ou de la chaîne. Pour déterminer les propriétés élastiques de cette couche par rapport au système d'axes de référence (l',2',3) du stratifié, la direction des fibres ou de la chaîne faisant un angle θ avec la direction 1'. Ce système d'axes est usuellement référencé comme système (x,y,z). Le comportement élastique d'une couche, rapporté à ses axes principaux, est donné par les relations (II.36) et (II.37). Les matrices de rigidité C' et de souplesse S', exprimées dans la base (l',2',3), sont obtenues en appliquant aux matrices de rigidité et de la matrice de souplesse, rapportées à la base (1,2,3), les relations de changement de base. Ces relations permettent de déterminer la matrice de rigidité C' et sont données dans le tableau suivant :

	Constantes de rigidité		Constantes de souplesse
<i>C</i> ′ ₁₁ =	$C_{11}C^4 + C_{22}S^4 + 2(C_{12} + 2C_{66})S^2C^2$	<i>S</i> ′ ₁₁ =	$S_{11}C^4 + S_{22}S^4 + 2(S_{12} + 2S_{66})S^2C^2$
<i>C</i> ′ ₁₂ =	$(C_{11} + C_{22} - 4C_{66})S^2C^2 + C_{12}(S^4 + C^4)$	<i>S</i> ′ ₁₂ =	$(S_{11} + S_{22} - 4S_{66})S^2C^2 + S_{12}(S^4 + C^4)$
<i>C</i> ′ ₁₃ =	$C_{12}C^2 + C_{23}S^2$	<i>S</i> ′ ₁₃ =	$S_{12}C^2 + S_{23}S^2$
<i>C</i> ′ ₁₄ =	0	<i>S</i> ′ ₁₄ =	0
<i>C</i> ′ ₁₅ =	0	<i>S</i> ′ ₁₅ =	0
<i>C</i> ′ ₁₆ =	$(C_{11} + C_{12} - 2C_{66})SC^2 + (C_{12} + C_{22} + 2C_{66})S^2C$	<i>S</i> ′ ₁₆ =	$(2(S_{11} + S_{12}) - 2S_{66})SC^2 + (2(S_{12} + S_{22}) + 2S_{66})S^2C$
<i>C</i> ′ ₂₂ =	$C_{11}S^4 + 2(C_{12} + 2C_{66})S^2C^2 + C_{22}C^4$	<i>S</i> ′ ₂₂ =	$S_{11}S^4 + 2(S_{12} + 2S_{66})S^2C^2 + S_{22}C^4$
<i>C</i> ′ ₂₃ =	$C_{23}C^2 + C_{12}S^2$	<i>S</i> ′ ₂₃ =	$S_{23}C^2 + S_{12}S^2$
<i>C</i> ′ ₂₄ =	0	<i>S</i> ′ ₂₄ =	0
<i>C</i> ′ ₂₅ =	0	<i>S</i> ′ ₂₅ =	0
<i>C</i> ′ ₂₆ =	$(C_{11} - C_{12} - 2C_{66})S^2C + (C_{12} - C_{12} - 2C_{66})C^2S$	<i>S</i> ′ ₂₆ =	$(2(S_{11} - S_{12}) - S_{66})SC^2 + (2(S_{12} - S_{22}) + S_{66})S^2C$
<i>C</i> ′ ₃₃ =	C ₂₂	<i>S</i> ′ ₃₃ =	S ₂₂
<i>C</i> ′ ₃₄ =	0	<i>S</i> ' ₃₄ =	0
<i>C</i> ′ ₃₅ =	0	<i>S</i> ′ ₃₅ =	0
<i>C</i> ′ ₃₆ =	$(C_{12} - C_{23})SC$	<i>S</i> ' ₃₆ =	$2(S_{12} - S_{23})SC$
<i>C</i> ′ ₄₄ =	$((C_{22} - C_{23})/2)C^2 + C_{66}S^2$	<i>S</i> ' ₄₄ =	$2(S_{22} - S_{23})C^2 + S_{66}S^2$
<i>C</i> ′ ₄₅ =	$(C_{66} - (C_{22} - C_{23})/2)SC$	$S'_{45} =$	$(S_{66} - 2(S_{22} - S_{23}))SC$
<i>C</i> ′ ₄₆ =	0	<i>S</i> ′ ₄₆ =	0
<i>C</i> ′ ₅₅ =	$((C_{22} - C_{23})/2)S^2 + C_{66}C^2$	<i>S</i> ′ ₅₅ =	$2(S_{22} - S_{23})S^2 + S_{66}C^2$
<i>C</i> ′ ₅₆ =	0	<i>S</i> ′ ₅₆ =	0
<i>C</i> ′ ₆₆ =	$(C_{11} - C_{22} - 2(C_{12} + C_{66}))S^2C^2 + C_{66}(S^4 + C^4)$	<i>S</i> ′ ₆₆ =	$2(2(S_{11} + S_{22} - 2S_{12}) - S_{66})S^2C^2 + S_{66}(S^4 + C^4)$

Tableau II.2 Les constantes de rigidité et de souplesse

les relations d'élasticité peuvent s'écrire dans le repère (x,y,z) sous l'une des deux formes :

$$\begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{yz} \\ \sigma_{xz} \\ \sigma_{xy} \end{pmatrix} = \begin{bmatrix} C'_{11} & C'_{12} & C'_{13} & 0 & 0 & C'_{16} \\ C'_{12} & C'_{22} & C'_{23} & 0 & 0 & C'_{26} \\ C'_{13} & C'_{23} & C'_{33} & 0 & 0 & C'_{36} \\ 0 & 0 & 0 & C'_{44} & C'_{45} & 0 \\ 0 & 0 & 0 & C'_{45} & C'_{55} & 0 \\ C'_{16} & C'_{26} & C'_{36} & 0 & 0 & C'_{66} \end{bmatrix} \begin{pmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \varepsilon_{yz} \\ \varepsilon_{xz} \\ \varepsilon_{xy} \end{pmatrix}$$
(II. 42)

Ou bien :

$$\begin{pmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \varepsilon_{yz} \\ \varepsilon_{xz} \\ \varepsilon_{xy} \end{pmatrix} = \begin{bmatrix} S'_{11} & S'_{12} & S'_{13} & 0 & 0 & S'_{16} \\ S'_{12} & S'_{22} & S'_{23} & 0 & 0 & S'_{26} \\ S'_{13} & S'_{23} & S'_{33} & 0 & 0 & S'_{36} \\ 0 & 0 & 0 & S'_{44} & S'_{45} & 0 \\ 0 & 0 & 0 & S'_{45} & S'_{55} & 0 \\ S'_{16} & S'_{26} & S'_{36} & 0 & 0 & S'_{66} \end{bmatrix} \begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{yz} \\ \sigma_{xz} \\ \sigma_{xy} \end{pmatrix}$$
(II. 43)

II.6.1 Etat de contraintes planes

Un état de contraintes planes est un état de contraintes à deux dimensions pour lequel les composantes du tenseur des contraintes sont indépendantes de la coordonnée (z).Les plaques composites sont généralement de faible épaisseur, la direction 3 est abandonnée dans ce cas et les équations établies précédemment dans le cas général se simplifient d'une façon remarquable et on peut adopter l'hypothèse suivante :

$$\sigma_3 = \sigma_{23} = \sigma_{31} = 0 \tag{II.44}$$

En utilisant la notation de l'ingénieur, le vecteur de contrainte dans le plan (1,2) s'exprime par :

Fig. II.6 Etat de contraintes planes dans le plan (1,2)

Pour un état de contraintes planes pour un pli dans son repère d'orthotropie (1,2,3) la relation d'élasticité s'écrit:

(II.45)

$$\begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_6 \end{pmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix} \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_6 \end{pmatrix}$$
(II. 46)

Avec :

$$Q_{11} = \frac{E_1}{1 - \upsilon_{12}\upsilon_{21}}$$

$$Q_{22} = \frac{E_2}{1 - \upsilon_{12}\upsilon_{21}}$$

$$Q_{12} = \frac{\upsilon_{12}E_2}{1 - \upsilon_{12}\upsilon_{21}}$$

$$Q_{66} = G_{12}$$
(II. 47)

les relations d'élasticité peuvent s'écrire dans le repère (x,y,z) du stratifié, sous l'une des deux formes :

$$\begin{pmatrix} \varepsilon'_{1} \\ \varepsilon'_{2} \\ \varepsilon'_{6} \end{pmatrix} = \begin{bmatrix} S'_{11} & S'_{12} & S'_{16} \\ S'_{12} & S'_{22} & S'_{26} \\ S'_{16} & S'_{26} & S'_{66} \end{bmatrix} \begin{pmatrix} \sigma'_{1} \\ \sigma'_{2} \\ \sigma'_{6} \end{pmatrix}$$
(II. 48)

Ou bien :

$$\begin{pmatrix} \sigma'_{1} \\ \sigma'_{2} \\ \sigma'_{6} \end{pmatrix} = \begin{bmatrix} Q'_{11} & Q'_{12} & Q'_{16} \\ Q'_{12} & Q'_{22} & Q'_{26} \\ Q'_{16} & Q'_{26} & Q'_{66} \end{bmatrix} \begin{pmatrix} \varepsilon'_{1} \\ \varepsilon'_{2} \\ \varepsilon'_{6} \end{pmatrix}$$
(II. 49)

Les coefficients $[Q'_{ij}]$ et $[S'_{ij}]$ sont exprimées respectivement comme suivant :

$$\begin{aligned} Q'_{11} &= Q_{11} \cos^4 \theta + Q_{22} \sin^4 \theta + 2(Q_{12} + 2Q_{66}) \sin^2 \theta \cos^2 \theta \\ Q'_{12} &= (Q_{11} + Q_{22} - 4Q_{66}) \sin^2 \theta \cos^2 \theta + Q_{12} (\cos^4 \theta + \sin^4 \theta) \\ Q'_{16} &= (Q_{11} - Q_{12} - 2Q_{66}) \sin^2 \theta \cos^3 \theta - (Q_{11} - Q_{12} - 2Q_{66}) \sin^3 \theta \cos \theta \\ Q'_{22} &= Q_{11} \sin^4 \theta + Q_{22} \cos^4 \theta + 2(Q_{12} + 2Q_{66}) \sin^2 \theta \cos^2 \theta \\ Q'_{66} &= [Q_{11} + Q_{22} - 2(Q_{12} + Q_{66})] \sin^2 \theta \cos^2 \theta + Q_{66} (\cos^4 \theta + \sin^4 \theta) \\ Q'_{26} &= (Q_{11} - Q_{22} - 2Q_{66}) \sin^3 \theta \cos \theta + (Q_{11} - Q_{12} - 2Q_{66}) \sin \theta \cos^3 \theta \end{aligned}$$

Les coefficients de souplesse transformés S'_{ij} :

$$\begin{split} S'_{11} &= S_{11} \cos^4 \theta + S_{22} \sin^4 \theta + 2(S_{12} + 2S_{66}) \sin^2 \theta \cos^2 \theta \\ S'_{12} &= (S_{11} + S_{22} - 4S_{66}) \sin^2 \theta \cos^2 \theta + S_{12} (\cos^4 \theta + \sin^4 \theta) \\ S'_{16} &= (S_{11} - S_{12} - 2S_{66}) \sin^2 \theta \cos^3 \theta - (S_{11} - S_{12} - 2S_{66}) \sin^3 \theta \cos \theta \\ S'_{22} &= S_{11} \sin^4 \theta + S_{22} \cos^4 \theta + 2(S_{12} + 2S_{66}) \sin^2 \theta \cos^2 \theta \\ S'_{66} &= [S_{11} + S_{22} - 2(S_{12} + S_{66})] \sin^2 \theta \cos^2 \theta + S_{66} (\cos^4 \theta + \sin^4 \theta) \\ S'_{26} &= (S_{11} - S_{22} - 2S_{66}) \sin^3 \theta \cos \theta + (S_{11} - S_{12} - 2S_{66}) \sin \theta \cos^3 \theta \end{split}$$

II.7 Approche théorique pour la détermination des modules élastiques d'un composite unidirectionnel

Le problème consiste à évaluer le comportement local de l'association fibre-matrice à partir des caractéristiques mécaniques et des proportions des constituants, et de les généraliser ensuite au composite. Les fibres et la matrice sont considérées comme étant des matériaux isotropes à élasticité linéaire. Leur comportement est décrit par les modules suivants :

Caractéristiques	Matrice	Fibre
Module de Young	E_m	E_f
Coefficient de Poisson	v_m	v_f
Module de cisaillement	$G_m = \frac{E_m}{2(1+v_m)}$	$G_f = \frac{E_f}{2(1+v_f)}$
Module de compressibilité	$k_m = \frac{E_m}{3(1+v_m)}$	$k_f = \frac{E_f}{3(1+v_f)}$
Module de compression latérale	$K_m = K_m + \frac{G_m}{3}$	$K_f = K_f + \frac{G_f}{3}$

Tableau II.3 Caractéristiques mécaniques de la fibre et de la matrice

II.8 Comportement local décrit par la loi des mélanges

Pour déterminer les caractéristiques mécaniques d'un composite, nous étudions un assemblage de géométrie donné de deux phases (fibre et matrice) de caractéristiques mécaniques différentes, soumis à des sollicitations simples.

II.8.1 Module d'élasticité longitudinal

Considérons un chargement F parallèle au plan de séparation de la fibre et de la matrice (**Fig.II.7**). Les deux matériaux étant considérés parfaitement collés par hypothèse, la matrice m et la fibre f possèdent la même déformation longitudinale ε_L que le matériau composite :

$$\varepsilon_{\rm m} = \varepsilon_{\rm f} = \varepsilon_{\rm L}$$
 (II. 52)

L'état de contraintes dans chaque constituant (fibre et matrice) matériau est un état de traction pure et les contraintes de traction sont données par les relations suivantes :

$$\sigma_{\rm f} = E_{\rm f} \varepsilon_{\rm L} \tag{II.53}$$

Et:

$$\sigma_{\rm m} = E_{\rm m} \varepsilon_{\rm L} \tag{II.54}$$

Fig. II.7 Chargement longitudinal

La charge totale appliquée est :

$$F = \sigma_f S_f + \sigma_m S_m \tag{II.55}$$

 S_f et S_m sont respectivement les aires de la section droite de la fibre et de la matrice. En reportant les expressions des contraintes (II.53) et (II.54) dans la relation (II.54), nous obtenons :

$$F = (E_f S_f + E_m S_m) \varepsilon_L$$
(II. 56)

La contrainte de traction dans le composite est définie par :

$$\sigma_{L} = \frac{F}{S} = E_{L} \epsilon_{L}$$
(II. 57)

En remplaçant F par son expression on obtient.

$$E_{L} = E_{f} \frac{S_{f}}{S} + E_{m} \frac{S_{m}}{S}$$
(II. 58)

Avec :

 E_L : Module d'élasticité longitudinal du composite

S : Section droite du composite.

La section du composite est donnée par la relation :

$$S = S_f + S_m \tag{II.59}$$

Pour un volume élémentaire représentatif VER du composite, de largeur et de longueur égales à l'unité, les fractions volumiques de la fibre (V_f) et de la matrice (V_m) sont données par :

$$V_{f} = \frac{S_{f} \times 1}{S \times 1} = \frac{e_{f}}{e_{f} + e_{m}}$$
(II. 60)
$$V_{m} = \frac{S_{m} \times 1}{S \times 1} = \frac{e_{m}}{e_{f} + e_{m}}$$

Le module d'élasticité du composite s'écrit alors :

$$E_{L} = E_{f}V_{f} + E_{m}V_{m} \tag{II.61}$$

Finalement, en notons que :

La relation (II. 61) devient :

$$E_{L} = E_{f}V_{f} + E_{m}(1 - V_{f})$$
 (II. 62)

II.8.2 Module d'élasticité transversal

Considérons à présent le même matériau que précédemment, soumis à un chargement transversal suivant l'épaisseur du composite (Fig.II.8).

Fig. II.8 Chargement transversal

Dans ce cas l'état de contraintes dans la fibre et dans la matrice est identique et il est défini par la contrainte de traction dans le sens transversal σ_T :

$$\sigma_{\rm m} = \sigma_{\rm f} = \sigma_{\rm T} \tag{II.63}$$

La déformation dans le composite est donné par :

$$\varepsilon_{\rm T} = \frac{1}{E_{\rm T}} \sigma_{\rm T} = \frac{\Delta(e_{\rm m} + e_{\rm f})}{e_{\rm m} + e_{\rm f}} = \frac{\Delta e_{\rm m}}{e_{\rm m} + e_{\rm f}} = \varepsilon_{\rm Tm} V_{\rm m} + \varepsilon_{\rm Tf} V_{\rm f}$$
(II. 64)

Cette expression peut être réécrite sous la forme :

$$\frac{1}{E_{T}}\sigma_{T} = \frac{1}{E_{m}}\sigma_{T}V_{m} + \frac{1}{E_{f}}\sigma_{f}V_{f} \Rightarrow \frac{1}{E_{T}} = \frac{1}{E_{m}}V_{m} + \frac{1}{E_{f}}V_{f}$$
(II.65)

Le module d'élasticité transversal a pour expression :

$$E_{\rm T} = \frac{E_{\rm m} E_{\rm f}}{V_{\rm m} E_{\rm f} + V_{\rm f} E_{\rm m}}$$
(II. 66)

Ou encore :

$$E_{\rm T} = E_{\rm m} \frac{1}{(1 - V_{\rm f}) + \frac{E_{\rm m}}{E_{\rm f}} V_{\rm f}}$$
 (II. 67)

II.8.3 Coefficient de Poisson v_{LT}

Le coefficient de Poisson v_{LT} est défini comme étant le rapport des déformations transversales -longitudinale, pour un chargement longitudinal, il est donné par la relation suivante :

$$\upsilon_{\rm LT} = -\frac{\varepsilon_{\rm T}}{\varepsilon_{\rm L}} \tag{II.68}$$

En remplaçant la déformation transversale (ϵ_T) par son expression (II.64), nous obtenons

$$\upsilon_{LT} = \frac{\varepsilon_{Tm} V_m + \varepsilon_{Tf} V_f}{\varepsilon_L}$$
(II.69)

Et en introduisant les coefficients de Poisson de la matrice et de la fibre pour la même déformation :

$$\upsilon_{\rm m} = -\frac{\varepsilon_{\rm Tm}}{\varepsilon_{\rm L}} \tag{II.70}$$

Et:

$$\upsilon_{\rm f} = -\frac{\varepsilon_{\rm Tf}}{\varepsilon_{\rm L}} \tag{II.71}$$

Le coefficient de Poisson du composite s'écrit :

$$\upsilon_{\rm LT} = \upsilon_{\rm m} (1 - V_{\rm f}) + \upsilon_{\rm f} V_{\rm f} \tag{II.72}$$

II.8.4 Module de cisaillement G_{LT}

L'état de chargement donnant lieu à une déformation de cisaillement est illustré par la figure

Fig. II.9 Changement de cisaillement

Les contraintes de cisaillement dans la matrice et dans la fibre sont identiques et égales à la contrainte dans le composite :

$$\tau_{\rm LTm} = \tau_{\rm LTf} = \tau_{\rm LT} \tag{II.73}$$

La déformation angulaire γ_{LT} dans un matériau élastique est reliée à la contrainte de cisaillement par le module de cisaillement G_{LT} selon l'expression :

$$\gamma_{LT} = \frac{2(1 + \upsilon_{LT})}{E_L} \tau_{LT} = \frac{\tau_{LT}}{G_{LT}}$$
(II.74)

D'autre part :

$$\gamma_{\rm LT}(\mathbf{e}_{\rm m} + \mathbf{e}_{\rm f}) = \gamma_{\rm LTm}\mathbf{e}_{\rm m} + \gamma_{\rm LTf}\mathbf{e}_{\rm f} \tag{II.75}$$

Ce qui conduit à :

$$\gamma_{\rm LT} = \gamma_{\rm LTm} V_{\rm m} + \gamma_{\rm LTf} V_{\rm f} \tag{II.76}$$

Ou encore :

$$\frac{\tau_{\rm LT}}{G_{\rm LT}} = \frac{\tau_{\rm LTm}}{G_{\rm m}} V_{\rm m} + \frac{\tau_{\rm LTf}}{G_{\rm f}} V_{\rm f} \tag{II.77}$$

Finalement, en tenant compte de l'égalité des contraintes, le module de cisaillement du composite prend la forme :

$$G_{LT} = G_m \frac{1}{(1 - V_f) + \frac{G_m}{G_f} V_f}$$
(II. 78)

II.9 Méthodes analytiques pour la détermination des modules d'élasticité du pli

La comparaison entre les valeurs des modules déterminées expérimentalement sur des unidirectionnels et évaluées par la loi des mélanges a montré que seules les formules (II.62) et (II.72) donnent des valeurs proches de celles obtenues expérimentalement. De plus, cette méthode ne permet pas d'évaluer le module de cisaillement G_{TT} , Une approche plus précise consiste à développer des modèles qui prennent en considération la géométrie des fibres et leur arrangement à l'intérieur de la matrice. En considérant un arrangement cylindrique (cellule élémentaire constituée d'une fibre entourée d'un cylindre de résine la résolution du problème d'élasticité correspondant permet d'aboutir à des solutions analytiques exactes [5] représentant le comportement du composite constitué d'une répartition uniforme de cette cellule.

Les cinq modules indépendants obtenus par cette approche sont :

a) Module d'élasticité longitudinal

$$E_{L} = E_{f}V_{f} + E_{m}(1 + V_{f}) + \frac{4V_{f}(1 - V_{f})(\upsilon_{f} - \upsilon_{m})^{2}}{\frac{V_{f}}{K_{m}} + \frac{1}{G_{m}} + \frac{1 - V_{f}}{K_{f}}} \simeq E_{f}V_{f} + E_{m}(1 - V_{f})$$
(II.79)

b) Coefficient de Poisson v_{LT}

$$\upsilon_{LT} = \upsilon_{f} V_{f} + \upsilon_{m} (1 - V_{f}) + \frac{V_{f} (1 - V_{f}) (\upsilon_{f} - \upsilon_{m}) \left(\frac{1}{K_{m}} - \frac{1}{K_{f}}\right)}{\frac{V_{f}}{K_{m}} + \frac{1}{G_{m}} + \frac{1 - V_{f}}{K_{f}}}$$
(II.80)
$$\simeq \upsilon_{f} V_{f} + \upsilon_{m} (1 - V_{f})$$

c) Module de cisaillement G_{LT}

$$G_{LT} = G_m \frac{G_f(1 + V_f) + G_m(1 - V_f)}{G_f(1 - V_f) + G_m(1 + V_f)}$$
(II.69)

d) Module de compression latéral K_L

$$K_{L} = K_{m} + \frac{V_{f}}{K_{f} - K_{m} + \frac{(G_{f} - G_{m})}{3} + \frac{1 - V_{f}}{K_{m} + \frac{4}{3}G_{m}}}$$
(II.70)

e) Module de cisaillement transversal $G_{TT'}$

$$G_{TT'} = G_{m} \left[1 + \frac{V_{f}}{\frac{G_{m}}{G_{f} - G_{m}} + \frac{K_{m} + \frac{7}{3}G_{m}}{2K_{m} + \frac{8}{3}G_{m}}(1 - V_{f})} \right]$$
(II.71)

Le module de Young transversal est calcule a partir des modules précédents grâce a la relation d'élasticité :

$$E_{\rm T} = \frac{2}{\frac{1}{2K_{\rm L}} + \frac{1}{2G_{\rm TT'}} + 2\frac{\upsilon^2_{\rm LT}}{E_{\rm L}}}$$
(II. 72)

Chapitre III Généralités sur la théorie des plaques

III.1 Introduction

La théorie des plaques est une théorie qui permet de calculer les déformations et les contraintes dans une plaque soumise à des charges. Elle s'inspire de la théorie des poutres .En 1888, Love utilise les hypothèses de Gustav Kirchhoff, elles-mêmes inspirées des hypothèses d'Euler Bernoulli pour les poutres, pour fonder une théorie des plaques minces. La théorie des plaques épaisses a été consolidée par Mindlin à partir des travaux de Rayleigh (1877), Timoshenko (1921), Reissner (1945) et Uflyand (1948).

III.1.1 Définition d'une plaque

Une plaque est un solide délimité par deux plans parallèles distants l'un de l'autre d'une distance h(x,y) petite par rapport aux deux autres dimensions (longueur et largeur), notée h(x,y) (Fig. III.1). Le plan (O,x,y) est dit plan de référence. L'axe Oz correspond à la direction de l'épaisseur. En fonction de l'ordre de grandeur de h(x,y) par rapport aux autres dimensions, on introduit l'adjectif mince au épaisse aux plaques et aux coques. Cependant, ce qualificatif n'implique pas seulement une caractéristique géométrique, mais définit aussi un rôle particulier des déformations dites de cisaillement transversal (CT). Cette influence est d'autant plus importante que les structures sont minces car l'épaisseur h(x,y) varie en sens inverse de l'influence du de cisaillement transversal CT. La plaque peut être constituée d'un matériau homogène (composite) ou non (isotrope), [16]. Nous admettons généralement que :

• pour les plaques épaisses.
$$\frac{1}{20} < \frac{h}{L} < \frac{1}{4}$$

• Pour les plaques minces. $\frac{h}{L} < \frac{1}{20}$

Fig. III.1 Caractéristiques géométriques d'une plaque

I

III.1.2 Classification des plaques

Les éléments de plaques en flexion du type déplacement peuvent être classés en deux catégories : les éléments basés sur la théorie de Kirchhoff (cisaillement transversal négligé) et les éléments basés sur la théorie de Hencky- Mindlin-Reissner (avec cisaillement transversal).

III.2 Champ de déplacement

La théorie générale des plaques est basée sur l'expression des déplacements en tout point M(x,y,z), sous la forme d'un polynôme limité généralement au troisième degré. Le champs de déplacement s'écrit sous la forme suivante :

$$\begin{cases} u(x, y, z) = u(x, y, 0) + z\phi_{x}(x, y) + z^{2}\psi_{x}(x, y) + z^{3}\phi_{x}(x, y) \\ v(x, y, z) = v(x, y, 0) + z\phi_{y}(x, y) + z^{2}\psi_{y}(x, y) + z^{3}\phi_{y}(x, y) \\ w(x, y, z) = w(x, y, 0) + z\phi_{x}(x, y) + z^{2}\psi_{x}(x, y) \end{cases}$$
(III.1)

Le déplacement d'un point quelconque M(x,y,z) est écrit sous la forme d'une série de la variable (z) à coefficients en (x,y) à partir d'un point de référence $M_0(x,y,0)$ appartenant au plan de référence (O,x,y). Le champ de déplacement du point $M_0(x,y,0)$ est désigné par :

Fig. III.2 Elément de plaque

III.3 Schémas du premier ordre

Les schémas du premier ordre sont basés sur l'hypothèse de Kirchhoff qui stipule que les sections droites restent droites après chargement. L'expression mathématique de cette hypothèse consiste à développer les déplacements de tout point M(x, y, z) de la plaque, notés u, v et w en polynômes du premier degré en z en fonctions des déplacements d'un point de référence du plan de référence $M_0(x, y, 0)$, notés u_0, v_0 et w_0 .

Dans la théorie de plaques, on ramène le comportement des points de la plaque à celui de la surface moyenne et on suppose un champ de déplacement selon la variable *z*. Le champ des déplacements s'écrit alors :

$$\begin{cases} u(x, y, z) = u(x, y, 0) + z\phi_x(x, y) \\ v(x, y, z) = v(x, y, 0) + z\phi_y(x, y) \\ w(x, y, z) = w(x, y, 0) \end{cases}$$
(III.3)

Ou bien :

$$\begin{cases} u(x, y, z) = u_0(x, y) + z\phi_x(x, y) \\ v(x, y, z) = v_0(x, y) + z\phi_y(x, y) \\ w(x, y, z) = w_0(x, y) \end{cases}$$
(III.4)

Dans la relation (III.4) :

u₀, **v**₀: déplacement en membrane

w₀: déplacement transversal (flèche)

 ϕ_x , ϕ_y : rotations des sections droites respectivement dans les plans (x, z) et (y, z)

Fig. III.3 Déformation d'une section dans le cas d'un schéma au premier degré

III.4 Champ de déformation

Dans le cas d'un schéma du troisième ordre, le champ de déformation est déduit du champ de déplacement grâce à la relation :

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial U_i}{\partial X_j} + \frac{\partial U_j}{\partial X_i} \right)$$
(III.5)

Donc :

$$\begin{cases} \varepsilon_{xx} = \frac{\partial u}{\partial x} = \frac{\partial u_0}{\partial x} + z \frac{\partial \phi_x}{\partial x} + z^2 \frac{\partial \psi_x}{\partial x} + z^3 \frac{\partial \phi_x}{\partial x} \\ \varepsilon_{yy} = \frac{\partial v}{\partial y} = \frac{\partial v_0}{\partial y} + z \frac{\partial \phi_y}{\partial y} + z^2 \frac{\partial \psi_y}{\partial y} + z^3 \frac{\partial \phi_y}{\partial y} \\ \varepsilon_{zz} = \frac{\partial w}{\partial z} = \frac{\partial w_0}{\partial z} + \phi_x(x,y) + 2z\psi_x(x,y) \\ \gamma_{yz} = 2\varepsilon_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} = \left(\phi_y + \frac{\partial w_0}{\partial y}\right) + z \left(2\psi_y + \frac{\partial \phi_z}{\partial y}\right) + z^2 \left(3\phi_y + \frac{\partial \psi_z}{\partial y}\right) \\ \gamma_{xz} = 2\varepsilon_{xz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} = \left(\phi_x + \frac{\partial w_0}{\partial x}\right) + z \left(2\psi_x + \frac{\partial \phi_z}{\partial x}\right) + z^2 \left(3\phi_x + \frac{\partial \psi_z}{\partial x}\right) \\ \gamma_{xy} = 2\varepsilon_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = \left(\frac{\partial u_0}{\partial y} + \frac{\partial v_0}{\partial x}\right) + z \left(\frac{\partial \phi_x}{\partial y} + \frac{\partial \phi_y}{\partial x}\right) + z^2 \left(\frac{\partial \psi_x}{\partial y} + \frac{\partial \psi_y}{\partial x}\right) + z^3 \left(\frac{\partial \phi_x}{\partial y} + \frac{\partial \phi_y}{\partial x}\right) \end{cases}$$

Et dans le cas d'un schéma du premier ordre les équations (III.6) devient :

$$\begin{cases} \varepsilon_{xx} = \frac{\partial u}{\partial x} = \frac{\partial u_0}{\partial x} + z \frac{\partial \phi_x}{\partial x} \\ \varepsilon_{yy} = \frac{\partial v}{\partial y} = \frac{\partial v_0}{\partial y} + z \frac{\partial \phi_y}{\partial y} \end{cases}$$
(III.7)
$$\varepsilon_{zz} = \frac{\partial w}{\partial z} = \frac{\partial w_0}{\partial z} = 0 \\ \gamma_{yz} = 2\varepsilon_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} = \phi_y + \frac{\partial w_0}{\partial y} \\ \gamma_{xz} = 2\varepsilon_{xz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} = \phi_x + \frac{\partial w_0}{\partial x} \\ \gamma_{xy} = 2\varepsilon_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = \left(\frac{\partial u_0}{\partial y} + \frac{\partial v_0}{\partial x}\right) + z \left(\frac{\partial \phi_x}{\partial y} + \frac{\partial \phi_y}{\partial x}\right)$$

Fig. III.4 Schématisation des déformations dans le cas des théories du premier ordre

III.5 Champ de contraires

Pour le cas d'un stratifié unidirectionnel ou orthotrope constitué de (k) couches, la relation qui lie les contraintes aux déformations dans la couche, rapportée au référentiel du stratifié s'écrit comme suit :

$$\begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{yz} \\ \sigma_{xz} \\ \sigma_{xy} \end{pmatrix} = \begin{bmatrix} C'_{11} & C'_{12} & C'_{13} & 0 & 0 & C'_{16} \\ C'_{12} & C'_{22} & C'_{23} & 0 & 0 & C'_{26} \\ C'_{13} & C'_{23} & C'_{33} & 0 & 0 & C'_{36} \\ 0 & 0 & 0 & C'_{44} & C'_{45} & 0 \\ 0 & 0 & 0 & C'_{45} & C'_{55} & 0 \\ C'_{16} & C'_{26} & C'_{36} & 0 & 0 & C'_{66} \end{bmatrix}_{k} \begin{pmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{yz} \\ \gamma_{xy} \end{pmatrix}$$
(III.8)

 C'_{ij} représentent les coefficients de rigidité de la couche (k) du stratifié. Les déformations sont exprimées en fonction de la variable (z), ceci implique que l'expression des contraintes est aussi un polynôme en (z). La théorie des plaques est basée sur la simplification du problème de l'analyse du comportement mécanique d'une plaque en 3D (x,y,z) à un problème à deux dimensions (x,y).Cette hypothèse stipule que les contraintes normales au plan de la couche (σ_{zz}) sont négligeables dans la plaque par rapport aux autres composantes (σ_{xx} , σ_{yy} et σ_{xy}) :

$$\sigma_{zz} = \sigma_{33} = 0 \tag{III.9}$$

En tenant compte de cette hypothèse les équations de l'élasticité (III.7) devient :

$$\begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ 0 \\ \sigma_{yz} \\ \sigma_{xz} \\ \sigma_{xy} \end{pmatrix} = \begin{pmatrix} C'_{11} & C'_{12} & C'_{13} & 0 & 0 & C'_{16} \\ C'_{12} & C'_{22} & C'_{23} & 0 & 0 & C'_{26} \\ C'_{13} & C'_{23} & C'_{33} & 0 & 0 & C'_{36} \\ 0 & 0 & 0 & C'_{44} & C'_{45} & 0 \\ 0 & 0 & 0 & C'_{45} & C'_{55} & 0 \\ C'_{16} & C'_{26} & C'_{36} & 0 & 0 & C'_{66} \end{bmatrix}_{k} \begin{pmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{yz} \\ \gamma_{xz} \\ \gamma_{xy} \end{pmatrix}$$
(III.10)

Cette relation peut être réécrite en séparant les contraintes et déformations de cisaillement transverse des plans (x,z) et (y,z):

$$\begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ 0 \\ \sigma_{yz} \\ \sigma_{xz} \\ \sigma_{xy} \end{pmatrix} = \begin{bmatrix} C'_{11} & C'_{12} & C'_{13} & & C'_{13} & 0 & 0 \\ C'_{12} & C'_{22} & C'_{23} & & C'_{23} & 0 & 0 \\ C'_{13} & C'_{23} & C'_{33} & & C'_{33} & 0 & 0 \\ C'_{13} & C'_{13} & C'_{13} & & C'_{13} & 0 & 0 \\ C'_{13} & C'_{13} & C'_{13} & & C'_{13} & 0 & 0 \\ 0 & 0 & 0 & 0 & C'_{44} & C'_{45} \\ 0 & 0 & 0 & 0 & C'_{45} & C'_{55} \end{bmatrix} \cdot \begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{yz} \\ \gamma_{xy} \end{cases}$$
(III.11)

Dans cette relation l'état de contraintes σ_{xx} , σ_{yy} et σ_{xy} et celui des déformations ε_{xx} , ε_{yy} , ε_{xy} et ε_{zz} correspond à un état de contraintes planes. Si on applique les résultats liés à cet état de contraintes, on peut exprimer les contraintes dans la couche (k) en fonction des coefficients de la matrice de rigidité réduite Q'_{ij} :

$$\begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \\ \sigma_{yz} \\ \sigma_{xz} \end{pmatrix} = \begin{bmatrix} Q'_{11} & Q'_{12} & Q'_{16} & 0 & 0 \\ Q'_{12} & Q'_{22} & Q'_{26} & 0 & 0 \\ Q'_{16} & Q'_{26} & Q'_{66} & 0 & 0 \\ 0 & 0 & 0 & Q'_{44} & Q'_{45} \\ 0 & 0 & 0 & Q'_{45} & Q'_{55} \end{bmatrix}_{k} \begin{pmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{xy} \\ \gamma_{yz} \\ \gamma_{xz} \end{pmatrix}$$
(III.12)

Avec :

$$\varepsilon_{zz} = -\frac{1}{C'_{33}} \left(C'_{13} \varepsilon_{xx} + C'_{23} \varepsilon_{yy} + C'_{36} \gamma_{xy} \right)$$
(III.13)

Et :
$$Q'_{ij} = C'_{ij} - \frac{C'_{i3}C'_{j3}}{C'_{33}}$$
; i, j = 1,2,6 (III.14)

Sachant que le tenseur [Q'] est symétrique :

$$Q'_{ij} = Q'_{ji} \tag{III.15}$$

III.6 Résultantes et moments

Soient N_x , N_y et N_{xy} les composantes qui représentent les résultantes par unité de longueur de la plaque des contraintes normales suivant les directions (x) et (y) et des contraintes de cisaillement dans le plan (x,y) comme illustré sur la (Figure III.5) :

Fig. III.5 Résultantes en membrane par unité de longueur de la plaque des actions exercées Le champ des résultantes en membrane, noté N(x,y) est défini par :

$$N(x,y) = \int_{-h/2}^{h/2} \sigma_k(M) dz$$
 (III.16)

Ou bien :

$$N(x,y) = \begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} = \int_{-h/2}^{h/2} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} dz$$
(III.17)

Ces résultantes sont relatives à l'unité de longueur d'une section droite du stratifié. La résultante de l'action exercée sur un élément de surface de la plaque de longueur (dy) et normal à la direction x est la superposition d'une résultante normale:

$$dR_x = N_x. dy \tag{III.18}$$

Et d'une résultante de cisaillement :

$$dR_{xy} = N_{xy}.dy (III.19)$$

Fig. III.6 Résultante de l'action exercée sur un élément de surface de la plaque En passant d'une couche à une autre du stratifié, les contraintes sont discontinues, la relation (III.17) devient :

$$N(x, y) = \begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} = \sum_{k=1}^n \int_{h_{k-1}}^{h_k} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} dz$$
(III.20)

III.7 Résultantes en cisaillement

Les résultantes en cisaillement sont définies de la même manière par la relation suivante :

$$Q(x,y) = \begin{bmatrix} Q_x \\ Q_y \end{bmatrix} = \sum_{k=1}^n \int_{h_{k-1}}^{h_k} \begin{bmatrix} \sigma_{xz} \\ \sigma_{yz} \end{bmatrix} dz$$
(III.21)

Les résultantes en cisaillement sont définies par unité de longueur du stratifié (Figure III.8).

III.8 Moments de flexion-torsion

Les contraintes de traction et de cisaillement exercées sur un élément de plaque du stratifié génèrent des moments résultants de flexion et de torsion qui sont définis par unité de longueur. Ces moments sont donnés par la relation suivante :

$$M_{f}(x,y) = \begin{bmatrix} M_{x} \\ M_{y} \\ M_{xy} \end{bmatrix} = \sum_{k=1}^{n} \int_{h_{k-1}}^{h_{k}} z \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix}_{k} dz$$
(III.22)

Dans la relation (III.22), M_x et M_y sont les moments de flexion suivant les directions x et y, M_{xy} représente le moment de torsion (Fig.III.8).

Fig.III.8 Représentation schématique des moments de flexion et de torsion

III.9 Relations fondamentales des plaques dans le cas d'un schéma du premier ordre III.9.1 Equations du mouvement

Les relations fondamentales ou équations d'équilibre des plaques sont données par la forme élémentaire des équations de mouvement. Si le repère choisi est galiléen et si on suppose que les efforts de volume exercés sur la plaque (champ de gravité, champ magnétique...) ne sont pas négligées, la relation fondamentale de la dynamique s'écrit localement suivant les axes x, y et z comme suit :

$$\frac{\partial \sigma_{ij}}{\partial x_j} + f_i = \rho a_i \qquad i, j = 1, 2, 3$$
(III.23)

Ou bien sous forme matricielle :

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} + f_x = \rho a_x$$

$$\frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{yz}}{\partial z} + f_y = \rho a_y$$
(III.24)
$$\frac{\partial \sigma_{xz}}{\partial x} + \frac{\partial \sigma_{yz}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} + f_z = \rho a_z$$

 $\mathbf{f}_{\mathbf{x}}, \mathbf{f}_{\mathbf{v}}$ et $\mathbf{f}_{\mathbf{z}}$: sont les forces volumiques appliquées

 a_x , a_y et a_z : sont les composantes du vecteur d'accélération

 ρ : représente la masse volumique

III.9.2 Equations de mouvement relatives aux résultantes en membranes

Les relations fondamentales relatives à un élément de plaque sont obtenues par intégration des équations (III.24) sur l'épaisseur du stratifié. L'intégration de la première équation du mouvement conduit à :

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{\partial \sigma_{xx}}{\partial x} dz + \int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{\partial \sigma_{xy}}{\partial y} dz + \int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{\partial \sigma_{xz}}{\partial z} dz + \int_{-\frac{h}{2}}^{\frac{h}{2}} f_x dz = \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho a_x dz$$
(III.25)

D'après la relation (III.16) :

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{\partial \sigma_{xx}}{\partial x} dz = \frac{\partial N_x}{\partial x}$$
(III.26)

De même :

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{\partial \sigma_{xy}}{\partial y} dz = \frac{\partial N_{xy}}{\partial y}$$
(III.27)

Et :

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{\partial \sigma_{xz}}{\partial z} dz = \sigma_{xz} \left(\frac{h}{2}\right) - \sigma_{xz} \left(-\frac{h}{2}\right)$$
(III.28)

Ces contraintes représentent les contraintes de cisaillement exercées sur les faces extérieures et inferieures du stratifié. Ces contraintes sont souvent négligées. Dans le cas où c'est nécessaire de considérer ces contraintes, on note :

$$\sigma_{xz}\left(\frac{h}{2}\right) = \tau_{1x} \tag{III.29}$$

Et :

$$\sigma_{xz}\left(-\frac{h}{2}\right) = \tau_{2x} \tag{III.30}$$

Donc la relation (III.28) devient :

$$\int_{-\frac{h}{2}}^{\frac{n}{2}} \frac{\partial \sigma_{xz}}{\partial z} dz = \tau_{1x} - \tau_{2x}$$
(III.31)

Le dernier terme de la première équation du mouvement est :

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} f_x dz = F_x$$
(III.32)

Le second membre de l'équation (III.25) fait intervenir les composantes du vecteur déplacement (u,v,w) en fonction de (x,y,z) et du temps (t). Pour le cas d'un schéma du premier ordre :

$$\begin{cases} u(x, y, z) = u_0(x, y) + z\phi_x(x, y) \\ v(x, y, z) = v_0(x, y) + z\phi_y(x, y) \\ w(x, y, z) = w_0(x, y) \end{cases}$$

1.

Nous avons :

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} \rho a_x \, dz = \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho(x, y, z) \left(\frac{\partial^2 u_0}{\partial t^2} + z \frac{\partial^2 \phi_x}{\partial t^2} \right) dz = \frac{\partial^2 u_0}{\partial t^2} \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho \, dz + \frac{\partial^2 \phi_x}{\partial t^2} \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho z \, dz \tag{III.33}$$

Donc, on peut noter :

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} \rho a_{x} dz = \rho_{s} \frac{\partial^{2} u_{0}}{\partial t^{2}} + R \frac{\partial^{2} \phi_{x}}{\partial t^{2}}$$
(III.34)

Avec :

$$\rho_{\rm s} = \int_{-\frac{\rm h}{2}}^{\frac{\rm n}{2}} \rho \,\mathrm{d}z \tag{III.35}$$

Et :

$$R = \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho z \, dz \tag{III.36}$$

L'expression finale de la première équation de mouvement devient :

$$\frac{\partial N_x}{\partial x} + \frac{\partial N_{xy}}{\partial y} + F_x + \tau_{1x} - \tau_{2x} = \rho_s \frac{\partial^2 u_0}{\partial t^2} + R \frac{\partial^2 \phi_x}{\partial t^2}$$
(III.37)

De la même manière, l'intégration de la deuxième équation de mouvement conduit à :

$$\frac{\partial N_{y}}{\partial y} + \frac{\partial N_{xy}}{\partial x} + F_{y} + \tau_{1y} - \tau_{2y} = \rho_{s} \frac{\partial^{2} v_{0}}{\partial t^{2}} + R \frac{\partial^{2} \phi_{y}}{\partial t^{2}}$$
(III.38)

Avec :

$$\sigma_{yz}\left(\frac{h}{2}\right) = \tau_{1y} \tag{III.39}$$

$$\sigma_{yz}\left(-\frac{h}{2}\right) = \tau_{2y} \tag{III.40}$$

Et :

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} f_y dz = F_y$$
(III.41)

III.9.3 Equations de mouvement relatives aux résultantes de cisaillement

L'intégration suivant de la troisième équation de mouvement conduit à :

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{\partial \sigma_{zz}}{\partial z} dz + \int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{\partial \sigma_{yz}}{\partial y} dz + \int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{\partial \sigma_{xz}}{\partial x} dz + \int_{-\frac{h}{2}}^{\frac{h}{2}} f_z dz = \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho a_z dz$$
(III.42)

Dans cette relation (III.42) le second terme s'écrit comme suit :

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{\partial \sigma_{yz}}{\partial y} dz = \frac{\partial}{\partial y} \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{yz} dz$$
(III.43)

Or, l'expression de l'effort tranchant Q_y est donné par :

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{yz} \, dz = Q_y \tag{III.44}$$

Alors, la relation (III.44) devient :

$$\int_{-\frac{h}{2}}^{\frac{n}{2}} \frac{\partial \sigma_{yz}}{\partial y} dz = \frac{\partial Q_y}{\partial y}$$
(III.45)

De même, le troisième terme s'écrit :

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{\partial \sigma_{xz}}{\partial x} dz = \frac{\partial}{\partial x} \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{xz} dz = \frac{\partial Q_x}{\partial x}$$
(III.46)

Quand au premier terme, il s'écrit comme suit :

1.

$$\int_{-\frac{h}{2}}^{\frac{n}{2}} \frac{\partial \sigma_{zz}}{\partial z} dz = \sigma_{zz} \left(\frac{h}{2}\right) - \sigma_{zz} \left(-\frac{h}{2}\right)$$
(III.47)

Les contraintes $\sigma_{zz}\left(\frac{h}{2}\right)$ et $\sigma_{zz}\left(-\frac{h}{2}\right)$, représentent les composantes de pression exercées sur les faces inferieure et supérieure de la plaque. Soit en utilisant la notation suivante :

$$q = q(x, y) = \sigma_{zz} \left(\frac{h}{2}\right) - \sigma_{zz} \left(-\frac{h}{2}\right)$$
(III.48)

Ainsi :

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{\partial \sigma_{zz}}{\partial z} dz = q$$
(III.49)

Le dernier terme de l'équation (III.42) devient en prenant en tenant compte de la relation (III.35):

$$\int_{-\frac{h}{2}}^{\frac{n}{2}} \rho a_z \, dz = \rho_s a_z = \rho_s \frac{\partial^2 w_0}{\partial t^2} \tag{III.50}$$

Si on substitue les relations (III.46), (III.49) et (III.50) dans la relation (III.42), on obtient :

$$\frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} + q + F_z = \rho_s \frac{\partial^2 w_0}{\partial t^2}$$
(III.51)

Avec :

$$F_{y} = \int_{-\frac{h}{2}}^{\frac{h}{2}} f_{z} dz$$
 (III.52)

III.9.4 Equations de mouvement relatives aux moments

Les équations de mouvement relatives aux moments sont obtenues en multipliant par (z) les deux premières équations de la relation (III.24), et en intégrant suivant l'épaisseur du stratifié. Considérons la première équation :

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} z \frac{\partial \sigma_{xx}}{\partial x} dz + \int_{-\frac{h}{2}}^{\frac{h}{2}} z \frac{\partial \sigma_{xy}}{\partial y} dz + \int_{-\frac{h}{2}}^{\frac{h}{2}} z \frac{\partial \sigma_{xz}}{\partial z} dz + \int_{-\frac{h}{2}}^{\frac{h}{2}} z f_x dz = \int_{-\frac{h}{2}}^{\frac{h}{2}} z \rho a_x dz$$
(III.53)

Or, les expressions des moments de flexion et de torsion sont sonnées par :

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} z\sigma_{xx} dz = M_x$$
(III.54)

Et :

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} z\sigma_{xy} dz = M_{xy}$$
(III.55)

Si on substitue les relations (III.54) et (III.55) dans la relation (III.53), on aboutit à :

$$\frac{\partial M_x}{\partial x} + \frac{\partial M_{xy}}{\partial y} + \int_{-\frac{h}{2}}^{\frac{h}{2}} z \frac{\partial \sigma_{xz}}{\partial z} dz + \int_{-\frac{h}{2}}^{\frac{h}{2}} z f_x dz = \int_{-\frac{h}{2}}^{\frac{h}{2}} z \rho a_x dz$$
(III.56)

Si on utilise la méthode d'intégration par parties, le troisième terme de cette relation se calcule de la manière suivante :

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} z \frac{\partial \sigma_{xz}}{\partial z} dz = \left[z \sigma_{xz} \right]_{-\frac{h}{2}}^{\frac{h}{2}} - \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{xz} dz = \frac{h}{2} \sigma_{xz} \left(\frac{h}{2} \right) + \frac{h}{2} \sigma_{xz} \left(-\frac{h}{2} \right) - Q_x = \frac{h}{2} (\tau_{1x} + \tau_{2x}) - Q_x$$
(III.57)

De même, le second membre de l'équation (III.53) :

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} z\rho a_{x} dz = \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho z \left(\frac{\partial^{2} u_{0}}{\partial t^{2}} + z \frac{\partial^{2} \phi_{x}}{\partial t^{2}} \right) dz = \frac{\partial^{2} u_{0}}{\partial t^{2}} \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho z dz + \frac{\partial^{2} \phi_{x}}{\partial t^{2}} \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho z^{2} dz$$
(III.58)

D'après la relation (III.53), nous avons :

$$R = \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho z \, dz$$

Et si on pose :

.

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} \rho z^2 dz = I_{xy}$$
(III.59)

Alors la relation (III.58) devient :

$$\int_{-\frac{h}{2}}^{\frac{h}{2}} z\rho a_{x} dz = R \frac{\partial^{2} u_{0}}{\partial t^{2}} + I_{xy} \frac{\partial^{2} \phi_{x}}{\partial t^{2}}$$
(III.60)

 I_{xy} est le moment d'inertie par rapport au plan (O,x,y). Finalement la relation (III.56) devient :

$$\frac{\partial M_x}{\partial x} + \frac{\partial M_{xy}}{\partial y} + \frac{h}{2}(\tau_{1x} + \tau_{2x}) - Q_x + P_x = R\frac{\partial^2 u_0}{\partial t^2} + I_{xy}\frac{\partial^2 \phi_x}{\partial t^2}$$
(III.61)

Avec :

$$P_{\rm x} = \int_{-\frac{h}{2}}^{\frac{h}{2}} z f_{\rm x} \, dz \tag{III.62}$$

 P_x : représente la composante des moments des forces volumiques exercées.

De la même manière, la deuxième équation de la relation (III.24) devient :

$$\frac{\partial M_{y}}{\partial y} + \frac{\partial M_{xy}}{\partial x} + \frac{h}{2} (\tau_{1y} + \tau_{2y}) - Q_{y} + P_{y} = R \frac{\partial^{2} v_{0}}{\partial t^{2}} + I_{xy} \frac{\partial^{2} \phi_{y}}{\partial t^{2}}$$
(III.63)

Avec :

$$P_{y} = \int_{-\frac{h}{2}}^{\frac{h}{2}} z f_{y} dz$$
(III.64)

Les relations (III.37), (III.38), (III.151), (III.161) et (III.163) constituent les équations d'équilibre ou équations du mouvement dans le cas de la théorie classique des plaques. Elles s'appliquent aussi bien à des plaques homogènes (isotropes) qu'à des stratifiés (composites). Finalement on obtient les équations de mouvement :

$$\frac{\partial N_x}{\partial x} + \frac{\partial N_{xy}}{\partial y} + F_x + \tau_{1x} - \tau_{2x} = \rho_s \frac{\partial^2 u_0}{\partial t^2} + R \frac{\partial^2 \phi_x}{\partial t^2}$$

2 ième

$$\frac{\partial N_y}{\partial y} + \frac{\partial N_{xy}}{\partial x} + F_y + \tau_{1y} - y = \rho_s \frac{\partial^2 v_0}{\partial t^2} + R \frac{\partial^2 \varphi_y}{\partial t^2}$$

$$\frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} + q + F_z = \rho_s \frac{\partial^2 w_0}{\partial t^2}$$

4 ^{ième}

3 ième

$$\frac{\partial M_x}{\partial x} + \frac{\partial M_{xy}}{\partial y} + \frac{h}{2}(\tau_{1x} + \tau_{2x}) - Q_x + P_x = R\frac{\partial^2 u_0}{\partial t^2} + I_{xy}\frac{\partial^2 \varphi_x}{\partial t^2}$$

5 ^{ième}

$$\frac{\partial M_{y}}{\partial y} + \frac{\partial M_{xy}}{\partial x} + \frac{h}{2} (\tau_{1y} + \tau_{2y}) - Q_{y} + P_{y} = R \frac{\partial^{2} v_{0}}{\partial t^{2}} + I_{xy} \frac{\partial^{2} \phi_{y}}{\partial t^{2}}$$

La combinaison des trois dernières relations d'équilibre permet d'écrire une nouvelle équation du mouvement indépendante des résultantes de cisaillement :

$$\frac{\partial^{2} M_{x}}{\partial x^{2}} + \frac{\partial^{2} M_{y}}{\partial y^{2}} + 2 \frac{\partial^{2} M_{xy}}{\partial x \partial y} + q = \rho_{s} \frac{\partial^{2} w_{0}}{\partial t^{2}} + R \left(\frac{\partial^{3} u_{0}}{\partial x \partial t^{2}} + \frac{\partial^{3} v_{0}}{\partial y \partial t^{2}} \right) + I_{xy} \left(\frac{\partial^{3} \phi_{x}}{\partial x \partial t^{2}} + \frac{\partial^{3} \phi_{y}}{\partial y \partial t^{2}} \right)$$
(III.65)

III.10 Théorie classique des stratifiés

La théorie classique des stratifiés notée (TCS) est basée sur l'utilisation d'un schéma du premier ordre (Figure III.4). Elle est articulée sur l'hypothèse qui consiste à négliger le cisaillement transverse, soit :

$$\gamma_{xz} = \gamma_{yz} = 0 \tag{III.66}$$

Dans le cadre d'un schéma du premier ordre, les composantes nulles du cisaillement transverse deviennent :

$$\gamma_{xz} = 2\varepsilon_{xz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} = \phi_x + \frac{\partial w_0}{\partial x} = 0$$
(III.67)

Et :

$$\gamma_{yz} = 2\varepsilon_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} = \varphi_y + \frac{\partial w_0}{\partial y} = 0$$
(III.68)

Alors :

$$\varphi_{\rm x} = -\frac{\partial w_0}{\partial x} \tag{III.69}$$

Et :

$$\varphi_{y} = -\frac{\partial w_{0}}{\partial y} \tag{III.70}$$

Le champ de déplacement donné par les équations suivantes :

$$\begin{cases} u(x, y, z) = u_0(x, y) + z\phi_x(x, y) \\ v(x, y, z) = v_0(x, y) + z\phi_y(x, y) \\ w(x, y, z) = w_0(x, y) \end{cases}$$

Si on substitue les relations (III.69) et (III.70) dans la relation (III.4), on obtient :

$$\begin{cases} u(x, y, z) = u_0(x, y) - z \frac{\partial w_0}{\partial x} \\ v(x, y, z) = v_0(x, y) - z \frac{\partial w_0}{\partial y} \\ w(x, y, z) = w_0(x, y) \end{cases}$$
(III.71)

Dans le cadre de cette théorie (TCS) et dans le cas d'un schéma du premier ordre, la déformée de la normale au plan moyen (O,x,y) est un segment de droite [AB], normal à la déformée de ce plan moyen .Les notations utilisées dans le cadre de cette hypothèse sont présentés sur la (**Fig III.4**).

III.11 Champ de déformations

Le champ de déformation s'écrit en tenant en considération les deux relations (III.4) et (III.71) :

$$\begin{cases} \varepsilon_{xx} = \frac{\partial u}{\partial x} = \frac{\partial u_0}{\partial x} + z \frac{\partial \phi_x}{\partial x} = \frac{\partial u_0}{\partial x} - \frac{\partial^2 w_0}{\partial x^2} \\ \varepsilon_{yy} = \frac{\partial v}{\partial y} = \frac{\partial v_0}{\partial y} - z \frac{\partial^2 w_0}{\partial y^2} \\ \varepsilon_{zz} = \frac{\partial w}{\partial z} = \frac{\partial w_0}{\partial z} = 0 \\ \gamma_{yz} = 2\varepsilon_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} = \phi_y + \frac{\partial w_0}{\partial y} = 0 \\ \gamma_{xz} = 2\varepsilon_{xz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} = \phi_x + \frac{\partial w_0}{\partial x} = 0 \\ \gamma_{xy} = 2\varepsilon_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v_0}{\partial x} + z \left(\frac{\partial \phi_x}{\partial y} + \frac{\partial \phi_y}{\partial x}\right) = \left(\frac{\partial u_0}{\partial y} + \frac{\partial v_0}{\partial x}\right) - 2z \frac{\partial^2 w_0}{\partial x \partial y} \end{cases}$$
(III.72)

Le tenseur de déformation en un point quelconque (M) est donné par l'expression suivante :

$$[\varepsilon] = \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} & 0\\ \varepsilon_{xy} & \varepsilon_{yy} & 0\\ 0 & 0 & 0 \end{bmatrix}$$
(III.73)

Ou bien en notation matricielle (notation de Voigt) :

$$(\varepsilon) = \begin{pmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \end{pmatrix}$$
(III.74)

D'après la relation (III.72), le champ de déformation est composé de la superposition de déformations en membrane qui s'expriment en fonction des déplacements (u_0,v_0) dans le plan (x,y) et de déformations en flexion et torsion qui sont notées respectivement :

$$\varepsilon_{m} = \begin{pmatrix} \varepsilon_{xx}^{0} \\ \varepsilon_{yy}^{0} \\ \varepsilon_{xy}^{0} \end{pmatrix} = \begin{pmatrix} \frac{\partial u_{0}}{\partial x} \\ \frac{\partial v_{0}}{\partial y} \\ \frac{\partial u_{0}}{\partial x} + \frac{\partial v_{0}}{\partial y} \end{pmatrix}$$
(III.75)

Et :

$$\varepsilon_{f} = \begin{pmatrix} \varepsilon^{f}_{xx} \\ \varepsilon^{f}_{yy} \\ \varepsilon^{f}_{xy} \end{pmatrix} = \begin{pmatrix} -z \frac{\partial^{2} w_{0}}{\partial x^{2}} \\ -z \frac{\partial^{2} w_{0}}{\partial y^{2}} \\ -2z \frac{\partial^{2} w_{0}}{\partial x \partial y} \end{pmatrix}$$
(III.76)

Les déformations en flexion et torsion s'expriment par :

$$\varepsilon_{\rm f} = z. \kappa(x, y)$$
 (III.77)

Avec :

$$\mathbf{k}(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} \kappa_{\mathbf{x}} \\ \kappa_{\mathbf{y}} \\ \kappa_{\mathbf{xy}} \end{pmatrix} = \begin{bmatrix} \frac{\partial^2 w_0}{\partial \mathbf{x}^2} \\ \frac{\partial^2 w_0}{\partial \mathbf{y}^2} \\ 2\mathbf{z} \frac{\partial^2 w_0}{\partial \mathbf{x} \partial \mathbf{y}} \end{bmatrix}$$
(III.78)

La matrice $[\kappa(x, y)]$ est appelée matrice des courbures de la plaque stratifiée sollicitée en flexion. Les angles de rotations sont exprimés en fonction du déplacement transversal $w_0(x, y)$ en utilisant la notation suivante :

$$\theta_{\rm X} = \frac{\partial w_0}{\partial y} \tag{III.79}$$

Et :

$$\theta_{\rm y} = \frac{\partial w_0}{\partial x} \tag{III.80}$$

Si on substitue (III.79) et (III.80) dans (III.4), le champ de déplacement devient :

$$\begin{cases} u(x, y, z) = u_0(x, y) - z\theta_y \\ v(x, y, z) = v_0(x, y) - z\theta_X \\ w(x, y, z) = w_0(x, y) \end{cases}$$

Finalement, le champ de déformation s'écrit sous la forme suivante :

$$\varepsilon = \varepsilon_{\rm f} + \varepsilon_{\rm m} \tag{III.81}$$

Ou bien en notation matricielle :

$$\begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \end{bmatrix} = \begin{bmatrix} \varepsilon_{yy}^{0} \\ \varepsilon_{yy}^{0} \\ \varepsilon_{xy}^{0} \end{bmatrix} + z \begin{bmatrix} \kappa_{x} \\ \kappa_{y} \\ \kappa_{xy} \end{bmatrix}$$
(III.82)

Ou bien encore :

$$\varepsilon = \varepsilon(x, y, z) = \varepsilon_{m}(x, y) + \varepsilon_{f}(x, y) = \varepsilon_{m}(x, y) + z\kappa(x, y)$$
(III.83)

III.12 Champ de contraintes

Dans le cadre de la théorie classique des stratifiés, le champ de contraintes pour une couche (k) est donné par la relation :

$$\begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \\ \sigma_{yz} \\ \sigma_{yz} \\ \sigma_{xz} \end{pmatrix} = \begin{bmatrix} Q'_{11} & Q'_{12} & Q'_{16} & 0 & 0 \\ Q'_{12} & Q'_{22} & Q'_{26} & 0 & 0 \\ Q'_{16} & Q'_{26} & Q'_{66} & 0 & 0 \\ 0 & 0 & 0 & C'_{44} & C'_{45} \\ 0 & 0 & 0 & C'_{45} & C'_{55} \end{bmatrix}_{k} \begin{pmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{xy} \\ \gamma_{yz} \\ \gamma_{xz} \end{pmatrix}$$
(III.84)

Or, d'après la relation (III.66), nous avons :

$$\gamma_{xz} = \gamma_{yz} = 0$$

Alors, la relation (III.84), devient :

$$\begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \\ \sigma_{yz} \\ \sigma_{xz} \end{pmatrix} = \begin{bmatrix} Q'_{11} & Q'_{12} & Q'_{16} & 0 & 0 \\ Q'_{12} & Q'_{22} & Q'_{26} & 0 & 0 \\ Q'_{16} & Q'_{26} & Q'_{66} & 0 & 0 \\ 0 & 0 & 0 & C'_{44} & C'_{45} \\ 0 & 0 & 0 & C'_{45} & C'_{55} \end{bmatrix}_{k} \begin{pmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \\ 0 \\ 0 \end{pmatrix}$$
(III.85)

Ce qui conduit à :

$$\sigma_{xx} = Q'_{11}\varepsilon_{xx} + Q'_{12}\varepsilon_{yy} + Q'_{16}\gamma_{xy}$$

$$\sigma_{yy} = Q'_{12}\varepsilon_{xx} + Q'_{22}\varepsilon_{yy} + Q'_{26}\gamma_{xy}$$

$$\sigma_{xy} = Q'_{16}\varepsilon_{xx} + Q'_{26}\varepsilon_{yy} + Q'_{66}\gamma_{xy}$$

(III.86)

$$\sigma_{yz} = 0$$
$$\sigma_{xz} = 0$$

Sous forme matricielle, les équations (III.86) deviennent :

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \end{bmatrix} = Q'_{k} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \end{bmatrix}$$
(III.87)

Avec :

$$Q'_{k} = \begin{bmatrix} Q'_{11} & Q'_{12} & Q'_{16} \\ Q'_{12} & Q'_{22} & Q'_{26} \\ Q'_{16} & Q'_{26} & Q'_{66} \end{bmatrix}_{k}$$
(III.88)

Q'_k représente la matrice de rigidité réduite de la couche (k). Si on substitue (III.82) et (III.88) dans (III.87), on obtient :

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \end{bmatrix}_{k} = \begin{bmatrix} Q'_{11} & Q'_{12} & Q'_{16} \\ Q'_{12} & Q'_{22} & Q'_{26} \\ Q'_{16} & Q'_{26} & Q'_{66} \end{bmatrix}_{k} \begin{bmatrix} \varepsilon_{xx}^{0} \\ \varepsilon_{yy}^{0} \\ \varepsilon_{xy}^{0} \end{bmatrix} + z \begin{bmatrix} Q'_{11} & Q'_{12} & Q'_{16} \\ Q'_{12} & Q'_{22} & Q'_{26} \\ Q'_{16} & Q'_{26} & Q'_{66} \end{bmatrix}_{k} \begin{bmatrix} \kappa_{x} \\ \kappa_{y} \\ \kappa_{xy} \end{bmatrix}$$
(III.89)

Ou bien :

$$\sigma_{k}(x, y, z) = Q'_{k}\varepsilon_{m}(x, y) + zQ'_{k}\kappa(x, y)$$
(III.90)

 σ_k : représente les contraintes dans la couche (k)

Z varie dans la zone : $h_{k-1} \leq z \leq h_k$

 h_k et h_{k-1} : représentent les bornes supérieure et inferieure de la couche (k)

La matrice de rigidité réduite Q'_k varie d'une couche à l'autre ce qui engendre une discontinuité du champ de contraintes entre les différentes couches.

III.13 Expressions des résultantes et moments

III.13.1 Résultantes en membranes

L'expression des résultantes en membranes est donnée par la relation :

$$N(x, y) = \begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} = \sum_{k=1}^n \int_{h_{k-1}}^{h_k} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} dz$$
(III.91)

La substitution de la relation (III.90) dans (III.91), conduit à :

$$N(x,y) = \sum_{k=1}^{n} \int_{h_{k-1}}^{h_{k}} [Q'_{k}\varepsilon_{m}(x,y) + zQ'_{k}\kappa(x,y)]dz = \sum_{k=1}^{n} \left[Q'_{k}\varepsilon_{m}(x,y) \int_{h_{k-1}}^{h_{k}} dz + Q'_{k}\kappa(x,y) \int_{h_{k-1}}^{h_{k}} zdz \right]$$
(III.92)

Et en intégrant par rapport à l'épaisseur :

$$N(x,y) = \left(\sum_{k=1}^{n} (h_k - h_{k-1}) Q'_k\right) \varepsilon_m(x,y) + \frac{1}{2} \left(\sum_{k=1}^{n} (h_k^2 - h_{k-1}^2)\right) \kappa(x,y)$$
(III.93)

Si on introduit les matrices suivantes :

$$A = \sum_{k=1}^{n} (h_k - h_{k-1}) Q'_k$$
(III.94)

Ou bien en notation indicielle :

$$A_{ij} = \sum_{k=1}^{n} (h_k - h_{k-1}) (Q'_{ij})_k$$
(III.95)

Et :

$$B = \sum_{k=1}^{n} \frac{1}{2} (h_{k}^{2} - h_{k-1}^{2}) Q_{k}^{\prime}$$
(III.96)

Ou bien en notation indicielle :

$$B_{ij} = \sum_{k=1}^{n} \frac{1}{2} (h^2_{\ k} - h^2_{\ k-1}) (Q'_{ij})_k$$
(III.97)

L'expression finale des résultantes en membrane devient :

$$N(x, y) = A. \varepsilon_{m}(x, y) + B. \kappa(x, y)$$
(III.98)

Et sous forme matricielle :

$$\begin{bmatrix} N_{x} \\ N_{y} \\ N_{xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{bmatrix}_{k} \begin{bmatrix} \varepsilon_{xx}^{0} \\ \varepsilon_{yy}^{0} \\ \varepsilon_{xy}^{0} \end{bmatrix} + \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{12} & B_{22} & B_{26} \\ B_{16} & B_{26} & B_{66} \end{bmatrix}_{k_{k}} \begin{bmatrix} \kappa_{x} \\ \kappa_{y} \\ \kappa_{xy} \end{bmatrix}$$
(III.99)

III.13.2 Moments de flexion et de torsion

Le champ des moments est donné par la relation :

$$M_{f}(x,y) = \begin{bmatrix} M_{x} \\ M_{y} \\ M_{xy} \end{bmatrix} = \sum_{k=1}^{n} \int_{h_{k-1}}^{h_{k}} z \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix}_{k} dz$$
(III.100)

Si on substitue la relation (III.90) dans (III.100), on obtient :

$$M_{f}(x,y) = \sum_{k=1}^{n} \int_{h_{k-1}}^{h_{k}} [z. Q'_{k}. \varepsilon_{m}(x,y) + z^{2}. Q'_{k}. \kappa(x,y)] dz$$
(III.101)

Le développement de cette équation (III.101), conduit au résultat suivant :

$$M_{f}(x, y) = \frac{1}{2} \left[\sum_{k=1}^{n} (h^{2}_{k} - h^{2}_{k-1}) \left(Q_{ij}^{'} \right)_{k} \right] \varepsilon_{m}(x, y) + \frac{1}{3} \left[\sum_{k=1}^{n} \frac{1}{2} (h^{3}_{k} - h^{3}_{k-1}) \left(Q_{ij}^{'} \right)_{k} \right] \kappa(x, y)$$
(III.102)

En notant:

$$D = \frac{1}{3} \left[\sum_{k=1}^{n} \frac{1}{2} \left(h_k^3 - h_{k-1}^3 \right) Q'_k \right]$$
(III.103)

Ou bien en notation indicielle :

$$D_{ij} = \frac{1}{3} \left[\sum_{k=1}^{n} \frac{1}{2} \left(h_k^3 - h_{k-1}^3 \right) \left(Q_{ij}' \right)_k \right]$$
(III.104)

Sachant que d'après la relation (III.97), nous avons :

$$B_{ij} = \sum_{k=1}^{n} \frac{1}{2} (h_{k}^{2} - h_{k-1}^{2}) (Q_{ij}')_{k}$$

Alors, l'expression finale des moments devient :

$$M_{f}(x, y) = B. \varepsilon_{m}(x, y) + D. \kappa(x, y)$$
(III.105)

Et sous forme matricielle :

$$M_{f}(x,y) = \begin{bmatrix} M_{x} \\ M_{y} \\ M_{xy} \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{12} & B_{22} & B_{26} \\ B_{16} & B_{26} & B_{66} \end{bmatrix}_{k} \begin{bmatrix} \varepsilon_{xx}^{0} \\ \varepsilon_{yy}^{0} \\ \varepsilon_{xy}^{0} \end{bmatrix} + \begin{bmatrix} D_{11} & D_{12} & D_{16} \\ D_{12} & D_{22} & D_{26} \\ D_{16} & D_{26} & D_{66} \end{bmatrix}_{k_{k}} \begin{bmatrix} \kappa_{x} \\ \kappa_{y} \\ \kappa_{xy} \end{bmatrix}$$
(III.106)

Les moments de flexion et de torsion sont exprimés en fonction des courbures en flexion et en torsion et des déformations en membrane.

III.14 Equation constitutive d'un stratifié

L'équation constitutive d'un stratifié permet d'exprimer les résultantes et les moments en fonction des déformations en membrane et des courbures. Elles s'obtiennent par regroupement des relations (III.99) et (III.106), ce qui ramène à une seule expression matricielle écrite sous la forme suivante :

$$\begin{bmatrix} N_{x} \\ N_{y} \\ N_{xy} \\ M_{x} \\ M_{y} \\ M_{xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} & B_{11} & B_{12} & B_{16} \\ A_{12} & A_{22} & A_{26} & B_{12} & B_{22} & B_{26} \\ A_{16} & A_{26} & A_{66} & B_{16} & B_{26} & B_{66} \\ B_{11} & B_{12} & B_{16} & D_{11} & D_{12} & D_{16} \\ B_{12} & B_{22} & B_{26} & D_{12} & D_{22} & D_{26} \\ B_{16} & B_{26} & B_{66} & D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx}^{0} \\ \varepsilon_{yy}^{0} \\ \varepsilon_{xy}^{0} \\ \kappa_{x} \\ \kappa_{y} \\ \kappa_{xy} \end{bmatrix}$$
(III. 107)

Et sous forme compactée :

$$\begin{bmatrix} \mathbf{N} \\ \mathbf{M}_{\mathbf{f}} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{\varepsilon}_{\mathbf{m}} \\ \mathbf{\kappa} \end{bmatrix}$$
(III.108)

III.15 Expression des conditions aux limites

Les conditions imposées aux frontières d'une structure permettent d'aboutir à des solutions uniques des équations du mouvement.

(Fig III.9) représente un élément de frontière repéré au point P(x, y,0) par le système d'axes n, normale extérieure, t la tangente dans le plan moyen et k = z. La déformée au point P du stratifié est caractérisée par le déplacement de ce point exprimé dans la base $(\xrightarrow[n, t], \xrightarrow[k]]{}$ par ses composantes $u_{0n}(x, y), v_{0n}(x, y), w_{0n}(x, y)$, et par l'orientation de la déformée définie par $\frac{\partial w_0}{\partial n}$.

Les efforts exercés au point P sont les résultantes en membrane N_n , N_{nt} , en cisaillement Q_n , les moments de flexion M, et de torsion M_{nt} . Les conditions imposées portent sur l'une des grandeurs de chacune des paires suivantes :

$$u_{0n}, N_n$$
; u_{0t}, N_t ; $\frac{\partial w_0}{\partial n}, M_n$; $w_0, \frac{\partial M_{nt}}{\partial t} + Q_n$ (III. 109)

Fig. III.9 Elément de frontière de la plaque et repère associé

> Appui simple

(Fig III.10) représente la condition d'appui simple. L'expression de cette condition est donnée par :

$$w_0 = 0$$
; $M_n = 0$; $N_n = 0$; $N_{nt} = 0$ (III. 110)

Fig. III.10 Schématisation d'un appui simple

> Encastrement

En considérant (Fig III.11), la condition de bord encastré peut s'exprimer selon

$$w_0 = 0$$
 ; $\frac{\partial w_0}{\partial n} = 0$; $u_{0n} = 0$; $u_{0t} = 0$ (III.111)

Fig. III.11 Représentation d'un encastrement

> Condition de bord libre

Un bord libre est caractérisé par la nullité de tous les efforts et moments :

$$N_n = N_{nt} = Q_n = M_n = M_{nt} \frac{\partial w_0}{\partial n} = 0$$
(III. 112)

L'équilibre des moments de torsion sur ce bord (fig III.17) s'exprime sous la forme :

$$-M_{nt} + M_{nt} + \frac{\partial M_{nt}}{\partial n}dt + Q_n dt = 0$$
(III. 113)

Ou :

 $Q_n dt$: est le moment résultant dû à l'effort de cisaillement.

La résultante de cisaillement est donc reliée au moment de torsion par :

$$\frac{\partial M_{nt}}{\partial n} + Q_n = 0 \tag{III.114}$$

Qui est la condition de frontière de Kirchhoff. Elle exprime la contribution du moment de torsion sur le bord à l'effort tranchant total exercé sur ce dernier [6]. La condition de bord libre se résume dans ce cas à :

$$N_n = 0$$
 ; $N_{nt} = 0$; $M_n = 0$; $\frac{\partial M_{nt}}{\partial n} + Q_n = 0$ (III. 115)

Fig. III.12 Variation du moment de torsion le long d'un bord

III.16 Formulation énergétique de la théorie des stratifiés

La résolution du problème général de dynamique des stratifiés consiste à déterminer les trois déplacements u_0 , v_0 et w_0 , et les deux rotations Q_x et Q_y , satisfaisant simultanément les équations du mouvement et les conditions aux limites imposées sur la frontière.

L'utilisation d'une approche variationnelle permet de développer des méthodes de résolution approchées. Ces approches sont basées sur le calcul des énergies de la structure, énergie de déformation, énergie cinétique, travail des efforts extérieurs et énergie dissipée [6].

III.16.1 Energie de déformation

Pour un milieu élastique, l'énergie de déformation élémentaire s'exprime par :

$$dU_d = \frac{1}{2}\sigma_{ij}\varepsilon_{ij}dv \tag{III.116}$$

L'intégration de cette relation sur le volume d'un solide permet d'obtenir l'expression de l'énergie de déformation totale du solide élastique :

$$U_d = \frac{1}{2} \iiint \sigma_{ij} \varepsilon_{ij} dv \tag{III. 117}$$

Ou sous forme explicite :

$$U_{d} = \frac{1}{2} \iiint \left(\sigma_{xx} \varepsilon_{xx} + \sigma_{yy} \varepsilon_{yy} + \sigma_{zz} \varepsilon_{zz} + \sigma_{yz} \varepsilon_{yz} + \sigma_{xz} \varepsilon_{xz} + \sigma_{xy} \varepsilon_{xy} \right) dx dy dz$$
(III. 118)

En tenant compte de l'hypothèse de contraintes planes ($\sigma_{zz} = 0$), et des relations contraintes déformations pour chaque couche k (III.84), l'énergie de déformation totale d'un stratifié peut se mettre sous la forme :

$$U_{d} = \frac{1}{2} \iiint \left(Q_{11}^{k} \varepsilon_{xx}^{2} + Q_{22}^{k} \varepsilon_{yy}^{2} + Q_{66}^{k} \varepsilon_{xy}^{2} + 2Q_{12}^{k} \varepsilon_{xx} \varepsilon_{yy} + 2Q_{16}^{k} \varepsilon_{xx} \varepsilon_{xy} + 2Q_{26}^{k} \varepsilon_{yy} \varepsilon_{xy} \right) dx dy dz$$
(III. 119)

En reportant les expressions des déformations (III.6) dans cette dernière expression et en intégrant dans l'épaisseur, nous obtenons l'expression de l'énergie de déformation totale d'un stratifié en fonction des déplacements et des constantes de rigidité de l'équation constitutive.

$$\begin{aligned} U_{d} &= \frac{1}{2} \iint \left[A_{11} \left(\frac{\partial u_{0}}{\partial x} \right)^{2} + 2A_{12} \frac{\partial u_{0}}{\partial x} \frac{\partial v_{0}}{\partial y} + A_{22} \left(\frac{\partial v_{0}}{\partial y} \right)^{2} \\ &+ 2 \left(A_{16} \frac{\partial u_{0}}{\partial x} + A_{26} \frac{\partial v_{0}}{\partial y} \right) \left(\frac{\partial u_{0}}{\partial y} + \frac{\partial v_{0}}{\partial x} \right) + A_{22} \left(\frac{\partial u_{0}}{\partial y} + \frac{\partial v_{0}}{\partial x} \right)^{2} \right] dx dy \\ &+ \frac{1}{2} \iint \left[D_{11} \left(\frac{\partial w_{0}}{\partial x} \right)^{2} + 2D_{12} \frac{\partial w_{0}}{\partial x} \frac{\partial w_{0}}{\partial y} + D_{22} \left(\frac{\partial w_{0}}{\partial y} + \frac{\partial w_{0}}{\partial x} \right)^{2} \right] dx dy \\ &+ 2 \left(D_{16} \frac{\partial w_{0}}{\partial x} + D_{26} \frac{\partial w_{0}}{\partial y} \right) \left(\frac{\partial w_{0}}{\partial y} + \frac{\partial w_{0}}{\partial x} \right) + D_{22} \left(\frac{\partial w_{0}}{\partial y} + \frac{\partial w_{0}}{\partial x} \right)^{2} \right] dx dy \end{aligned}$$
(III. 120)

III.16.2 Énergie cinétique

L'énergie cinétique d'un volume élémentaire est donnée par :

$$dE_c = \frac{1}{2}\rho \frac{\partial u_i}{\partial t} \frac{\partial u_i}{\partial t} dv$$
(III. 121)

Ou u_i est le vecteur déplacement de composantes : u, v, w.

L'énergie cinétique totale d'un solide s'exprime donc selon l'intégrale :

$$E_{c} = \frac{1}{2} \iiint \rho \left[\left(\frac{\partial u}{\partial t} \right)^{2} + \left(\frac{\partial v}{\partial t} \right)^{2} + \left(\frac{\partial w}{\partial t} \right)^{2} \right] dx dy dz$$
(III. 122)

En remplaçant chaque composante du vecteur déplacement par son expression (III.4), et en intégrant dans l'épaisseur, l'énergie cinétique du stratifié, dans le cas d'un schéma du premier ordre, s'écrit :

$$E_{c} = \frac{1}{2} \iiint \rho \left[\left(\frac{\partial u}{\partial t} - z \frac{\partial^{2} w_{0}}{\partial x \partial t} \right)^{2} + \left(\frac{\partial v}{\partial t} - z \frac{\partial^{2} w_{0}}{\partial y \partial t} \right)^{2} + \left(\frac{\partial w_{0}}{\partial t} \right)^{2} \right] dx dy dz$$
(III. 123)

Ou :

$$R, I_{xy} = \int_{-h/2}^{h/2} (z, z^2) \rho dz$$

$$\rho_s = \int_{-h/2}^{h/2} \rho dz = \sum_{k=1}^n \int_{h_{k-1}}^{h_k} \rho_k dz = \sum_{k=1}^n \rho_k (h_k - h_{k-1})$$
(III. 124)

 ρ_s : Masse surfacique du stratifié au point (X,Y).

 I_{xy} : Moment d'inertie par rapport au plan (XOY) de l'élément unitaire de plaque situé au point (X, y).

Chapitre IV Etude analytique du comportement vibratoire des plaques composites minces

IV.1 Introduction

Dans l'étude des vibrations libres des plaques stratifiées anisotropes, les vibrations transversales de flexion sont généralement les plus dominantes [17], elles ont fait l'objet de beaucoup de recherche parce que dans la plus la plupart des cas elles peuvent conduire à la ruine de la plaque. Les vibrations longitudinales quand à elles peuvent être négligées devant les premières. Les vibrations en flexion des plaques sont modélisées essentiellement par deux théories :

- 1. théorie des plaques minces : applicable aux structures de faibles épaisseurs
- 2. théorie des plaques épaisses : utilisée dans le cas des structures épaisses

IV.2 Vibrations de flexion des plaques minces symétriques

IV.2.1 Equation du mouvement

Dans le cadre de la théorie classique des stratifiés, les déformations de cisaillement transverse sont négligées :

$$\begin{aligned} \gamma_{xz} &= 0 \\ \gamma_{yz} &= 0 \end{aligned} \tag{IV.1}$$

En reportant cette égalité dans les relations (III.7) nous obtenons :

$$\varphi_{x}(x,y) = -\frac{\partial w_{0}}{\partial x}$$
(IV.2)
$$\varphi_{y}(x,y) = -\frac{\partial w_{0}}{\partial y}$$

Dans le cas d'un stratifié symétrique et pour celui d'une plaque orthotrope, les termes de couplage membrane flexion torsion (relations (III.95) et (III.104)) ainsi que le terme intégral R (relation (III.36)) sont nuls [2].

$$B_{ij} = 0$$

 $R = 0$ (IV.3)
 $D_{12} = D_{26} = 0$

Dans ces conditions et d'après les équations du mouvement, les déplacements du stratifié dans le plan sont découplés du déplacement transversal. Les résultantes en cisaillement étant nulles en tenant compte de l'hypothèse (IV.1), le déplacement transversal (ou de flexion) est complètement décrit par l'équation du mouvement (III.65) qui en considérant l'expression des moments (IV.4) et des courbures (IV.5), prend la forme de l'expression (IV.6).

$$\begin{pmatrix} M_{x} \\ M_{y} \\ M_{xy} \end{pmatrix} = \begin{bmatrix} D_{11} & D_{12} & D_{16} \\ D_{12} & D_{22} & D_{26} \\ D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{pmatrix} k_{x} \\ k_{y} \\ k_{xy} \end{pmatrix}$$
(IV.4)

$$k_{x} = -\frac{\partial^{2} w_{0}}{\partial x^{2}}(x, y, t)$$

$$k_{y} = -\frac{\partial^{2} w_{0}}{\partial y^{2}}(x, y, t)$$
(IV.5)

$$\begin{aligned} \mathbf{k}_{xy} &= -2\frac{\partial^2 \mathbf{w}_0}{\partial x \, \partial y}(\mathbf{x}, \mathbf{y}, \mathbf{t}) \\ \mathbf{D}_{11}\frac{\partial^4 \mathbf{w}_0}{\partial x^4} + 2(\mathbf{D}_{12} + 2\mathbf{D}_{66})\frac{\partial^4 \mathbf{w}_0}{\partial x^2 \, \partial y^2} + \mathbf{D}_{22}\frac{\partial^4 \mathbf{w}_0}{\partial y^4} + \rho_s\frac{\partial^4 \mathbf{w}_0}{\partial t^4} + \mathbf{q} \end{aligned} \tag{IV.6}$$
$$= \mathbf{I}_{xy} \left(\frac{\partial^4 \mathbf{w}_0}{\partial x^2 \, \partial t^2} + \frac{\partial^4 \mathbf{w}_0}{\partial y^2 \, \partial t^2}\right)$$

La forme inverse du système (IV.4), s'écrit :

$$\begin{pmatrix} k_{x} \\ k_{y} \\ k_{xy} \end{pmatrix} = \begin{bmatrix} D_{11}^{-1} & D_{12}^{-1} & D_{16}^{-1} \\ D_{12}^{-1} & D_{22}^{-1} & D_{26}^{-1} \\ D_{16}^{-1} & D_{26}^{-1} & D_{66}^{-1} \end{bmatrix} \begin{pmatrix} M_{x} \\ M_{y} \\ M_{xy} \end{pmatrix}$$
(IV.7)

 $[D_{ij}]^{-1}$ est la matrice inverse de $[D_{ij}]$. Ces composantes sont données par la relation suivante :

$$D_{11}^{-1} = \frac{1}{\Delta} (D_{22}D_{66} - D_{26}^{2})$$

$$D_{12}^{-1} = \frac{1}{\Delta} (D_{16}D_{26} - D_{12}D_{66})$$

$$D_{16}^{-1} = \frac{1}{\Delta} (D_{12}D_{26} - D_{16}D_{22})$$

$$D_{22}^{-1} = \frac{1}{\Delta} (D_{11}D_{66} - D_{16}^{2})$$

$$D_{26}^{-1} = \frac{1}{\Delta} (D_{12}D_{26} - D_{26}D_{11})$$

$$D_{66}^{-1} = \frac{1}{\Delta} (D_{11}D_{12} - D_{12}^{2})$$
(IV.8)

 Δ représente le déterminent de la matrice [D]

$$\Delta = D_{11}D_{22}D_{66} + 2D_{12}D_{16}D_{26} - D_{11}D_{26}^{2} - D_{22}D_{16}^{2} - D_{66}D_{12}^{2}$$
(IV.9)

Dans le cas où les termes de l'inertie rotatifs peuvent être négligés, $I_{xy} = 0$ l'équation de la vibration (IV.6) devient:

$$D_{11}\frac{\partial^4 w_0}{\partial x^4} + 2(D_{12} + 2D_{66})\frac{\partial^4 w_0}{\partial x^2 \partial y^2} + D_{22}\frac{\partial^4 w_0}{\partial y^4} + \rho_s\frac{\partial^4 w_0}{\partial t^4} + q = 0$$
(IV.10)

IV.2.2 Fréquences et déformées propres des plaques rectangulaires

Considérant l'équation du mouvement transversal libre du stratifié (q=0). La solution vibratoire harmonique de cette équation est recherchée, par la méthode de séparation des variables de l'espace et du temps, sous la forme :

$$W_0(x, y, t) = W_0(x, y)e^{i\omega t}$$
(IV.11)

Où :

ω: est la pulsation ou fréquence circulaire du mouvement

 $W_0(x, y)$: est la solution spatiale ou déformée

En substituant cette forme de solution (IV.11) dans l'équation du mouvement (IV.6), on aboutit à l'équation suivante :

$$D_{11}\frac{\partial^4 w_0}{\partial x^4} + 2(D_{12} + 2D_{66})\frac{\partial^4 w_0}{\partial x^2 \partial y^2} + D_{22}\frac{\partial^4 w_0}{\partial y^4} - \rho_s \omega^2 w_0 = 0$$
(IV.12)

La résolution du problème consiste à déterminer toutes les fonctions $w_0(x, y)$ satisfaisant les conditions aux limites (déformées propres) et d'en déduire les fréquences propres correspondantes. Dans le cas d'une plaque rectangulaire de longueur (a) et de largeur (b) et d'épaisseur (h) (Fig. IV.1). Les conditions aux limites standards s'écrivent, pour les bords parallèles à la direction y:

Fig. IV.1 Plaque rectangulaire

En appui simple :

Pour x=0 et x=a

$$w_0 = 0$$
 (IV.13)
 $M_x = 0$

$$w_0 = 0 (IV.14)$$
$$M_y = 0$$

Encastré :

$$w_0 = 0 (IV.15)$$
$$\frac{\partial w_0}{\partial x}$$

Libre :

$$M_{x} = 0$$
(IV.16)
$$\frac{\partial M_{xy}}{\partial y} + Q_{x} = 0$$

En tenant compte des différentes hypothèses retenues, la condition de bord libre devient :

$$M_{x} = 0$$
(IV.17)
$$\frac{\partial M_{x}}{\partial x} + 2 \frac{\partial M_{xy}}{\partial y}$$

En remplaçant les moments et courbures par leurs expressions (IV.4) et (IV.5), les conditions aux limites s'expriment en fonction du déplacement :

En appui simple :

$$w_{0} = 0$$
(IV.18)
$$D_{11} \frac{\partial^{2} w_{0}}{\partial x^{2}} + 2D_{16} \frac{\partial^{2} w_{0}}{\partial x \partial y} = 0$$

Encastrement :

$$w_0 = 0 (IV.19)$$
$$\frac{\partial w_0}{\partial x} = 0$$

Coté libre :

$$D_{11}\frac{\partial^2 w_0}{\partial x^2} + 2D_{16}\frac{\partial^2 w_0}{\partial x \partial y} = 0$$

$$D_{11}\frac{\partial^3 w_0}{\partial x^3} + 4D_{16}\frac{\partial^2 w_0}{\partial y^2} + 4D_{66}\frac{\partial^2 w_0}{\partial y^2} + 2D_{16}\frac{\partial^2 w_0}{\partial x \partial y} = 0$$
(IV.20)

De même pour les cotés parallèles à la direction x, nous avons :

Appui simple :

$$w_{0} = 0$$
(IV.21)
$$D_{11} \frac{\partial^{2} w_{0}}{\partial x^{2}} + 2D_{16} \frac{\partial^{2} w_{0}}{\partial x \partial y} = 0$$

Encastrement :

$$w_0 = 0$$

$$\frac{\partial w_0}{\partial y} = 0$$
(IV.22)

Coté libre :

$$D_{12} \frac{\partial^2 w_0}{\partial x^2} + D_{22} \frac{\partial^2 w_0}{\partial y^2} + 2D_{26} \frac{\partial^2 w_0}{\partial x \partial y} = 0$$

$$2D_{16} \frac{\partial^3 w_0}{\partial x^3} + 4D_{66} \frac{\partial^3 w_0}{\partial x^2 \partial y} + D_{22} \frac{\partial^3 w_0}{\partial y^3} = 0$$
(IV.23)

La solution recherchée doit donc satisfaire simultanément l'équation du mouvement (IV.10) et les conditions aux limites définies par une combinaison quelconque de quatre conditions parmi (IV.21) à (IV.23). Dans le cas d'une plaque orthotrope ($D_{12} = D_{26} = 0$), en appui simple sur ses quatre bords, la solution analytique exacte est donnée sous la forme (IV.24) qui satisfait explicitement les conditions (IV.18) et (IV.21).

$$w_0 = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \sin(m\pi \frac{x}{a}) \sin(n\pi \frac{y}{b})$$
(IV.24)

La déformée propre du mode (m,n) et sa fréquence propre sont donnée respectivement par :

$$w_{mn} = A_{mn} \sin(m\pi \frac{x}{a}) \sin(n\pi \frac{y}{b})$$
(IV.25)

Et :

$$\omega_0 = \frac{\pi^2}{a^2} \sqrt{\frac{1}{\rho_s} [m^4 D_{11} + 2m^2 n^2 R^2 (D_{12} + 2D_{66}) + n^2 R^2 D_{22}]}$$
(IV.26)

Dans cette relation R représente le facteur de forme défini par le rapport entre la longueur et largeur :

$$R = \frac{a}{b}$$
(IV.27)

L'absence de solutions exactes pour toutes les autres conditions aux limites conduit à la recherche de solutions approchées.

IV.2.3 Méthode de Rayleigh-Ritz

Parmi les problèmes dynamiques gouvernés par un système d'équations aux dérivées partielles, il n'en existe qu'un petit nombre pour lesquels une solution analytique est disponible. La nécessité de trouver une solution analytique exacte peut être contournée par l'application de la méthode de Rayleigh-Ritz basée sur une approche vibrationnelle. Cette méthode de Rayleigh-Ritz commença en 1870 avec l'étude des problèmes de vibration par lord Rayleigh : l'approximation du champ de déplacement était toutefois limitée à une seule fonction (méthode de Rayleigh). En 1909, Ritz a généralisé la méthode de Rayleigh en construisant une approximation du champ à partir de plusieurs fonctions, chacune satisfaisant séparément les conditions aux limites essentielles (c'est-à-dire, les conditions aux frontière de type cinématique) et à chacune d'elle étant associé un degré de liberté [17].

IV.2.4 Détermination des fréquences et modes propres des plaques par la méthode de Rayleigh-Ritz

La méthode de Rayleigh-Ritz est une méthode d'approximation basée sur une approche vibrationnelle. Elle consiste à écrire une solution approchée du déplacement (u) sous la forme d'une série pondérée de fonctions admissibles u_n chacune d'elles vérifiant séparément les conditions aux limites essentielles imposées à la structure.

$$u = \sum_{i=1}^{n} a_i \widetilde{u_i}$$
 (IV.28)

L'ensemble de ces fonctions constitue la base fonctionnelle et l'approximation est d'autant plus précise que le nombre de termes (n), (ou nombre de degrés de liberté) utilisé est important. L'application de la méthode à la fonctionnelle énergie totale du solide déformable et l'écriture du théorème des travaux virtuels relatif à cette dernière (IV.29) permet de déterminer les paramètres a_i de l'approximation (amplitudes ou coordonnées généralisées), en écrivant les conditions de stationnarité de la fonctionnelle par rapport à chaque terme a selon (IV.30).

$$\delta U = \delta \left[\int_{t_1}^{t_2} (E_c + W - U_d) dt \right] = 0$$
 (IV.29)

Avec :

 E_c : Energie cinétique totale W : Travail des forces extérieures U_d : Energie de déformation totale

$$\begin{split} \delta \widetilde{U}(\widetilde{u}) &= \delta \widetilde{U}(a_i) = 0 \\ \frac{\partial \widetilde{U}}{\partial a_i} &= 0, \quad i = 1, n \end{split} \tag{IV.30}$$

Dans le cas des vibrations libres, le travail des forces extérieures est nul :

$$w = 0 \tag{IV.31}$$

Les conditions de stationnarité s'écrivent alors:

$$\frac{\partial U}{\partial a_{i}} = \frac{\partial}{\partial a_{i}} \left(\widetilde{U}_{d \max} - \widetilde{E}_{c \max} \right) = 0$$
 (IV.32)

Ces n équations permettent de construire un système linéaire de dimension $(n \times n)$, équivalant au problème aux valeurs propres (fréquences) et vecteurs propres (déformées) du problème réel. Pour un stratifié symétrique, en considérant les hypothèses de la théorie classique des stratifiés et en négligeant les inerties de rotation, les énergies cinétique et de déformation sont respectivement exprimées par :

$$\widetilde{E}_{c \max} = \frac{1}{2} \int_{x=0}^{a} \int_{y=0}^{b} \rho_s \omega^2 w_0^2 dx dy$$
(IV.33)

Et :

$$\widetilde{E}_{d \max} = \frac{1}{2} \int_{x=0}^{a} \int_{y=0}^{b} \left[D_{11} \left(\frac{\partial^2 w_0}{\partial x^2} \right)^2 + 2 D_{12} \frac{\partial^2 w_0}{\partial x^2 \partial y^2} + D_{12} \left(\frac{\partial^2 w_0}{\partial y^2} \right)^2 + 4 D_{66} \left(\frac{\partial^2 w_0}{\partial x \partial y} \right)^2 \right] dxdy + C$$
(IV.34)

IV.2.5 Application au problème de vibrations des plaques stratifiées symétriques

Un choix judicieux des fonctions admissibles pour décrire le déplacement transverse de la plaque rectangulaire considérée, consiste à approcher ce dernier par une double somme :

$$w_0(x, y) = \sum_{m=1}^{M} \sum_{n=1}^{N} A_{mn} X_m(x) Y_n(y)$$
(IV.35)

 $X_m(x)$ et $Y_n(y)$ sont des fonctions vérifiant les conditions aux limites des deux plaques reposant respectivement le long des directions x et y. En remplaçant le déplacement transversal par l'approximation (IV.36), l'énergie totale maximale de la plaque devient :

$$\widetilde{E}_{d \max} - \widetilde{E}_{c \max} = \frac{1}{2} \int_{x=0}^{a} \int_{y=0}^{b} \begin{bmatrix} D_{11} \left(\frac{\partial^2 w_0}{\partial x^2} \right)^2 + 2D_{12} \frac{\partial^2 w_0}{\partial x^2 \partial y^2} + \\ D_{12} \left(\frac{\partial^2 w_0}{\partial y^2} \right)^2 + 4D_{66} \left(\frac{\partial^2 w_0}{\partial x \partial y} \right)^2 - \rho_s \omega^2 w_0^2 \end{bmatrix} dxdy \quad (IV.36)$$

Avec :

$$\frac{\partial^2 w_0}{\partial x^2} = \sum_{m=1}^{M} \sum_{n=1}^{N} A_{mn} \frac{\partial^2 X_m(x)}{\partial x^2} Y_n(y)$$
(IV.37)

$$\left(\frac{\partial^2 w_0}{\partial x^2}\right)^2 = \sum_{m=1}^M \sum_{n=1}^N \sum_{i=1}^M \sum_{j=1}^N A_{mn} A_{ij} \frac{\partial^2 X_m(x)}{\partial x^2} \frac{\partial^2 X_i(x)}{\partial x^2} Y_n(y) Y_j(y)$$
(IV.38)

Et :

$$\frac{1}{2}\frac{\partial}{\partial A_{mn}}\left(\frac{\partial^2 w_0}{\partial x^2}\right)^2 = \sum_{m=1}^{M} \sum_{n=1}^{N} A_{mn} \frac{\partial^2 X_m(x)}{\partial x^2} \frac{\partial^2 X_i(x)}{\partial x^2} Y_n(y) Y_j(y)$$
(IV.39)

L'intégrale de cet terme obtenue :

$$\frac{1}{2}\frac{\partial}{\partial A_{mn}}\int_{x=0}^{a}\int_{y=0}^{b}\left(\frac{\partial^{2}w_{0}}{\partial x^{2}}\right)^{2}dxdy = \sum_{i=1}^{M}\sum_{j=1}^{N}A_{ij}\int_{0}^{a}\frac{\partial^{2}X_{m}(x)}{\partial x^{2}}\frac{\partial^{2}X_{i}(x)}{\partial x^{2}}dx\int_{0}^{b}Y_{n}(y)Y_{j}(y)dy$$
(IV.40)

Pour simplifier cette intégrale, en utilise un changement de variable, on posant :

$$v = \frac{x}{a}$$

$$v = \frac{y}{b}$$
(IV.41)

Alors :

$$\frac{1}{2}\frac{\partial}{\partial A_{mn}}\int_{x=0}^{a}\int_{y=0}^{b}\left(\frac{\partial^{2}w_{0}}{\partial x^{2}}\right)^{2}dxdy = \sum_{i=1}^{M}\sum_{j=1}^{N}A_{ij}\frac{b}{a^{3}}\int_{0}^{a}\frac{\partial^{2}X_{m}(x)}{\partial x^{2}}\frac{\partial^{2}X_{i}(x)}{\partial x^{2}}dx\int_{0}^{b}Y_{n}(v)Y_{j}(v)dy$$
(IV.42)

Soit, après dérivation et réarrangement l'énergie de déformation donne:

$$\frac{\partial \widetilde{U}_{d}}{\partial A_{mn}} = \frac{1}{Ra^{2}} \sum_{i=1}^{M} \sum_{j=1}^{N} \{ D_{11} I_{mi}^{22} J_{nj}^{00} + [D_{12} (I_{mi}^{20} J_{nj}^{02} + I_{mi}^{02} J_{nj}^{20}) + 4 D_{66} I_{mi}^{11} J_{nj}^{11}] R^{2}$$
(IV.43)
+ $D_{22} I_{mi}^{00} J_{nj}^{22} R^{4} \} A_{ij}$

Avec :

$$\begin{split} I_{mi}^{pq} &= a \int_{0}^{1} \frac{\partial^{p} X_{m}(u)}{\partial u^{p}} \frac{\partial^{q} X_{i}(u)}{\partial u^{q}} du = \int_{0}^{a} \frac{\partial^{p} X_{m}(x)}{\partial x^{p}} \frac{\partial^{q} X_{i}(x)}{\partial x^{q}} dx \quad (IV.44) \\ m, i &= 1, 2, ..., M \quad \text{et} \quad p, q = 00, 02, 11, 20, 22. \\ J_{nj}^{rs} &= b \int_{0}^{1} \frac{\partial^{r} Y_{m}(v)}{\partial v^{r}} \frac{\partial^{s} Y_{i}(v)}{\partial v^{s}} dv = \int_{0}^{a} \frac{\partial^{r} Y_{m}(y)}{\partial y^{r}} \frac{\partial^{s} Y_{i}(y)}{\partial y^{s}} dy \quad (IV.45) \\ n, j &= 1, 2, ..., N \quad \text{et} \quad r, s = 00, 02, 11, 20, 22. \end{split}$$

Et l'énergie cinétique devient :

$$E_{c \max} = \frac{1}{2} \rho_s \omega^2 \sum_{i=1}^{M} \sum_{j=1}^{N} \int_{x=0}^{a} X_m(x) X_i(x) \int_{y=0}^{b} Y_n(y) Y_j(y)$$
(IV.46)

Alors :

$$\frac{\partial E_{c \max}}{\partial A_{ij}} = \frac{1}{R} \rho_s a^4 \omega^2 \sum_{i=1}^{M} \sum_{j=1}^{N} I_{mi}^{00} J_{nj}^{00}$$
(IV.47)

Finalement, les $M \times N$ conditions de stationnarité (IV.30) conduisent à écrire les équations homogènes :

$$\begin{split} \sum_{i=1}^{M} \sum_{j=1}^{N} & \left\{ D_{11} I_{mi}^{22} J_{nj}^{00} + \left[D_{12} \left(I_{mi}^{20} J_{nj}^{02} + I_{mi}^{02} J_{nj}^{20} \right) + 4 D_{66} I_{mi}^{11} J_{nj}^{11} \right] R^2 + D_{22} I_{mi}^{00} J_{nj}^{22} \\ & - R^4 \rho_s a^4 \omega^2 I_{mi}^{00} J_{nj}^{00} \right\} A_{ij} = 0 \\ & m, i = 1, 2, ..., M \text{ et } n, j = 1, 2, ..., N \end{split}$$
 (IV.48)

En peut écrire le produit de l'intégrale (IV.45) comme suit:

$$C_{\min j}^{pqrs} = I_{mi}^{pq} J_{nj}^{rs} = \int_{0}^{1} \frac{\partial^{p} X_{m}(x)}{\partial x^{q}} \frac{\partial^{p} X_{i}(x)}{\partial x^{q}} dx \int_{0}^{a} \frac{\partial^{r} Y_{m}(y)}{\partial y^{r}} \frac{\partial^{s} Y_{i}(y)}{\partial y^{s}} dy$$
(IV.49)

Et on posant :

$$D_{12} = \alpha_{12}D_{11}$$

$$D_{66} = \alpha_{66}D_{11}$$

$$D_{22} = \alpha_{22}D_{11}$$
(IV.50)

En introduisant l'expression de la pulsation propre adimensionnelle :

$$\Omega = \omega a^2 \sqrt{\frac{\rho_s}{D_{11}}}$$
(IV.51)

On obtient :

$$\sum_{i=1}^{M} \sum_{j=1}^{N} \{ C_{\min j}^{2200} + [\alpha_{12} (C_{\min j}^{2002} + C_{\min j}^{0220}) + 4\alpha_{66} C_{\min j}^{1111}] R^2 + \alpha_{22} C_{\min j}^{0022} R^4$$

$$- \Omega^2 C_{\min j}^{0022} \} A_{ij} = 0$$

$$m, i = 1, 2, ..., M \text{ et } n, j = 1, 2, ..., N$$
(IV.52)

On définit alors les termes :

$$a_{kl} = C_{minj}^{2200} + \left[\alpha_{12} \left(C_{minj}^{2002} + C_{minj}^{0220} \right) + 4\alpha_{66} C_{minj}^{1111} \right] R^2 + \alpha_{22} C_{minj}^{0022} R^4$$
(IV.53)
$$b_{kl} = C_{minj}^{0000}$$

Finalement le problème aux valeurs et vecteurs propres est obtenu sous la forme :

$$([a] - \Omega^{2}[b]){A} = 0$$
 (IV.54)

Dont les valeurs propres Ω_{mn} , sont reliées aux fréquences propres de la plaque par la relation:

$$f_{mn} = \frac{\omega_{mn}}{2\pi} = \frac{\Omega_{mn}}{2\pi a^2} \sqrt{\frac{D_{11}}{\rho_s}}$$
(IV.55)

IV.2.6 Construction de la base fonctionnelle

Nous utilisons dans ce travail les fonctions caractéristiques des vibrations des poutres comme fonctions admissibles. Cette méthode a été introduite par D. Young pour les plaques isotropes et pour l'étude de différents types de plaques notamment composites **[18]**. Une poutre stratifiée peut être considérée comme une plaque dont le rapport (a/b) est élevé. La formulation de base reste donc inchangée. Les hypothèses de condensation dans le cas d'une flexion dans le plan (x, z) **[22]**, sont données par :

$$w_0(x, y, t) = w_0(x, y) = e^{i\omega t}X(x)$$
 (IV.56)

$$M_x = M_{xy} = 0 \tag{IV.57}$$

Dans ces conditions, l'équation du mouvement (III.65) devient :

$$\frac{\partial^2 M_x}{\partial x^2} = -\rho_s \omega^2 e^{i\omega t} X \tag{IV.58}$$

Considérant la relation de constitution du stratifié (IV.4), l'inversion de ce système permet d'écrire :

$$\begin{pmatrix} k_{x} \\ k_{y} \\ k_{xy} \end{pmatrix} = \begin{bmatrix} D_{11}^{-1} & D_{12}^{-1} & D_{16}^{-1} \\ D_{12}^{-1} & D_{22}^{-1} & D_{26}^{-1} \\ D_{16}^{-1} & D_{26}^{-1} & D_{66}^{-1} \end{bmatrix} \begin{pmatrix} M_{x} \\ M_{y} \\ M_{xy} \end{pmatrix}$$

La combinaison des relations (IV.5), (IV.7) et (IV.58) conduisent à :

$$\mathbf{k}_{\mathbf{x}} = -\frac{\partial^2 \mathbf{w}_0}{\partial \mathbf{x}^2} = \left(\mathbf{D}_{11}^{-1}\right)\mathbf{M}_{\mathbf{x}}$$
(IV.59)

Et :

$$M_{x} = -e^{i\omega t} \frac{1}{\left(D_{11}^{-1}\right)} \left(\frac{\partial^{2} X}{\partial x^{2}}\right)$$
(IV.60)

En reportant ce dernier résultat dans l'équation aux fréquences (IV.58), celle-ci prend la forme:

$$\frac{\partial^4 X}{\partial x^4} - \omega^2 \rho_s (D_{11}^{-1}) X = 0$$
 (IV.61)

Nous retrouvons ici une forme analogue à l'équation aux fréquences des poutres homogènes isotropes en flexion, sous les hypothèses d'Euler-Bernoulli [9]. Les solutions (déformées

propres) sont indépendantes des propriétés mécaniques du matériau de la poutre. En considérant les variables adimensionnelles (IV.41), la solution générale de cette équation différentielle prend la forme :

$$X_{i}(x) = C\cos(\lambda_{i}u) + D\sin(\lambda_{i}u) + E\cosh(\lambda_{i}u) + F\sinh(\lambda_{i}u)$$
(IV.62)

Ou λ_i est le nombre d'onde caractéristique du (ième) mode de vibration. Les nombres d'onde et les constantes C, D, E et F sont déterminés en imposant des conditions aux limites aux extrémités de la poutre. Ces conditions sont déduites des expressions (IV.13) à (IV.16) en tenant compte de l'hypothèse (IV.57) :

Pour l'appui simple :

 $\mathbf{x} = \mathbf{0}$

$$X_{i}|_{x=0} = 0$$
; $\frac{\partial^{2} X_{i}}{\partial x^{2}}\Big|_{x=0} = 0$ (IV.63)

 $\mathbf{x} = \mathbf{a}$

$$X_i|_{x=a} = 0$$
 ; $\frac{\partial^2 X_i}{\partial x^2}\Big|_{x=a} = 0$

Pour l'encastrement :

 $\mathbf{x} = \mathbf{0}$

$$X_i|_{x=0} = 0 \quad ; \quad \frac{\partial X_i}{\partial x}\Big|_{x=0} = 0 \tag{IV.64}$$

 $\mathbf{x} = \mathbf{a}$

$$X_i|_{x=a} = 0$$
 ; $\frac{\partial X_i}{\partial x}\Big|_{x=a} = 0$

Pour le coté libre :

 $\mathbf{x} = \mathbf{0}$

$$\frac{\partial^2 X_i}{\partial x^2}\Big|_{x=0} = 0 \quad ; \quad \frac{\partial^3 X_i}{\partial x^3}\Big|_{x=0} = 0$$

(IV.65)

 $\mathbf{x} = \mathbf{a}$

$$\frac{\partial^2 X_i}{\partial x^2}\Big|_{x=a} = 0 \quad ; \quad \frac{\partial^3 X_i}{\partial x^3}\Big|_{x=a} = 0$$

IV.2.7 Calcul analytique des fréquences et modes propres

IV.2.7.1 Plaque rectangulaire orthotrope simplement appuyée (AAAA)

Pour déterminer les fréquences et les modes propres d'une plaque rectangulaire orthotrope, simplement appuyée (AAAA), on utilise la méthode de Rayleigh-Ritz. D'après la relation (IV.32) nous avons :

Chapitre IV : Etude analytique du comportement vibratoire des plaques composites minces

$$\frac{\partial U_{d \max}}{\partial A_{mn}} - \frac{\partial E_{c \max}}{\partial A_{mn}} = 0$$
(IV.66)

Pour calculer les pulsations propres ω_{mn} correspondant à chaque mode (m,n) en se basant sur les relations (IV.52) et (IV.53) et en utilisant le logiciel mathématique MAPLE 10, nous avons procédé comme suit :

On choisit la fonction de forme suivante :

$$w(x, y) = \sin(m\pi \frac{x}{a}) \sin(n\pi \frac{y}{b})$$
(IV.67)

Avec :

$$X_{\rm m} = \sin(m\pi \frac{x}{a}) \tag{IV.68}$$

$$Y_n = \sin(n\pi \frac{y}{b})$$
(IV.69)

Les intégrales adimensionnelles sont calculées selon les expressions :

$$C_{\min j}^{2200} = I_{\min}^{22} J_{nj}^{00} = \int_{u=0}^{1} \frac{\partial^2 X_m}{\partial u^2} \frac{\partial^2 X_i}{\partial u^2} du \int_{v=0}^{1} \frac{\partial^2 Y_m}{\partial v^2} \frac{\partial^2 Y_i}{\partial v^2} dv$$
(IV.70)

Si on utilise le changement de variable suivant :

$$u = \frac{x}{a}$$
 et $v = \frac{y}{b} \Longrightarrow dx = adu$ et $dy = bdv$ (IV.71)

La relation (IV.70) est réécrite :

$$C_{\min j}^{2200} = I_{\min}^{22} J_{nj}^{00} = \frac{1}{ab} \int_{u=0}^{1} \frac{\partial^2 X_m}{\partial u^2} \frac{\partial^2 X_i}{\partial u^2} dx \int_{v=0}^{1} \frac{\partial^2 Y_m}{\partial v^2} \frac{\partial^2 Y_i}{\partial v^2} dy$$
(IV.72)

De même façon, les autres intégrales :

$$C_{minj}^{2002} = I_{mi}^{20} J_{nj}^{02}$$

$$C_{minj}^{0220} = I_{mi}^{02} J_{nj}^{20}$$

$$C_{minj}^{1111} = I_{mi}^{11} J_{nj}^{11}$$

$$C_{minj}^{0022} = I_{mi}^{00} J_{nj}^{22}$$

$$C_{minj}^{0000} = I_{mi}^{00} J_{nj}^{00}$$
(IV.73)

La relation de fréquence correspondant à chaque (m,n) mode de vibration peut s'écrire sous la forme suivante:

$$\omega_{\rm mn} = \frac{1}{a^2} \sqrt{\frac{D_{11}}{\rho_{\rm s}} \left[C_{\rm minj}^{2200} + 2(\alpha_{12} + 2\alpha_{66}) C_{\rm minj}^{1111} R^2 + \alpha_{22} C_{\rm minj}^{0022} R^4 \right]}$$
(IV.74)

Pour le premier mode m=n=1 la fonction de forme est :

$$W(x, y) = \sin(m\pi \frac{x}{a}) \sin(n\pi \frac{y}{b})$$
(IV.75)

Et la pulsation propre :

$$\omega_{\rm mn} = \frac{1}{a^2} \sqrt{\frac{D_{11}}{\rho_{\rm s}} \left[C_{\rm minj}^{2200} + 2(\alpha_{12} + 2\alpha_{66}) C_{\rm minj}^{1111} R^2 + \alpha_{22} C_{\rm minj}^{0022} R^4 \right]}$$
(IV.76)

Dans le cas de deux côtés opposés en appuis simples :

$$C_{\min j}^{2200} = m^4 \pi^4$$
; $C_{\min j}^{1111} = m^2 n^2 \pi^2$; $C_{\min j}^{0022} = n^4 \pi^4$ (IV.77)

Avec :

$$\alpha_{12} = \frac{D_{12}}{D_{11}} ; \quad \alpha_{66} = \frac{D_{66}}{D_{11}} ; \quad \alpha_{22} = \frac{D_{22}}{D_{11}}$$
(IV.78)
$$R = \frac{a}{b}$$

$$\omega_{\rm mn} = \frac{\pi^2}{a^2} \sqrt{\frac{1}{\rho_{\rm s}} [m^4 D_{11} + 2m^2 n^2 R^2 (D_{12} + 2D_{66}) + n^2 R^4 D_{22}]}$$
(IV.79)

Alors :

$$\omega_{11} = \frac{\pi^2}{a^2} \sqrt{\frac{1}{\rho_s} [D_{11} + 2R^2(D_{12} + 2D_{66}) + R^4 D_{22}]}$$
(IV.80)

Dans le cas d'une plaque rectangulaire orthotrope encastré (EEEE) et pour étudier le premier mode de vibration on choisit comme fonction de comparaison, la fonction de forme m=n=1:

W(x,y) =
$$\left(1 - \frac{x^2}{a^2}\right)^2 \left(1 - \frac{y^2}{b^2}\right)^2$$
 (IV.81)

Le problème de la flexion d'une plaque revient à chercher la fonction w(x, y) qui vérifie les conditions aux limites et qui rend minimale l'énergie totale qui est la somme de l'énergie de déformation et de l'énergie potentielle [9].

Conditions aux frontières	Fonction de forme
	$w(x,y) = A_{mn} \left(1 - \frac{x^2}{a^2}\right) \left(1 - \frac{y^2}{b^2}\right) xy \sin(\pi \frac{x}{a}) \sin(\pi \frac{y}{b})$
Y A A A x	$w(x,y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \sin(m\pi \frac{x}{a}) \sin(n\pi \frac{y}{b})$
$ \begin{array}{c} $	$w(x,y) = \left(1 - \frac{x^2}{a^2}\right) \left(1 - \frac{y^2}{b^2}\right) \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \sin(m\pi \frac{x}{a}) \sin(n\pi \frac{y}{b})$
$ \begin{array}{c} $	$w(x,y) = \left(1 - \frac{y^2}{b^2}\right) \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} y \sin(m\pi \frac{x}{a}) \sin(n\pi \frac{y}{b})$
	$w(x,y) = A_{mn} \left(1 - \frac{y^2}{b^2}\right) \sin\left(m\pi\frac{\pi}{a}\right)^2 \sin\left(n\pi\frac{\pi}{b}\right)$
$ \begin{array}{c} $	$w(x,y) = A_{mn} \left(1 - \frac{x^2}{a^2}\right) \sin(m\pi \frac{x}{a}) \sin(n\pi \frac{y}{b})$

Tableau	IV.1	Différentes	fonctions	de	formes	pour	différent	variantes	de	conditions	aux
limites											

IV.3 Calcul des fréquences et modes propres des plaques composites avec diverses conditions aux limites

Dans cette étude, nous allons conduire une analyse analytique du comportement vibratoire des plaques minces rectangulaires composites avec différentes configurations et diverses conditions aux limites.

IV.3.1 Plaque monocouche unidirectionnelle

Pour ce premier cas d'étude, nous avons considéré une plaque monocouche constituée par une matrice polymérique renforcée par des fibres longue unidirectionnelles (Figure .IV.2), sollicitée par une action dynamique, en absence de charges latérale (q=0). L'intérêt est porté essentiellement sur la détermination et l'étude des réponses propres (fréquences et pulsations), obtenues analytiquement par la méthode de Rayleigh-Ritz. Le modèle étudié est plaque composite (monocouche) constituée d'une seule couche unidirectionnelle avec un angle d'orientation des fibres ($\theta = 0$). Différentes configurations géométriques de plaques avec différents facteur de forme (R=a/b) (rapport longueur/largeur) sont considérées : (R=0.5, R=1, R=1.5, R=2 et R=2.5). Les caractéristiques géométriques et mécaniques de la plaque objet de cette étude sont présentées sur les Tableau IV.2 et Tableau IV.3.

Types de plaque	Longueur a (m)	Largeur b (m)	Rapport R=a/b (longueur/largeur)	Hauteur totale H (mm)	Epaisseur de pli h (mm)
Modèle 01	0.5	1	0.5	1	1
Modèle 02	1	1	1	1	1
Modèle 03	1.5	1	1.5	1	1
Modèle 04	2	1	2	1	1
Modèle 05	2.5	1	2.5	1	1

Tableau IV.2 Caractéristiques géométriques du model plaque monocouche

Tableau IV.3	Caractéristiques	mécaniques o	du model pl	laque composit	e monocouche	[5]	l
--------------	------------------	--------------	-------------	----------------	--------------	-----	---

Composite	$\rho_{\rm c}({\rm kg}/{\rm m}^3)$	$E_1(Gpa)$	$E_2(Gpa)$	$G_{12}(Gpa)$	G ₂₃ (Gpa)	υ_{12}	
Verre (E)/Epoxyde	2040	46	10	4.6	3.96	0.31	
Carbonne (HM)/Epoxyde	1650	230	14.4	4.9	4.32	0.32	
Kevlar (49)/Epoxyde	1370	84	5.6	2.1	4.13	0.34	
$V_{\rm f} = 0.6$							

Fig. IV.2 Modèle de la plaque monocouche (Np=1).

La relation (IV.76) permet de calculer les pulsations naturelles pour une infinité de modes propres et pour différents conditions aux limites. Les fréquences naturelles sont déterminées grâce à la relation :

$$f_{mn} = \frac{\omega_{mn}}{2\pi}$$
(IV.82)

La quantité ω_{11} qui correspond à m = 1 et n = 1 est appelée pulsation propre de la plaque, elle correspond au premier mode vibratoire ou mode fondamental. Par exemple pour une plaque composite monocouche unidirectionnelle en Verre (E)/Epoxyde dont les caractéristiques sont représentées sur (Tableau IV.3), de dimensions (100x250 mm² et pour divers configurations de conditions aux limites (AAAA, EEEE, AAEE, AEAE, EEAE, AAAE). En utilisant l'approximation de Rayleigh-Ritz la pulsation propre qui correspond au premier mode vibratoire fondamental est calculée d'après la relation (IV. 80) :

$$\omega_{\rm mn} = \frac{1}{a^2} \sqrt{\frac{1}{\rho_{\rm s}}} \sqrt{\left[D_{11}c_1^4 + 2(D_{12} + 2D_{66})R^2c_2 + R^4D_{22}c_3^4\right]}$$

Les coefficients $(c_1, c_2 \text{ et } c_3)$ sont déterminés dans le Tableau I.1 sur l'Annexe I. <u>Mode (1,1) : plaque (AAAA)</u>

$$\omega_{11} = \frac{\pi^2}{250^2} \sqrt{\frac{1}{2.04 \times 10^{-6}} [D_{11} + 2 \times (2.5)^2 (D_{12} + 2D_{66}) + (2.5)^4 D_{22}]}$$

Les constantes de la matrice de rigidité réduites dans les axes principaux sont calculées comme suit :

$$Q_{11} = \frac{E_1}{1 - v_{12}^2 \cdot \frac{E_2}{E_1}} = \frac{46 \times 10^3}{1 - 0.31^2 \times \frac{10}{46}} = 46981.504 \text{ MPa}$$
$$Q_{22} = \frac{E_2}{E_1} \cdot Q_{11} = \frac{10}{46} \times 46981.504 = 10213.37 \text{ MPa}$$
$$Q_{12} = v_{12} \cdot Q_{22} = 0.31 \times 10213.37 = 3166.144 \text{ MPa}$$
$$Q_{66} = G_{12} = 4600 \text{ MPA}$$

$$Q'_{0} = \begin{bmatrix} 46981.504 & 3166.144 & 0\\ 3166.144 & 10213.37 & 0\\ 0 & 0 & 4600 \end{bmatrix} MPa$$

La matrice D est déterminée grâce à la relation :

$$D_{ij} = \frac{1}{3} \left[\sum_{k=1}^{n} \frac{1}{2} (h_k^3 - h_{k-1}^3) (Q'_{ij})_k \right]$$
$$D_{ij} = \frac{1}{3} (0.5^3 - (-0.5^3)) (Q'_{ij})_0$$

Soit :

$$D_{11} = \frac{1}{3} (0.5^3 - (-0.5^3)) (Q'_{11})_0 = 3915.125 \text{ N. mm}$$

$$D_{22} = \frac{1}{3} (0.5^3 - (-0.5^3)) (Q'_{22})_0 = 851.105 \text{ N. mm}$$

$$D_{12} = \frac{1}{3} (0.5^3 - (-0.5^3)) (Q'_{12})_0 = 263.845 \text{ N. mm}$$

$$D_{66} = \frac{1}{3} (0.5^3 - (-0.5^3)) (Q'_{66})_0 = 383.333 \text{ N. mm}$$

$$D = \begin{bmatrix} 3915.125 & 263.845 & 0\\ 263.845 & 851.105 & 0\\ 0 & 0 & 383.333 \end{bmatrix} \text{ N. mm}$$

Finalement :

$$\omega_{11} = \frac{\pi^2}{250^2} \sqrt{\frac{1}{2.04 \times 10^{-6}} \left([3915.125 + 2 \times (2.5)^2 (263.845 + 2 \times 383.333) + (2.5)^4 \times 851.105] \right)^2 \left(10^{-6} \times 10^{-6} \right)^2}$$

$$\omega_{11} = 782.1237 \frac{\text{rad}}{\text{s}}$$

Et:

$$f_{11} = \frac{\omega_{11}}{2\pi} = 124.4789 \text{ Hz}$$

Mode (1,1) : plaque (EEEE)

 $\omega_{11} =$

$$\frac{1}{250^2} \sqrt{\frac{1}{2.04 \times 10^{-6}} \left(\left[3915.125 \times 4.73^4 + 2.5^2 \times (263.845 + 2 \times 383.333) \times 151.3 + (2.5)^4 \times 851.105 \times 4.73^4 \right] \times 10^3 \right)}$$

$$\omega_{11} = 1605.9 \ \frac{\text{rad}}{\text{s}}$$

Et :

$$f_{11} = \frac{\omega_{11}}{2\pi} = 255.5822 \text{ Hz}$$

Mode (1,1) : plaque (AAEE)

 $\omega_{11} =$

$$\frac{1}{250^2} \sqrt{\frac{1}{2.04 \times 10^{-6}} \left(\left[3915.125 \times 3.927^4 + 2.5^2 \times (263.845 + 2 \times 383.333) \times 57.2645 + 2.5^4 \times 851.105 \times 3.927^4 \right] \times 10^3 \right)}$$

$$\omega_{11} = 1096.2 \frac{\text{rad}}{\text{s}}$$

Et :

$$f_{11} = \frac{\omega_{11}}{2\pi} = 174.4618 \text{ Hz}$$

Mode (1,1) : plaque (AEAE)

 $\omega_{11} =$

 $\frac{1}{250^2} \sqrt{\frac{1}{2.04 \times 10^{-6}} \left(\left[3915.125 \times 4.73^4 + 2.5^2 \times \left(263.845 + 2 \times 383.333 \right) \times 121.3961 + 2.5^4 \times 851.105 \times \pi^4 \right] \times 10^3 \right)}$

$$\omega_{11} = 921.1719 \frac{\text{rad}}{\text{s}}$$

Et :

$$f_{11} = \frac{\omega_{11}}{2\pi} = 146.6091 \text{ Hz}$$

Mode (1,1) : plaque (EEAE)

$$\omega_{11} = \frac{1}{250^2} \sqrt{\frac{1}{2.04 \times 10^{-6}} ([3915.125 \times 4.73^4 + 2.5^2 \times (263.845 + 2 \times 383.333) \times 93.0781 + 2.5^4 \times 851.105 \times 3.927^4] \times 10^3)}$$

$$\omega_{11} = 1178.4 \ \frac{\text{rad}}{\text{s}}$$

Et :

$$f_{11} = \frac{\omega_{11}}{2\pi} = 187.5448 \text{ Hz}$$

Mode (1,1) : plaque (AAAE)

$$\omega_{11} = \frac{1}{250^2} \sqrt{\frac{1}{2.04 \times 10^{-6}} ([3915.125 \times 3.927^4 + 2.5^2 \times (263.845 + 2 \times 383.333) \times 74.6865 + 2.5^4 \times 851.105 \times \pi^4] \times 10^3)}$$
rad

$$\omega_{11} = 802.4773 \frac{rad}{s}$$

Et :

$$f_{11} = \frac{\omega_{11}}{2\pi} = 127.7182 \text{ Hz}$$

Les autres pulsations et fréquences qui correspondent aux 16 premiers modes vibratoires (m, n) sont déterminées et calculés par un programme de calcul écrit en langage MATLAB.

IV.3.1.1 Influence des conditions aux limites

Pour examiner l'effet des diverses conditions aux limites (EEEE-AAAA-AAEE-AEAE-EEAE et AAAE) sur le comportement vibratoire de la plaque composite monocouche à fibres unidirectionnelles, pour les trois types de matériaux choisis, on étudie la variation des fréquences et pulsations propres pour différents modes vibratoires.

Plaque en Verre (E) /Epoxyde (AAAA)

Pour le cas de la plaque verre (E)/Epoxyde, les pulsations et les fréquences naturelles correspondant aux 16 premiers modes vibratoire sont calculées et présenté dans le Tableau IV.4.

	Pul	sation ω_{mn}	[rad/s]		Fréquence f _{mn} [Hz]					
N°	m=1	m=2	m=3	m=4	m=1	m=2	m=3	m=4		
n=1	782.1237	1342.4	2387.5	3895.8	124.4789	426.4664	933.2413	1643.3		
n=2	2679.6	3128.5	4005.9	5369.5	213.6456	497.9154	998.4054	1705.9		
n=3	5863.70	6273.2	7039.1	8236.8	379.9787	637.5634	1120.3	1818.8		
n=4	10325	10718.06	11428	12514	620.0393	854.5823	1310.9	1991.7		

 Tableau IV.4 Pulsations et fréquences propres de la plaque monocouche verre (E)/époxyde

 (AAAA)

Plaque en Carbone (HM)/Epoxyde (AAAA)

Pour la plaque carbone (HM)/Epoxyde, les pulsations et les fréquences naturelles correspondant aux 16 premiers modes vibratoire sont calculées et présenté dans le Tableau IV.5.

Tableau IV.5Pulsations et fréquences propres de la plaque monocouche carbone
(HM)/époxyde (AAAA)

]	Pulsation ω _n	_{nn} [rad/s]		Fréquence f _{mn} [Hz]				
N°	m=1	m=2	m=3	m=4	m=1	m=2	m=3	m=4	
n=1	1109,9	2507,3	5135,5	8887,3	176,6426	399,0562	817,3379	1414,5	
n=2	3550,9	4439,5	6573,1	10029	565,1392	706,5704	1046,1	1596,2	
n=3	7751,8	8402,4	9988,9	12850	1233,7	1337,3	1589,8	2045,1	
n=4	13655	14203	15456	17758	2173,2	2260,6	2459,8	2826,3	
DI	17 1			A					

Plaque en Kevlar (49)/Epoxyde (AAAA)

Dans le cas de la plaque kevlar (49)/époxyde, les pulsations et les fréquences naturelles correspondant aux 16 premiers modes vibratoire sont calculées et présenté dans le Tableau IV.6.

								/
	F	Pulsation ω_r	_{nn} [rad/s]		Fréquence f _{mn} [Hz]			
N°	m=1	m=2	m=3	m=4	m=1	m=2	m=3	m=4
n=1	809,803	1777,9	3531,6	6024,4	128,8842	282,9564	562,0671	958,8151
n=2	2500,1	3239,2	4764,3	7111,5	397,904	515,5366	758,2624	1131,8
n=3	5380,6	6007,3	7288,2	9367,4	856,3431	956,0872	1160	1490,9
n=4	9424,4	10000	11126	12957	1499,9	1591,6	1770,8	2062,1

Tableau IV.6 Pulsations et fréquences propres de la plaque kevlar/époxyde (AAAA)

Les figures. IV.3, IV.4 et IV.5 présentent la variation des fréquences propres en fonction des des modes vibratoires de la plaque pour les 6 conditions aux limites (EEEE-AAAA-AAEE-AEAE-EEAE et AAAE), cas du facteur de forme (R=2.5).

Fig. IV.3 Variation de la fréquence en fonction des modes vibratoires (Verre /Epoxyde)

Fig. IV.4 Variation de la fréquence en fonction des modes vibratoires (Carbone /Epoxyde)

Fig. IV.5 Variation de la fréquence en fonction des modes vibratoires (Kevlar /Epoxyde)

L'analyse des trois courbes précédentes révèle que quelque soit le matériau de la plaque monocouche unidirectionnelle, la plaque EEEE présente le niveau de fréquence le plus élevée et la plaque AAAA le niveau de fréquence le plus bas. Les autres plaques (AAEE, AEAE, EEAE, et AAAE) se situent entre les deux. Ainsi les fréquences propres de la plaque augmentent avec l'augmentation de la rigidité de la plaque.

IV.3.1.2 Influence du type de matériau

Dans le but d'analyser l'influence du type du matériau sur le comportement vibratoire des plaques composites monocouches unidirectionnelles, nous avons comparé trois types différents de matériaux composites (verre (E)/époxyde, carbone (HM)/époxyde et kevlar (49)/époxyde). Deux variantes de conditions aux limites ont été examinées (AAAA et EEEE).

Fig. IV.6 Influence du type de matériau sur le comportement vibratoire des plaques (AAAA)

Fig. IV.7 Influence du type de matériau sur le comportement vibratoire des plaques (EEEE)

Les figures ci-dessus (Fig. IV.6 et Fig. IV.7) montrent l'influence du type de matériau sur le comportement vibratoire des plaques monocouches unidirectionnelles avec deux variantes de conditions aux limites (AAAA et EEEE). Dans les deux cas, les plaques en carbone présentent le niveau des fréquences le plus élevé. Ce résultat montre que la rigidité du matériau à une influence sur l'augmentation des fréquences propres.

IV.3.1.3 Influence du facteur de forme sur le comportement vibratoire des plaques

Le facteur de forme ou encore rapport longueur sur largeur (a/b) est parmi les facteurs essentiels qui influencent le comportement vibratoire des plaques composites. Le rapport (a/b) est varié de 0.5 à 2.5. La largeur de la plaque est fixée à 100 mm et la longueur de la plaque est variée. Pour chaque cas les six premières fréquences naturelles sont obtenues. Les fréquences propres de la plaque (AAAA) en verre/époxyde pour différents rapport (R=a/b) sont présentées sur le Tableau IV.7. Les figures (Fig. IV.8 et Fig. IV.9) montrent l'influence du facteur de forme sur le comportement vibratoire des plaques monocouches unidirectionnelles avec deux variantes de conditions aux limites (AAAA et EEEE) et trois types de matériaux, pour le premier mode propre. Sur la figure IV.10, on montre la variation des fréquences propre de la plaque en verre/époxyde en fonction du facteur de forme pour diverses conditions aux limites.

		Fr	équence f _{mn} [Hz]		
NIO	D 0 5	D 1	D 15	D 2	D 25
IN [°]	K=0.5	K=1	K=1.5	K=2	K=2.5
(1,1)	931.4874	287.361	175.292	139.59	124.4789
(1,2)	1149.4	558.3674	467.3093	438.85	426.4664
(1,3)	1577.6	1051.4	971.029	944.91	933.2413
(1,4)	2233.5	1755.4	1679.9	1654.7	1643.3
(2,1)	3540	931.4874	451.9653	287.35	213.6456
(2,2)	3725.9	1149.4	701.168	558.36	497.9154
(2,3)	4067.7	1577.6	1175.7	1051.4	998.4054
(2,4)	4597.8	2233.5	1869.2	1755.5	1705.9
(3,1)	7891.7	2017.5	931.4874	553.27	379.9787
(3,2)	8070	2213.1	1149.4	792.95	637.5634
(3,3)	8383.4	2586.2	1577.6	1256.3	1120.3
(3,4)	8852.4	3171.9	2233.5	1942.3	1818.8
(4,1)	13985	3540	1606.9	931.48	620.0393
(4,2)	14160	3725.9	1807.9	1149.4	854.5823
(4,3)	14462	4067.7	2196.3	1577.6	1310.9
(4,4)	14904	4597.8	2804.7	2233.4	1991.7

Tableau IV.7Fréquences naturelles de la plaque monocouche unidirectionnelle en
verre(E)/époxyde avec différents rapport (R=a/b) : AAAA

Fig. IV.8 Effet du rapport (a/b) sur les fréquences correspondantes au premier mode : plaque (EEEE)

Fig. IV.9 Effet du rapport (a/b) sur les fréquences correspondantes au premier mode : plaque (AAAA)

Fig. IV.10 Influence du rapport (a/b) sur le comportement vibratoire de la plaque en verre/époxyde pour diverse des conditions aux limites

En se référant aux courbes précédentes, on constate que le comportement vibratoire des plaques monocouches unidirectionnelle est influencé par le facteur de forme :

- Le comportement des plaques est similaire (même forme de courbe) pour les six conditions aux limites
- L'écart de fréquences propres pour les six conditions aux limites devient de plus en plus au fur et à mesure que le rapport (a/b) devient plus grand.
- Le niveau des fréquences est d'autant plus élevé que le rapport (a/b) devient petit.
- Les plaques avec les conditions aux limites (EEEE) et (EEAE) présentent le niveau de fréquences le plus élevé à cause de la rigidité qui augmente avec la réduction des degrés de liberté

IV.3.1.4 Effet de l'angle d'orientation des fibres

Les fibres ont pour rôle principal de renforcer et de consolider la matrice afin d'obtenir des matériaux composites plus consistant et plus rigides. Pour obtenir les propriétés optimales souhaitées des matériaux composites, on peut jouer sur l'orientation des fibres. Dans cette partie du travail on examine l'effet de l'orientation des fibres sur la comportement vibratoire des plaques monocouches composites pour diverses conditions aux limites et pour différents matériaux. Les fréquences naturelles sont calculées et portées sur le Tableau IV.8, pour différentes orientations des fibres de (0°) à (90°) .

			Fré	equence f _{mn} []	Hz]						
N°	$\theta = 0^{\circ}$	$\theta = 15^{\circ}$	$\theta = 30^{\circ}$	$\theta = 45^{\circ}$	$\theta = 60^{\circ}$	$\theta = 75^{\circ}$	$\theta = 90^{\circ}$				
(1,1)	124,4789	133,3413	155,309	181,6954	205,3685	221,4783	227,1677				
(1,2)	426,4664	443,4122	505,0958	614,9752	742,3763	842,201	879,7003				
(1,3)	933,2413	961,2238	1084,9	1333,9	1636,3	1876,9	1967,7				
(1,4)	1643,3	1686,3	1896,2	2339,8	2887,7	3325,5	3490,9				
(2,1)	213,6456	228,2102	256,9567	276,5193	277,4287	266,5116	259,8507				
(2,2)	497,9154	533,3652	621,236	726,7817	821,474	885,9133	908,6708				
(2,3)	998,4054	1049,3	1206,7	1451,5	1717,4	1920,3	1995,9				
(2,4)	1705,9	1773,6	2020,4	2459,9	2969,5	3368,8	3518,8				
(3,1)	379,9787	391,2809	410,5981	412,333	385,613	344,4478	323,4074				
(3,2)	637,5634	689,0376	797,9197	894,0802	945,9005	960,0686	960,5071				
(3,3)	1120,3	1200,1	1397,8	1635,3	1848,3	1993,3	2044,5				
(3,4)	1818,8	1921,8	2219,3	2651,9	3103,3	3441,3	3566,2				
(4,1)	620,0393	621,7908	617,1665	587,698	527,2457	456,4915	422,6426				
(4,2)	854,5823	912,841	1027,8	1106,1	1109,7	1066	1039,4				
(4,3)	1310,9	1416,7	1649	1874,2	2024,5	2096,7	2116				
(4,4)	1991,7	2133,5	2484,9	2907,1	3285,9	3543,7	3634,7				

Tableau IV.8 Fréquences propres de la plaque unidirectionnelle (AAAA) enVerre/époxyde avec différentes angles d'orientation des fibres (θ)

Fig. IV.11 Variation des fréquences propres en fonction de l'angle d'orientation des fibres de la plaque monocouche pour diverses conditions aux limites

Fig. IV.12 Variation des fréquences propres en fonction de l'angle d'orientation des fibres de la plaque monocouche (AAAA) pour différents type de matériaux

Fig. IV.13 Variation des fréquences propres en fonction de l'angle d'orientation des fibres de la plaque monocouche (EEEE) pour différents type de matériaux
D'après les courbes précédentes (Fig. IV.11, Fig. IV.12 et Fig. IV.13), on remarque que le comportement vibratoire des plaques monocouches unidirectionnelles est fortement influencé par le l'angle d'orientation des fibres :

- Le comportement des plaques est similaire (même forme de courbe) pour les six conditions aux limites
- Les fréquences ont tendance à augmenter avec l'augmentation de l'angle d'orientation

des fibres

- Les plaques avec les conditions aux limites (EEEE) et (EEAE) présentent le niveau de fréquences le plus élevé à cause de la rigidité qui augmente avec la réduction des degrés de liberté
- L'écart de fréquences propres pour les six conditions aux limites devient de plus en plus au fur et à mesure que l'angle d'orientation des fibres devient plus grand.
- La plaque en carbone présente le niveau de fréquences le plus élevé puis celle en kevlar et enfin la plaque en verre

IV.3.2 Plaque monocouche orthotrope

Dans cette section, nous avons mené une analyse du comportement vibratoire d'une plaque monocouche orthotrope de dimensions $(250 \times 100 \text{ mm}^2)$ et d'épaisseur h=1mmm dont les caractéristiques mécaniques sont présentées dans (Tableau IV.9).

	Verre (E)/Epoxy	Carbonne	Kevlar (49)/Epoxy				
		(HM)/Epoxy					
$\rho_{c}(kg/m^{3})$	2040	1650	1370				
E ₁ (Mpa)	45178.86	139369.49	73385.35				
E ₂ (Mpa)	13852.18	16139.80	15003.60				
E ₃ (Mpa)	13854.28	16143.57	15006.51				
υ ₁₂	0.2656	0.3346	0.3691				
υ ₁₃	0.2656	0.3346	0.3691				
υ ₂₃	0.2209	0.2068	0.2227				
G ₁₂ (Mpa)	4803.66	5388.84	5068.88				
G ₁₃ (Mpa)	4804.05	5389.39	5069.34				
G ₂₃ (Mpa)	3435.43	3645.06	3536.83				
$V_f = 0.6$							

 Tableau IV.9
 Caractéristiques mécaniques de la plaque monocouche orthotrope

IV.3.2.1 Influence des conditions aux limites

Comme pour le cas de la plaque monocouche unidirectionnelle, on se propose d'examiner l'effet des diverses conditions aux limites (EEEE-AAAA-AAEE-AEAE-EEAE-AAAE) sur le comportement vibratoire de la plaque monocouche orthotrope.

Plaque en Verre (E) /Epoxyde

Pour le cas de la plaque verre (E)/Epoxyde (AAAA), les pulsations et les fréquences naturelles correspondants aux 16 premiers modes vibratoire sont calculées et présentés dans le Tableau IV.10. La figure IV.14, montre la variation des fréquences propres de la plaque monocouche orthotrope, en fibre de verre (R=2.5), en fonction des modes propres pour diverses conditions aux limites (EEEE-AAAA-AAEE-AEAE-EEAE-AAAE).

		Pulsation a	o _{mn} [rad/s]		Fréquence f _{mn} [Hz]			
N°	m=1	m=2	m=3	m=4	m=1	m=2	m=3	m=4
n=1	883,5459	1413,1	2430,1	3915,2	140,6207	224,9039	386,7659	623,1235
n=2	3121,3	3534,2	4353,4	5652,5	496,7639	562,4828	692,8694	899,6154
n=3	6871,3	7246,8	7951,9	9065,8	1093,6	1153,4	1265,6	1442,9
n=4	12124	12485	13136	14137	1929,7	1987,1	2090,6	2249,9

 Tableau IV.10
 Pulsations et fréquences propres de la plaque monocouche orthotrope en verre/époxyde (AAAA)

Fig. IV.14 Variation de la fréquence en fonction des modes vibratoires de la plaque orthotrope (Verre /Epoxyde)

Plaque en Carbone (HM) /Epoxyde

Pour la plaque carbone(HM)/Epoxyde (AAAA), les pulsations et les fréquences naturelles correspondants aux 16 premiers modes vibratoire sont calculées et présentés dans le Tableau IV.11. La figure IV.15, illustre la variation des fréquences propres de la plaque monocouche orthotrope, en fibre de carbone (R=2.5), en fonction des modes propres pour diverses conditions aux limites (EEEE-AAAA-AAEE-AEAE-EEAE-AAAE).

		Pulsation a	o _{mn} [rad/s]		Fréquence f _{mn} [Hz]			
N°	m=1	m=2	m=3	m=4	m=1	m=2	m=3	m=4
n=1	1112,8	2161,8	4184,7	7100,9	177,1049	344,0548	666,0124	1130,2
n=2	3751,7	4451,1	6040,5	8647	597,1074	708,4194	961,3769	1376,2
n=3	8225,4	8788,1	10015	12146	1309,1	1398,7	1593,9	1933,2
n=4	14500	15007	16038	17805	2307,8	2388,4	2552,6	2833,7

 Tableau IV.11
 Pulsations et fréquences naturelles de la plaque orthotrope carbone(HM)/époxyde (AAAA)

Fig. IV.15 Variation de la fréquence en fonction des modes vibratoires de la plaque orthotrope (Carbone /Epoxyde)

Plaque en Kevlar (49) /Epoxyde

Pour le dernier cas traité est celui de la plaque Kevlar (49)/Epoxyde (AAAA), les pulsations et les fréquences naturelles correspondants aux 16 premiers modes vibratoire sont calculées et présentés dans le Tableau IV.12. La figure IV.16, présente la variation des fréquences propres de la plaque monocouche orthotrope, en kevlar (R=2.5), en fonction des modes propres pour diverses conditions aux limites (EEEE-AAAA-AAEE-AEAE-EEAE-AAAE).

		Pulsation a	o _{mn} [rad/s]		Fréquence f _{mn} [Hz]			
N°	m=1	m=2	m=3	m=4	m=1	m=2	m=3	m=4
n=1	1152,9	1986,8	3590,4	5918,7	183,4884	316,2087	571,4344	941,9872
n=2	3993,3	4611,6	5891,8	7947,2	635,5519	733,9536	937,7136	1264,8
n=3	8768,5	9311,8	10376	12108	1395,5	1482	1651,4	1927,1
n=4	15460	15973	16929	18446	2460,5	2542,2	2694,4	2935,8

Tableau IV.12Pulsations et fréquences naturelles de la plaque orthotrope en
kevlar(49)/époxyde (AAAA)

Fig. IV.18 Variation de la fréquence en fonction des modes vibratoires de la plaque orthotrope (Kevlar /Epoxyde)

L'analyse des courbes ci-dessus (Fig. IV.14, Fig. IV.15 et Fig. IV.16) révèle que quelque soit le matériau de la plaque monocouche orthotrope, la plaque EEEE présente le niveau de fréquence le plus élevée et la plaque AAAA le niveau de fréquence le plus bas. Les autres plaques (AAEE, AEAE, EEAE, et AAAE) se situent entre ces deux configurations. Cela peut être expliqué par le fait que la réduction des degrés de liberté engendre une augmentation de la rigidité de la plaque et par la suite une augmentation des fréquences. Ainsi les fréquences propres de la plaque augmentent avec l'augmentation de la rigidité de la plaque.

<u>Comparaison entre le comportement vibratoire de la plaque unidirectionnelle et celui de la plaque orthotrope</u>

Pour mieux analyser le comportement vibratoire des plaques composites, une comparaison entre les deux configurations de plaques unidirectionnelle monocouche et orthotrope monocouche en Verre (E)/Epoxyde à été effectuée. La figure IV.19 montre que le niveau de

fréquence de la plaque orthotrope est supérieur à celui de la plaque unidirectionnelle pour les modes vibratoires élevés. Ceci peut être expliqué par le fait que la plaque orthotrope est plus équilibré au point de vue rigidité (deux directions d'anisotropie).

IV.3.3 Plaque stratifiée multicouches

Dans ce cas d'étude, nous avons conduit une investigation du comportement vibratoire d'une plaque stratifiée multicouches de dimensions $(250 \times 100 \text{ mm}^2)$ et d'épaisseur h=1 mm. Trois types de matériaux sont considérés dans cette étude. Les caractéristiques mécaniques des plaques sont présentées dans (Tableau IV.13). Plusieurs configurations de stratification sont traités (Tableau IV.14).

Tableau IV.13 Caractéristiques mécaniques de la plaque stratifiée multicouches [5].

Composite	$\rho_{\rm c}({\rm kg}/{\rm m}^3)$	$E_1(Gpa)$	E ₂ (Gpa)	G ₁₂ (Gpa)	G ₂₃ (Gpa)	v_{12}
Verre (E)/Epoxy	2040	46	10	4.6	3.96	0.31
Carbonne (HM)/Epoxy	1650	230	14.4	4.9	4.32	0.32
Kevlar (49)/Epoxy	1370	84	5.6	2.1	4.13	0.34

Type de stratifié	Désignation en anglais	Cas d'étude
Stratifié équilibré	Balanced laminate	0/+45/-45/0/+45/-45
Stratifié symétrique	Symetric laminate	0/+45/-45/0/-45/+45/0
Stratifié croisé	Cross laminate	0/90/0/90/0
Stratifié orthogonal	Orthogonal laminate	0/90/0/90/0/90

Tableau IV.14 Types de stratification

Stratifié équilibré

Pour ce premier cas, nous avons considéré une plaque en verre/époxyde constituée d'un stratifié équilibré composé de 6 plis (Fig. IV.20). Les pulsations et les fréquences naturelles correspondantes aux 16 premiers modes vibratoires, de la plaque (AAAA) sont calculées et présentés dans le Tableau IV.15. La figure IV.16, présente la variation des fréquences propres de cette plaque, en fonction des modes propres pour diverses conditions aux limites (EEEE-AAAA-AAEE-AEAE-EEAE-AAAE).

		Pulsation a	o _{mn} [rad/s]		Fréquence f _{mn} [Hz]			
N°	m=1	m=2	m=3	m=4	m=1	m=2	m=3	m=4
n=1	6140	9615,2	15105	22615	977,2048	1530,3	2404	3599,3
n=2	20837	24560	30485	38461	3316,3	3908,8	4851,8	6121,2
n=3	45284	49093	55260	63623	7207,2	7813,4	8794,8	10126
n=4	79503	83347	89636	98239	12653	13265	14266	15635

Tableau IV.15Pulsations et fréquences propres de la plaque stratifié équilibré en
verre(E)/époxyde (AAAA)

Fig. IV.21 Variation de la fréquence en fonction des modes vibratoires de la plaque stratifié équilibré (Verre /Epoxyde)

D'après la figure. IV.21, on peut constater que la plaque stratifié équilibré (EEEE) présente le niveau de fréquence le plus élevée et que la plaque (AAAA) le niveau de fréquence le plus bas. Les plaques (AAEE, EEAE, AAAE et AEAE) manifestent un niveau de fréquences proche de celui de la plaque (AAAA) pour les premiers modes propres. Au-delà du 9 ième mode on remarque un écart de fréquences entre les plaques (AAAA, AAAE et AEAE) et les deux plaques (AAEE et AEAE). Cela peut être aussi expliqué par le fait que la réduction des degrés de liberté engendre une augmentation de la rigidité de la plaque augmentent avec l'augmentation de la rigidité de la plaque.

Stratifié symétrique

Pour ce second cas, nous avons considéré une plaque en verre/époxyde constituée d'un stratifié symétrique constituée de 7 plis (Fig. IV.22). Les pulsations et les fréquences naturelles correspondantes aux 16 premiers modes vibratoires, de la plaque (AAAA) sont calculées et présentés dans le Tableau IV.16. La figure IV.23, présente la variation des fréquences propres de cette plaque, en fonction des modes propres pour diverses conditions aux limites (EEEE-AAAA-AAEE-AEAE-EEAE-AAAE).

Fig. IV.22	Stratifié	symétrique	(Np=7).
------------	-----------	------------	---------

Tableau IV.16	Pulsations et fréquences	propres de la	plaque	stratifié	symétrique en
	verre(E)/épo	oxyde (AAAA	A)		

	Pulsation ω_{mn} [rad/s]				Fréquence f _{mn} [Hz]			
N°	m=1	m=2	m=3	m=4	m=1	m=2	m=3	m=4
n=1	6497,9	10481	17240	26765	1034,2	1668,1	2743,9	4259,8
n=2	22115	25991	32573	41923	3519,7	4136,7	5184,2	6672,2
n=3	48164	52004	58481	67666	7665 <i>,</i> 6	8276,6	9307,5	10769
n=4	84636	88460	94884	103970	13470	14079	15101	16547

Fig. IV.23 Variation de la fréquence en fonction des modes vibratoires de la plaque stratifié symétrique (Verre /Epoxyde)

Comme pour le cas précédant, en se référant à la courbe de la figure. IV.23, on peut constater que la plaque stratifié symétrique (EEEE) présente le niveau de fréquence le plus élevée et que la plaque (AAAA) le niveau de fréquence le plus bas. Les plaques (AAEE, EEAE, AAAE et AEAE) présentent un niveau de fréquences proche de celui de la plaque (AAAA) pour les premiers modes propres. Au-delà du 9 ième mode on remarque un écart de fréquences entre les plaques (AAAA, AAAE et AEAE) et les deux plaques (AAEE et AEAE).Cela peut être aussi expliqué par le fait que la réduction des degrés de liberté engendre une augmentation de la rigidité de la plaque et par la suite une augmentation des fréquences. Ainsi les fréquences propres de la plaque augmentent avec l'augmentation de la rigidité de la plaque.

Stratifié croisé

Pour ce troisième cas, nous avons considéré une plaque en verre/époxyde constituée d'un stratifié croisé composé de 5 plis (Fig. IV.24). Les pulsations et les fréquences naturelles correspondantes aux 16 premiers modes vibratoires, de la plaque (AAAA) sont calculées et présentés dans le Tableau IV.17. La figure IV.25, présente la variation des fréquences propres de cette plaque, en fonction des modes propres pour diverses conditions aux limites (EEEE-AAAA-AAEE-AEAE-EEAE-AAAE).

Longueur de la plaque (a)

Fig. IV.24 Stratifié croisé (Np=5). **Tableau IV.17** Pulsations et fréquences propres de la plaque stratifié croisé en

Fréquence f_{mn}[Hz] Pulsation ω_{mn} [rad/s] N° m=2m=2m=3 m=1 m=3 m=4 m=1 m=4 n=1 4765,1 7038,6 11590 18363 758,3864 1120,2 1844,7 2922,5 n=2 17350 19060 22520 28154 2761,4 3033,5 3584,1 4480,9 n=3 38414 39962 42886 47566 6113,7 6360,1 6825,5 7570,3 n=467915 69401 72087 76241 10809 11045 11473 12134

Fig. IV.25 Variation de la fréquence en fonction des modes vibratoires de la plaque stratifié croisé (Verre /Epoxyde)

D'après la figure IV.25, on peut constater que la plaque stratifié croisé présente le même comportement vibratoire que celui des deux cas précédant.

Stratifié orthogonal

Pour ce dernier cas d'étude, nous avons considéré une plaque en verre/époxyde constituée d'un stratifié orthogonal composé de 5 plis (Fig. IV.26). Les pulsations et les fréquences naturelles correspondantes aux 16 premiers modes vibratoires, de la plaque (AAAA) sont calculées et présentés dans le Tableau IV.18. La figure IV.27, présente la variation des fréquences propres de cette plaque, en fonction des modes propres pour diverses conditions aux limites (EEEE-AAAA-AAEE-AEAE-EEAE-AAAE).

Fig. IV.26 Stratifié orthogonal (Np=6).

 Tableau IV.18
 Pulsations et fréquences naturelles d'une plaque multicouche (Stratifié orthogonal) en Verre(E)/époxyde (AAAA)

	Pulsation $\omega_{mn}[rad/s]$				Fréquence f _{mn} [Hz]			
N°	m=1	m=2	m=3	m=4	m=1	m=2	m=3	m=4
n=1	6905,2	8967,7	13301	20003	1099	1427,2	2117	3183,6
n=2	26061	27621	30732	35871	4147,7	4396	4891,2	5709
n=3	58054	59490	62147	66355	9239,5	9468,1	9891	10561
n=4	102850	104240	106720	110480	16370	16591	16984	17584

Fig. IV.27 Evolution du facteur de fréquence en fonction du numéro modale (Verre (E)/Epoxyde).

Dans ce cas aussi et d'après la figure IV.27, on peut constater une similitude du comportement vibratoire de la plaque stratifié orthogonal avec les autres types examinés dans les trois cas précédents.

Comparaison du comportement vibratoire des stratifiés

Fig. IV.28 Comparaison du comportement vibratoire des stratifiés Verre /Epoxyde (équilibré, symétrique, croisé et orthogonal) : plaques AAAA

Pour analyser le comportement vibratoire des différentes plaques stratifiées, une comparaison entre quatre configurations de plaques Verre (E)/Epoxyde (équilibré, symétrique, croisé et

orthogonal) a été effectuée. La figure IV.28, montre que le niveau de fréquence du stratifié orthogonal est supérieur à celui des autres stratifié et que le stratifié croisé est caractérisé par le plus bas niveau de fréquence.

Chapitre V

Etude et simulation du comportement vibratoire des plaques composites minces par le code de calcul ABAQUS

V.1 Introduction

La résolution analytique des problèmes mécaniques ne peut se faire que dans un nombre de cas limité, cependant les méthodes numériques basées sur la discrétisation de ses problèmes, présentent une alternative très efficace, souvent utilisées dans le domaine de la mécanique pour résoudre des problèmes complexes. La méthode des éléments finis est de toutes ses méthodes de discrétisation la plus utilisée car elle peut traiter des problèmes de géométrie complexe, elle couvre de nombreux domaines de la physique [23]. Les moyens informatiques actuels (puissance des calculateurs, outils de visualisation et de simulation) la rende facile à la mise en ouvre. La méthode des éléments finis est la méthode la plus utilisée actuellement, son champ d'application ne cesse de s'élargir. Le succès de la méthode est que sa formulation utilise des procédés standards qui se répètent au cours de la résolution de problèmes de natures différentes [24,25].

La méthode des éléments finis (MEF) est une méthode numérique utilisée pour résoudre certains problèmes de la physique. C'est une méthode qui permet de déterminer une solution approchée sur un domaine spatial, c'est-à-dire qui permet de calculer un champ (de scalaires, de vecteurs, de tenseurs) qui correspond à certaines équations et à certaines conditions imposées. La méthode consiste à découper le domaine spatial en petits éléments, également appelés mailles, et à rechercher une formulation simplifiée du problème sur chaque élément, c'est-à-dire à transformer le système d'équations quelconque en un système d'équations linéaires. Chaque système d'équations linéaires peut se représenter par une matrice. Les systèmes d'équations pour tous les éléments sont ensuite rassemblés, ce qui forme une grande matrice ; la résolution de ce système global donne la solution approchée au problème [26].

De nombreux logiciels basés sur cette méthode, généraux ou dédiés sont disponibles sur le marché. Nous utilisons dans cette étude le logiciel de calcul (ABAQUS) pour étudier et déterminer le comportement vibratoire des plaques composites.

V.1.1 Code de calcul ABAQUS

Fondé en 1978, ABAQUS, est l'un des premiers fournisseurs mondiaux de logiciels et services pour l'analyse par éléments finis. La gamme de logiciels d'ABAQUS est particulièrement réputée pour sa technologie, sa qualité et sa fiabilité. Elle s'est imposée comme partie intégrante des processus de conception de sociétés de renommées mondiale dans tous les secteurs industriels. ABAQUS offre les meilleures solutions pour des problèmes linéaires, non linéaires, explicites et dynamiques. Le logiciel fournit un environnement inégalé pour analyse par éléments fini, proposant un grand nombre d'alternatives aux opérations impliquant des fournisseurs et des produits multiples [26].

V.2 Définition d'ABAQUS

ABAQUS est un logiciel de calcul en éléments finis développé par la firme Dassault Systèmes. Il est composé de trois produits qui sont : ABAQUS/Standard, ABAQUS/Explicit et ABAQUS/CAE. La gamme de logiciels d'ABAQUS est particulièrement réputée pour sa technologie, sa qualité et sa fiabilité. Elle s'est imposée comme partie intégrante des processus de conception de sociétés de renommées mondiale dans tous les secteurs industriels. ABAQUS offre les meilleures solutions pour des problèmes linéaires, non linéaires, explicites et dynamiques. Le logiciel fournit un environnement inégalé pour analyse par éléments fini, proposant un grand nombre d'alternatives aux opérations impliquant des fournisseurs et des produits multiples [26].

V.3 Description du problème

On se propose d'étudier numériquement par la méthode des éléments finis en utilisant le code de calcul ABAQUS, le comportement vibratoire des plaques composites qui ont fait l'objet de l'étude analytique dans le chapitre IV.

V.4 Modélisation sous ABAQUS

V.4 .1 Système d'unités

ABAQUS ne possède aucun système d'unités intégré. Toutes les données doivent être spécifiées et choisis dans un système d'unités conforme [26]. Nous adoptons dans cette étude le système d'unités SI (mm) (Tableau V.1).

Longueur	Système International (m)	Système International (mm)
Force	Newton	Newton
Contrainte	Pascal	MPa
Densité	Kg/m ³	Tonnes/mm ³
Masse	Kg	Tonnes
Température	Kelvin	Kelvin

Tableau V.1	Systèmes	d'unités	compatibles	avec ABAQUS
	2			

V.4.2 Hypothèse de la modélisation

La plaque est modélisée en 2D/Shell/Planar, pour s'approcher au mieux du problème réel (plaque mince de faible épaisseur).

V.4.3 Dimensions et caractéristiques mécaniques

Les caractéristiques géométriques et mécaniques des plaques composites utilisées dans les simulations sont résumées dans les Tableau IV.2 et Tableau IV.3. La plaque modélisée est représentée sur la figure V.1.

Fig.V.1 Modèle plaque monocouche unidirectionnelle

V.4.4 Conditions aux limites

Dans ce travail, six configurations de conditions aux limites (AAAA, EEEE, AAEE, AEAE, EEAE, AAAE) ont été examinées. Pour les extrémités de la plaque en appui simple, tous les nœuds sont bloqués en translation ($U_1=U_2=U_3=0$) (Figure IV.2). Pour les extrémités encastrées les nœuds sont bloqués en translation et en rotation ($U_1=U_2=U_3=U_1=UR_2=UR_3=0$).

Fig.V.2 Conditions aux limites imposées à la plaque simplement appuyée

V.4.5 Maillage

La plaque est modélisée en utilisant des éléments shell linéaires du type SR4 (Figure.V.3). Le manuel d'utilisation d'ABAQUS recommande pour la modélisation des plaques minces, l'utilisation de l'élément S4R (élément coque à 4 nœuds avec intégration réduite), car son efficacité dans la modélisation des plaques minces est prouvée [27]. Pour optimiser le choix du nombre d'élément, une étude de la convergence du maillage a été menée pour le cas de la plaque monocouche unidirectionnelle en verre/époxyde. En prenant comme référence les résultats de l'étude analytique Tableau IV.4. Pour le premier mode : $\omega_{mn} = 782.1237$ rad/s et f₁₁ = 124.4789 Hz). En variant la taille du maillage (Approximate global size), respectivement : AGS =10, 5, 4 et 3. Nous avons trouvé les résultats présentés dans le Tableau V.2:

 Tableau V.2
 Fréquences et pulsations propres de la plaque pour différentes densités de maillage plaque monocouche unidirectionnelle en verre/époxyde

AGS	Nombre	Fréquence naturelle f ₁₁ [Hz]	Pulsation naturelle ω_{11} [Rad/s]
10	250	125.52	788.6654
5	1000	124.63	783.0734
4	1575	124.58	782.7592
3	2739	124.41	781.6911

Fig.V.3 Maillage la plaque par des éléments shell de type SR4 (Discrétisation avec 1575 éléments)

V.5 Calcul numérique des fréquences et modes propres des plaques composites avec diverses conditions aux limites

Dans cette section nous allons conduire une analyse numérique du comportement vibratoire des plaques minces rectangulaires composites avec différentes configurations et diverses conditions aux limites.

V.5.1 Plaque monocouche unidirectionnelle (verre/époxyde)

Comme pour le cas de l'étude analytique, nous avons modélisé sous ABAQUS la plaque monocouche unidirectionnelle, dans le but de déterminer et calculer numériquement les fréquences et pulsations correspondants aux 16 premiers modes propres. Dans ce premier cas, le modèle étudié est une plaque composite monocouche unidirectionnelle avec un angle d'orientation des fibres ($\theta = 0$) (Figure .V.1). Les résultats obtenus à partir de la simulation numérique (ABAQUS) et ceux de l'étude analytique (Chapitre IV) ainsi que l'erreur relative déterminée et calculée d'après la relation (V.1) sont représentés sur le Tableau V.3. Les déformées modales de la plaque qui correspondent aux 4 premiers modes vibratoires (m,n), sont représentées sur la figure V.4

$$e_{r} = \frac{\left|f_{ABAQUS} - f_{ANALY}\right|}{\left|f_{ANALY}\right|} \tag{V.1}$$

 Tableau. V.3
 Comparaison des résultats numériques et analytiques cas de la plaque monocouche unidirectionnelle Verre(E)/Epoxyde : AAAA

		Résulta	ts : MEF	Résultats : Rayleigh-Ritz		
		(ABA	AQUS)			
N°	Modes	Pulsations	Fréquences	Pulsations	Fréquences	Ecart
	(m,n)	ω(rad/s)	f(Hz)	ω(rad/s)	f(Hz)	relatif (%)
1	(1,1)	781.2948	124.41	782.1237	124.4789	0.0535
2	(2,1)	1339.7752	213.34	1340	213.6456	0.1430
3	(3,1)	2384.0764	379.63	2390	379.9787	0.0917
4	(1,2)	2686.5212	427.79	2680	426.4664	0.3103
5	(2,2)	3130.894	498.55	3130	497.9154	0.1274
6	(4,1)	3893.286	619.95	3900	620.0393	0.01441
7	(3,2)	4002.3696	637.32	4010	637.5634	0.0381
8	(4,2)	5360.7336	853.62	5370	854.5823	0.1126
9	(1,3)	5853.9648	932.16	5860	933.2413	0.1158
10	(2,3)	6311.4	1005	6270	998.4054	0.6605
11	(3,3)	7065.628	1125.1	7040	1120	0.4553
12	(4,3)	8248.78	1313.5	8240	1310	0.2671
13	(1,4)	10475.668	1668.1	10300	1640	1.7134
14	(2,4)	10859.376	1729.2	10700	1710	1.1228
15	(3,4)	11551.432	1839.4	11400	1820	1.0659
16	(4,4)	12614.008	2008.6	12500	1990	0.9346

Chapitre V : Etude et simulation du comportement vibratoire des plaques composites minces par le code de calcul ABAQUS

Fig. V.4 Déformées modales de la plaque monocouche unidirectionnelle en Verre(E)/Epoxyde (AAAA) : (quatre premiers modes)

V.5.2 Plaque monocouche unidirectionnelle (carbone/époxyde)

Le deuxième cas d'étude est celui de la plaque monocouche unidirectionnelle (carbone/époxyde). Les résultats fournis par (ABAQUS) et ceux de l'étude analytique, ainsi que l'erreur relative déterminée et calculée d'après la relation (V.1) sont représentés sur le Tableau V.4.

		Résulta	ts : MEF	Résultats : R		
		(ABA	4005)			
N°	Modes	Pulsations	Fréquences	Pulsations	Fréquences	Ecart
	(m,n)	ω(rad/s)	f(Hz)	ω(rad/s)	f(Hz)	relatif (%)
1	(1,1)	1108,8596	176,57	1109,9	176,6426	0,0410
2	(2,1)	2501,7008	398,36	2507,3	399,0562	0,1740
3	(1,2)	3559,6296	566,82	3550,9	565,1392	0,2974
4	(2,2)	4439,2692	706,89	4439,5	706,5704	0,0452
5	(3,1)	5117,886	814,95	5135,5	817,3379	0,2921
6	(3,2)	6552,552	1043,4	6573,1	1046,1	0,2581
7	(1,3)	7808,552	1243,4	7751,8	1233,7	0,7862
8	(2,3)	8447,228	1345,1	8402,4	1337,3	0,5832
9	(4,1)	8841,612	1407,9	8887,3	1414,5	0,4665
10	(3,3)	9972,012	1587,9	9988,9	1589,8	0,1195
11	(4,2)	10003,412	1592,9	10029	1596,2	0,2067
12	(4,3)	12808,688	2039,6	12850	2045,1	0,2689
13	(1,4)	13633,252	2170,9	13655	2173,2	0,1058
14	(2,4)	14378,688	2289,6	14203	2260,6	1,2828
15	(3,4)	15591,984	2482,8	15456	2459,8	0,9350
16	(4,4)	17821,384	2837,8	17758	2826,3	0,4068

 Tableau. V.4
 Comparaison des résultats numériques et analytiques cas de la plaque monocouche unidirectionnelle Carbone(E)/Epoxyde : AAAA

V.5.3 Plaque monocouche unidirectionnelle (kevlar/époxyde)

Le dernier cas traité est celui de la plaque monocouche unidirectionnelle (kevlar/époxyde). Les résultats numériques (ABAQUS) et analytiques (Rayleigh), ainsi que l'erreur relative déterminée et calculée d'après la relation (V.1) sont représentés sur le Tableau V.4.

		Résultats : MEF Résultats : Rayleigh-Ritz				
N°	Modes	Pulsations	Fréquences	Pulsations	Fréquences	Ecart
	(m,n)	ω(rad/s)	f(Hz)	ω (rad/s)	f(Hz)	relatif (%)
1	(1,1)	800,6372	127,49	809,803	128,8842	1,0817
2	(2,1)	1753,6272	279,24	1777,9	282,9564	1,3134
3	(1,2)	2492,1552	396,84	2500,1	397,904	0,2674
4	(2,2)	3084,8616	491,22	3239,2	515,5366	4,7167
5	(3,1)	3446,3384	548,78	3531,6	562,0671	2,3639
6	(3,2)	4492,7748	715,41	4764,3	758,2624	5,6513
7	(1,3)	5359,6032	853,44	5380,6	856,3431	0,3390
8	(2,3)	5977,5552	951,84	6007,3	956,0872	0,4442
9	(4,1)	6043,7464	962,38	6024,4	958,8151	0,3718
10	(4,2)	7070,024	1125,8	7111,5	1131,8	0,5301
11	(3,3)	7070,024	1125,8	7288,2	1160	2,9482
12	(4,3)	9288,748	1479,1	9367,4	1490,9	0,7914
13	(1,4)	9357,828	1490,1	9424,4	1499,9	0,6533
14	(2,4)	9965,732	1586,9	10000	1591,6	0,2953
15	(3,4)	11479,84	1828	11126	1770,8	3,2301
16	(4,4)	12911,052	2055,9	12957	2062,1	0,3006

Tableau. V.5Comparaison des résultats numériques et analytiques cas de la plaque
monocouche unidirectionnelle Kevlar (49)/Epoxyde : AAAA

La figure V.5 présente la variation des fréquences propres analytiques et fournies par ABAQUS, en fonction des 16 premiers modes vibratoires pour les trois plaques (verre/époxyde –carbone-époxyde-kevlar-époxyde) pour la configuration (AAAA), pour une géométrie de la plaque correspondante au cas du facteur de forme (R=2.5). D'après ces courbes on remarque la bonne concordance entre les résultats numériques des simulations par ABAQUS et analytiques obtenus par la méthode de Rayleigh. On peut aussi constater que la plaque composite en carbone /époxyde présente le niveau de fréquences le plus élevé, suivie des plaques kevlar/époxyde et verre/époxyde. Ceci peut être expliqué par la rigidité élevée des fibres de carbone qui confèrent à la plaque une grande rigidité.

Fig. V.5 Comparaison des fréquences propres calculées par la méthode de Rayleigh et numériques fournies par ABAQUS : cas des plaques (verre/époxyde –carbone-époxyde-kevlar-époxyde) pour la configuration (AAA)

V.6.1 Plaque monocouche orthotrope (verre/époxyde)

Comme pour le cas de l'étude analytique, nous avons modélisé sous ABAQUS la plaque monocouche orthotrope, dans le but de déterminer et calculer numériquement les fréquences et pulsations correspondants aux 16 premiers modes propres. Dans ce premier cas, le modèle étudié est une plaque composite monocouche orthotrope avec un angle d'orientation des fibres ($\theta = 0$). Les résultats obtenus à partir de la simulation numérique (ABAQUS) et ceux de l'étude analytique (Chapitre IV) ainsi que l'erreur relative déterminée et calculée d'après la relation (V.1) sont représentés sur le Tableau V.6. Les déformées modales de la plaque qui correspondent aux 4 premiers modes vibratoires (m,n), sont représentées sur la figure V.6.

		Résulta	ts : MEF	Résultats : F	Rayleigh-Ritz]
		(ABA	AQUS)			
N°	Modes	Pulsations	Fréquences	Pulsations	Fréquences	Ecart
	(m,n)	ω(rad/s)	f(Hz)	ω(rad/s)	f(Hz)	relatif (%)
1	(1,1)	882,8424	140,58	883,5459	140,6207	0,0289
2	(2,1)	1410,6136	224,62	1413,1	224,9039	0,1262
3	(3,1)	2426,9688	386,46	2430,1	386,7659	0,0790
4	(1,2)	3128,9472	498,24	3121,3	496,7639	0,2971
5	(2,2)	3537,524	563,3	3534,2	562,4828	0,1452
6	(4,1)	3913,5076	623,17	3915,2	623,1235	0,0074
7	(3,2)	4350,9096	692,82	4353,4	692,8694	0,0071
8	(4,2)	5644,9664	898,88	5652,5	899,6154	0,0817
9	(1,3)	6919,932	1101,9	6871,3	1093,6	0,7589
10	(2,3)	7288,568	1160,6	7246,8	1153,4	0,6242
11	(3,3)	7982,508	1271,1	7951,9	1265,6	0,4345
12	(4,3)	9082,764	1446,3	9065,8	1442,9	0,2356
13	(1,4)	12287,448	1956,6	12124	1929,7	1,3939
14	(2,4)	12469,568	1985,6	12485	1987,1	0,0754
15	(3,4)	13272,78	2113,5	13136	2090,6	1,0953
16	(4, 4)	14249,948	2269.1	14137	2249.9	0.8533

 Tableau. V.6
 Comparaison des résultats numériques et analytiques cas de la plaque monocouche orthotrope Verre(E)/Epoxyde : AAAA

Fig. V.6 Déformées modales de la plaque monocouche orthotrope en Verre(E)/Epoxyde (AAAA) : (quatre premier modes)

V.6.2 Plaque monocouche orthotrope (carbone/époxyde)

Le deuxième cas d'étude est celui de la plaque monocouche orthotrope (carbone/époxyde). Les résultats fournis par (ABAQUS) et ceux de l'étude analytique, ainsi que l'erreur relative déterminée et calculée d'après la relation (V.1) sont représentés sur le Tableau V.7.

		Résulta	ts : MEF	s : MEF Résultats : Rayleigh-Ritz		
		(ABA	AQUS)			
N°	Modes	Pulsations	Fréquences	Pulsations	Fréquences	Ecart
	(m,n)	ω(rad/s)	f(Hz)	ω(rad/s)	f(Hz)	relatif (%)
1	(1,1)	1111,7484	177,03	1112,8	177,1049	0,0422
2	(2,1)	2157,9964	343,63	2161,8	344,0548	0,1237
3	(1,2)	3760,0244	598,73	3751,7	597,1074	0,2717
4	(3,1)	4177,142	665,15	4184,7	666,0124	0,1294
5	(2,2)	4452,7712	709,04	4451,1	708,4194	0,0876
6	(3,2)	6030,8724	960,33	6040,5	961,3769	0,1088
7	(4,1)	7087,608	1128,6	7100,9	1130,2	0,1415
8	(1,3)	8280,808	1318,6	8225,4	1309,1	0,7256
9	(4,2)	8622,44	1373	8647	1376,2	0,2325
10	(2,3)	8833,448	1406,6	8788,1	1398,7	0,5648
11	(3,3)	10040,464	1598,8	10015	1593,9	0,3074
12	(4,3)	12141,752	1933,4	12146	1933,2	0,0103
13	(1,4)	14688,92	2339	14500	2307,8	1,3519
14	(2,4)	15181,272	2417,4	15007	2388,4	1,2142
15	(3,4)	16184,816	2577,2	16038	2552,6	0,9637
16	(4,4)	17905,536	2851,2	17805	2833,7	0,6175

 Tableau. V.7
 Comparaison des résultats numériques et analytiques cas de la plaque monocouche orthotrope Carbone(E)/Epoxyde : AAAA

V.6.3 Plaque monocouche orthotrope (kevlar/époxyde)

Le dernier cas traité est celui de la plaque monocouche orthotrope (kevlar/époxyde). Une comparaison des résultats numériques et analytiques sont représentés sur le Tableau V.8.

		Résultats : MEF		Résultats : Rayleigh-Ritz		
		(ABAQUS)				
N°	Modes	Pulsations	Fréquences	Pulsations	Fréquences	Ecart
	(m,n)	ω(rad/s)	f(Hz)	ω (rad/s)	f(Hz)	relatif (%)
1	(1,1)	1151,9404	183,43	1152,9	183,4884	0,0318
2	(2,1)	1983,538	315,85	1986,8	316,2087	0,1134
3	(3,1)	3585,6288	570,96	3590,4	571,4344	0,0830
4	(1,2)	4002,872	637,4	3993,3	635,5519	0,2907
5	(2,2)	4615,1092	734,89	4611,6	733,9536	0,1274
6	(3,2)	5886,6836	937,37	5891,8	937,7136	0,0366
7	(4,1)	5914,0016	941,72	5918,7	941,9872	0,0283
8	(4,2)	7933,524	1263,3	7947,2	1264,8	0,1185
9	(1,3)	8829,68	1406	8768,5	1395,5	0,7524
10	(2,3)	9363,48	1491	9311,8	1482	0,6072
11	(3,3)	10410,984	1657,8	10376	1651,4	0,3875
12	(4,3)	12121,656	1930,2	12108	1927,1	0,1608
13	(1,4)	15664,204	2494,3	15460	2460,5	1,3737
14	(2,4)	16164,092	2573,9	15973	2542,2	1,2469
15	(3,4)	17066,528	2717,6	16929	2694,4	0,8610
16	(4,4)	18577,496	2958,2	18446	2935,8	0,7629

Tableau. V.8Comparaison des résultats numériques et analytiques cas de la plaque
monocouche orthotrope Kevlar (49)/Epoxyde : AAAA

La figure V.7 présente la variation des fréquences propres déterminées par la méthode de Rayleigh et numériques fournies par ABAQUS, en fonction des 16 premiers modes vibratoires pour les trois plaques (verre/époxyde –carbone-époxyde-kevlar-époxyde) pour la configuration (AAAA), avec un facteur de forme (R=2.5). D'après cette on remarque une bonne concordance entre les résultats numériques et analytiques. Dans ce cas aussi on peut remarquer que la plaque composite en carbone /époxyde présente le niveau de fréquences le plus élevé, suivie des plaques kevlar/époxyde et verre/époxyde. Ceci peut être expliqué par la rigidité élevée des fibres de carbone qui confèrent à la plaque une grande rigidité.

Fig. V.7 Comparaison des fréquences propres calculées par la méthode de Rayleigh et numériques fournies par ABAQUS : cas des plaques (verre/époxyde –carbone-époxyde-kevlar-époxyde) pour la configuration (AAA)

V.7 Plaque stratifiée multicouche

V.7.1 Stratifié équilibré (verre/époxyde)

Comme pour le cas de l'étude analytique, nous avons modélisé sous ABAQUS la plaque stratifiée équilibré, dans le but de déterminer et calculer numériquement les fréquences et pulsations correspondants aux 16 premiers modes propres. Dans le cadre de l'étude d'optimisation du maillage, la taille du maillage qui convient, est celle qui correspond à la valeur AGS =18 (Approximate global size) (Figure .V.8). Les résultats obtenus à partir de la simulation numérique (ABAQUS) et ceux de l'étude analytique (Chapitre IV) ainsi que l'erreur relative déterminée et calculée d'après la relation (V.1) sont représentés sur le Tableau V.9. Les déformées modales de la plaque qui correspondent aux 4 premiers modes vibratoires (m,n), sont représentées sur la figure V.9.

Fig.V.8 Maillage la plaque par des éléments shell de type SR4 (Discrétisation avec 84 éléments)

Tableau. V.9Comparaison des résultats numériques et analytiques cas de la plaque stratifié
équilibré Verre(E)/Epoxyde : AAAA

		Résultats : MEF Résultats : Rayleigh-Ritz		Rayleigh-Ritz		
		(ABA	AQUS)			
N°	Modes	Pulsations	Fréquences	Pulsations	Fréquences	Ecart
	(m,n)	ω(rad/s)	f(Hz)	ω(rad/s)	f(Hz)	relatif (%)
1	(1,1)	6077,7212	967,79	6140	977,2048	0,9634
2	(2,1)	9671,2	1540	9615,2	1530,3	0,6338
3	(3,1)	14609,792	2326,4	15105	2404	3,2279
4	(1,2)	22161,492	3528,9	20837	3316,3	6,4107
5	(4,1)	22289,604	3549,3	22615	3599,3	1,3891
6	(2,2)	25074,784	3992,8	24560	3908,8	2,1489
7	(3,2)	29911,012	4762,9	30485	4851,8	1,8323
8	(4,2)	36852,296	5868,2	38461	6121,2	4,1331
9	(1,3)	45868,492	7303,9	45284	7207,2	1,3417
10	(2,3)	46469,488	7399,6	49093	7813,4	5,2960
11	(3,3)	54566,92	8689	55260	8794,8	1,2029
12	(4,3)	63522,2	10115	63623	10126	0,1086
13	(1,4)	82067,04	13068	79503	12653	3,2798
14	(2,4)	83674,72	13324	83347	13265	0,4447
15	(3,4)	92743,04	14768	89636	14266	3,5188
16	(4,4)	94451,2	15040	98239	15635	3,8055

Mode 4 m=1, n=2 Fig. V.9 Déformées modales de la plaque multicouche (stratifié équilibré) en Verre(E)/Epoxyde (AAAA) : (quatre premier modes)

V.7.2 Stratifié équilibré (carbone/époxyde)

Le deuxième cas d'étude est celui de la plaque stratifié équilibré (carbone/époxyde). Les résultats fournis par (ABAQUS) et ceux de l'étude analytique, ainsi que l'erreur relative déterminée et calculée d'après la relation (V.1) sont représentés sur le Tableau V.10.

		Résulta	ts : MEF	Résultats : R	Rayleigh-Ritz	
		(ABA	AQUS)			
N°	Modes	Pulsations	Fréquences	Pulsations	Fréquences	Ecart
	(m,n)	ω(rad/s)	f(Hz)	ω(rad/s)	f(Hz)	relatif (%)
1	(1,1)	11531,964	1836,3	12580	2002,2	8,2858
2	(2,1)	20143,728	3207,6	21091	3356,8	4,4447
3	(3,1)	34600,916	5509,7	34006	5412,3	1,7996
4	(1,2)	41956,052	6680,9	40609	6463,2	3,3683
5	(2,2)	51431,316	8189,7	50322	8008,9	2,2574
6	(4,1)	51669,956	8227,7	51420	8183,7	0,5376
7	(3,2)	63245,88	10071	65101	10361	2,7989
8	(4,2)	83850,56	13352	84366	13427	0,5585
9	(1,3)	85382,88	13596	87059	13856	1,8764
10	(2,3)	97654	15550	97245	15477	0,4716
11	(3,3)	111670,96	17782	113220	18020	1,3207
12	(4,3)	131892,56	21002	134230	21364	1,6944
13	(1,4)	152691,92	24314	152040	24198	0,4793
14	(2,4)	164410,4	26180	162440	25853	1,2648
15	(3,4)	178044,28	28351	179080	28501	0,5262
16	(4,4)	202373	32225	201290	32036	0,5899

 Tableau. V.10
 Comparaison des résultats numériques et analytiques cas de la plaque stratifié équilibré Carbone(E)/Epoxyde : AAAA

V.7.3 Stratifié équilibré (kevlar/époxyde)

Le dernier cas traité est celui de la plaque stratifié équilibré (kevlar/époxyde). Une comparaison des résultats numériques et analytiques sont représentés sur le Tableau V.11.

		Résulta	ts : MEF	Résultats : R	ayleigh-Ritz	
		(ABA	AQUS)			
N°	Modes	Pulsations	Fréquences	Pulsations	Fréquences	Ecart
	(m,n)	ω(rad/s)	f(Hz)	ω(rad/s)	f(Hz)	relatif (%)
1	(1,1)	8189,748	1304,1	8415,1	1339,3	2,6282
2	(2,1)	13198,676	2101,7	14062	2238	6,0902
3	(3,1)	21169,88	3371	22649	3604,7	6,4832
4	(1,2)	29255,38	4658,5	27241	4335,6	7,4476
5	(2,2)	33834,756	5387,7	33661	5357,2	0,5693
6	(4,1)	34563,236	5503,7	34237	5449	1,0038
7	(3,2)	41125,208	6548,6	43455	6916,1	5,3136
8	(4,2)	51222,192	8156,4	56246	8951,8	8,8853
9	(1,3)	60039,94	9560,5	58449	9302,4	2,7745
10	(2,3)	64288,36	10237	65171	10372	1,3015
11	(3,3)	76013,12	12104	75736	12054	0,4148
12	(4,3)	90413,16	14397	89655	14269	0,8970
13	(1,4)	101616,68	16181	102110	16251	0,4307
14	(2,4)	111400,92	17739	108970	17342	2,2892
15	(3,4)	119301,16	18997	119950	19091	0,4923
16	(4,4)	134479,92	21414	134640	21429	0,0696

Tableau. V.11 Comparaison des résultats numériques et analytiques cas de la plaque
stratifié équilibré Kevlar (49)/Epoxyde : AAAA

La figure V.10 illustre la variation des fréquences propres déterminées par la méthode de analytique (Rayleigh) et par la méthode des éléments finis (ABAQUS), en fonction des 16 premiers modes vibratoires pour les trois types de plaques (verre/époxyde –carbone-époxyde-kevlar-époxyde), simplement appuyées (AAAA), cas du facteur de forme (R=2.5). Les courbes de cette figure montrent une bonne concordance entre les résultats numériques et analytiques. On peut constater que la plaque en carbone/époxyde présente le niveau de fréquences le plus élevé et la plaque verre/époxyde le niveau plus pas. Ceci peut être expliqué par la rigidité élevée des fibres de carbone par rapport à celle du kevlar et du verre. On peut aussi remarquer que dans ce cas un maillage grossier converge mieux vers la solution analytique.

Fig. V.10 Comparaison des fréquences propres calculées par la méthode de Rayleigh et numériques fournies par ABAQUS : cas des plaques (verre/époxyde –carbone-époxyde-kevlar-époxyde) pour la configuration (AAAA)

V.7.4 Stratifié symétrique (verre/époxyde)

Comme pour le cas de l'étude analytique, nous avons modélisé sous ABAQUS la plaque stratifiée symétrique, dans le but de déterminer et calculer numériquement les fréquences et pulsations correspondants aux 16 premiers modes propres. Dans ce premier cas, le modèle étudié est une plaque composite multicouche stratifié symétrique. Les résultats obtenus à partir de la simulation numérique (ABAQUS) et ceux de l'étude analytique (Chapitre IV) ainsi que l'erreur relative déterminée et calculée d'après la relation (V.1) sont représentés sur le Tableau V.12. Les déformées modales de la plaque qui correspondent aux 4 premiers modes vibratoires (m,n) sont représentées sur la figure V.11.

						_
		Résulta	ts : MEF	Résultats : Rayleigh-Ritz		
		(ABA	AQUS)			
N°	Modes	Pulsations	Fréquences	Pulsations	Fréquences	Ecart
	(m,n)	ω(rad/s)	f(Hz)	ω(rad/s)	f(Hz)	relatif (%)
1	(1,1)	6449,56	1027	6497,9	1034,2	0,6961
2	(2,1)	10137,176	1614,2	10481	1668,1	3,2312
3	(3,1)	16726,78	2663,5	17240	2743,9	2,9301
4	(1,2)	23755,356	3782,7	22115	3519,7	7,4722
5	(2,2)	26384,792	4201,4	25991	4136,7	1,5640
6	(4,1)	26705,072	4252,4	26765	4259,8	0,1737
7	(3,2)	32048,096	5103,2	32573	5184,2	1,5624
8	(4,2)	40611,504	6466,8	41923	6672,2	3,0784
9	(1,3)	50970,992	8116,4	48164	7665,6	5,8808
10	(2,3)	52057,432	8289,4	52004	8276,6	0,1546
11	(3,3)	58022,804	9239,3	58481	9307,5	0,7327
12	(4,3)	65732,76	10467	67666	10769	2,8043
13	(1,4)	83674,72	13324	84636	13470	1,0838

14106

14683

16190

88460

94884

103970

14079

15101

16547

0,1917

2,7680

2,1574

14

15

16

(2,4)

(3,4)

(4,4)

88585,68

92209,24

101673,2

Tableau. V.12Comparaison des résultats numériques et analytiques cas de la plaque
multicouche stratifié symétrique Verre(E)/Epoxyde : AAAA

Fig. V.11 Déformées modales de la plaque multicouche (stratifié symétrique) en Verre(E)/Epoxyde (AAAA) : (quatre premier modes)

V.7.5 Stratifié symétrique (carbone/époxyde)

Le deuxième cas d'étude est celui de la plaque stratifié symétrique (carbone/époxyde). Les résultats fournis par (ABAQUS) et ceux de l'étude analytique, ainsi que l'erreur relative déterminée et calculée d'après la relation (V.1) sont représentés sur le Tableau V.13.

		Résulta	ts : MEF	Résultats : F	ayleigh-Ritz	
		(ABA	AQUS)			
N°	Modes	Pulsations	Fréquences	Pulsations	Fréquences	Ecart
	(m,n)	ω(rad/s)	f(Hz)	ω(rad/s)	f(Hz)	relatif (%)
1	(1,1)	12251,024	1950,8	12222	1945,2	0,2878
2	(2,1)	20271,84	3228	21882	3482,7	7,3132
3	(3,1)	36802,056	5860,2	38132	6068,9	3,4388
4	(1,2)	37654,252	5995,9	39393	6269,6	4,3655
5	(2,2)	50247,536	8001,2	48889	7781	2,8299
6	(4,1)	59416,336	9461,2	60945	9699,7	2,4588
7	(3,2)	66222,6	10545	64912	10331	2,0714
8	(1,3)	85533,6	13620	84715	13483	1,0160
9	(4,2)	87040,8	13860	87529	13931	0,5096
10	(2,3)	93195,2	14840	94144	14984	0,9610
11	(3,3)	113680,56	18102	110000	17507	3,3986
12	(4,3)	135503,56	21577	132390	21070	2,4062
13	(1,4)	149696,36	23837	148170	23582	1,0813
14	(2,4)	155806,8	24810	157570	25078	1,0686
15	(3,4)	175563,68	27956	173340	27587	1,3375
16	(4,4)	193411,44	30798	195560	31124	1,0474

 Tableau. V.13
 Comparaison des résultats numériques et analytiques cas de la plaque multicouche stratifié symétrique Carbone(E)/Epoxyde : AAAA

V.7.6 Stratifié symétrique (kevlar/époxyde)

Le dernier cas traité est celui de la plaque stratifié symétrique (kevlar/époxyde). Une comparaison des résultats numériques et analytiques sont représentés sur le Tableau V.14.

		Résulta	Résultats : MEF (ABAOUS) Résultats : Rayleigh-Ritz			
N°	Modes	Pulsations	Fréquences	Pulsations	Fréquences	Ecart
1,	(m.n)	$\omega(rad/s)$	f(Hz)	$\omega(rad/s)$	f(Hz)	relatif (%)
			-()		-()	
1	(1,1)	8239,36	1312	8211,2	1306,9	0,3902
2	(2,1)	14101,74	2245,5	14631	2328,6	3,5686
3	(3,1)	24903,34	3965,5	25430	4047,4	2,0235
4	(1,2)	25816,452	4110,9	26533	4222,9	2,6522
5	(2,2)	33253,856	5295,2	32845	5227,4	1,2970
6	(4,1)	40995,84	6528	40592	6460,4	1,0463
7	(3,2)	45463,432	7239,4	43493	6922,2	4,5823
8	(1,3)	56584,056	9010,2	57094	9086,8	0,8429
9	(4,2)	57786,676	9201,7	58524	9314,3	1,2088
10	(2,3)	65494,12	10429	63362	10084	3,4214
11	(3,3)	74845,04	11918	73901	11762	1,3263
12	(4,3)	89986,12	14329	88780	14130	1,4083
13	(1,4)	100611,88	16021	99884	15897	0,7800
14	(2,4)	104568,28	16651	106130	16892	1,4267
15	(3,4)	115558,28	18401	116610	18559	0,8513
16	(4,4)	133198,8	21210	131380	20910	1,4347

Tableau. V.14Comparaison des résultats numériques et analytiques cas de la plaquemulticouche stratifié symétrique Kevlar (49)/Epoxyde : AAAA

La figure V.12 présente la variation des fréquences propres analytiques et fournies par ABAQUS, en fonction des modes vibratoires pour les trois plaques (verre/époxyde – carbone-époxyde-kevlar-époxyde) pour la configuration (AAAA), cas du facteur de forme (R=2.5).). Les courbes de cette figure illustrent la bonne concordance entre les résultats numériques et analytiques. Dans ce cas aussi, on peut remarquer que la plaque en carbone/époxyde possède le niveau de fréquences le plus élevé et la plaque verre/époxyde le niveau plus pas. Ceci peut être expliqué par la rigidité élevée des fibres de carbone par rapport à celle du kevlar et du verre. On peut aussi remarquer que dans ce cas un maillage grossier converge mieux vers la solution analytique.

Fig. V.12 Comparaison des fréquences propres calculées par la méthode de Rayleigh et numériques fournies par ABAQUS : cas des plaques (verre/époxyde –carbone-époxyde-kevlar-époxyde) pour la configuration (AAAA)

V.7.7 Stratifié croisé (verre/époxyde)

Comme pour le cas de l'étude analytique, nous avons modélisé sous ABAQUS la plaque stratifiée croisé, dans le but de déterminer et calculer numériquement les fréquences et pulsations correspondants aux 16 premiers modes propres. Dans ce premier cas, le modèle étudié est une plaque composite multicouche stratifié croisé. Les résultats obtenus à partir de la simulation numérique (ABAQUS) et ceux de l'étude analytique (Chapitre IV) ainsi que l'erreur relative déterminée et calculée d'après la relation (V.1) sont représentés sur le Tableau V.15. Les déformées modales de la plaque qui correspondent aux 4 premiers modes vibratoires (m,n), sont représentées sur la figure V.13

Tableau. V.15	Comparaison des résultats numériques et analytiques cas de la pl	laque
	stratifié croisé Verre(E)/Epoxyde : AAAA	

		Résultats : MEF Résultats : I		ayleigh-Ritz		
		(ABA	QUS)			
N°	Modes	Pulsations	Fréquences	Pulsations	Fréquences	Ecart
	(m,n)	ω(rad/s)	f(Hz)	ω (rad/s)	f(Hz)	relatif (%)
1	(1,1)	4748,622	756,15	4765,1	758,3864	0,2948
2	(2,1)	6941,912	1105,4	7038,6	1120,2	1,3211
3	(3,1)	11403,852	1815,9	11590	1844,7	1,5612
4	(1,2)	17588,396	2800,7	17350	2761,4	1,4231
5	(4,1)	18075,724	2878,3	18363	2922,5	1,5124
6	(2,2)	19092,456	3040,2	19060	3033,5	0,2208
7	(3,2)	22206,08	3536	22520	3584,1	1,3420
8	(4,2)	27390,848	4361,6	28154	4480,9	2,6624
9	(1,3)	37631,016	5992,2	38414	6113,7	1,9873
10	(2,3)	39859,788	6347,1	39962	6360,1	0,2043
11	(3,3)	43339,536	6901,2	42886	6825,5	1,1090
12	(4,3)	47100,628	7500,1	47566	7570,3	0,9273
13	(1,4)	68778,56	10952	67915	10809	1,3229
14	(2,4)	68998,36	10987	69401	11045	0,5251
15	(3,4)	72640,76	11567	72087	11473	0,8193
16	(4,4)	75297,2	11990	76241	12134	1,1867

Fig. V.13 Déformées modales de la plaque multicouche (stratifié croisé) en Verre(E)/Epoxyde (AAAA) : (quatre premier modes)

V.7.8 Stratifié croisé (carbone/époxyde)

Le deuxième cas d'étude est celui de la plaque stratifié croisé (carbone/époxyde). Les résultats fournis par (ABAQUS) et ceux de l'étude analytique, ainsi que l'erreur relative déterminée et calculée d'après la relation (V.1) sont représentés sur le Tableau V.16.

		Résultats : MEF Résultats : Rayleigh-Ritz				
		(ABA	QUS)			
N°	Modes	Pulsations	Fréquences	Pulsations	Fréquences	Ecart
	(m,n)	ω(rad/s)	f(Hz)	ω (rad/s)	f(Hz)	relatif (%)
1	(1,1)	9160,636	1458,7	9213,1	1466,3	0,5183
2	(2,1)	13687,26	2179,5	13781	2193,4	0,6337
3	(3,1)	23446,38	3733,5	24489	3897,5	4,2078
4	(1,2)	34523,672	5497,4	34669	5517,7	0,3679
5	(2,2)	36247,532	5771,9	36852	5865,2	1,5907
6	(4,1)	41297,28	6576	40819	6496,6	1,2221
7	(3,2)	42171,456	6715,2	43047	6851,1	1,9836
8	(4,2)	56677,628	9025,1	55125	8773,5	2,8677
9	(1,3)	77872	12400	77441	12325	0,6085
10	(2,3)	78412,08	12486	78983	12571	0,6761
11	(3,3)	84629,28	13476	82917	13197	2,1141
12	(4,3)	91512,16	14572	90884	14465	0,7397
13	(1,4)	136005,96	21657	137370	21863	0,9422
14	(2,4)	138982,68	22131	138680	22071	0,2718
15	(3,4)	143027	22775	141660	22545	1,0201
16	(4,4)	149627,28	23826	147410	23461	1,5557

 Tableau. V.16
 Comparaison des résultats numériques et analytiques cas de la plaque stratifié croisé Carbone(E)/Epoxyde : AAAA

V.7.9 Stratifié croisé (kevlar/époxyde)

Le dernier cas traité est celui de la plaque stratifié croisé (kevlar/époxyde). Une comparaison des résultats numériques et analytiques sont représentés sur le Tableau V.17.

		Résulta (ABA	Résultats : MEF (ABAQUS)		Résultats : Rayleigh-Ritz	
N°	Modes	Pulsations	Fréquences	Pulsations	Fréquences	Ecart
	(m,n)	ω(rad/s)	f(Hz)	ω(rad/s)	f(Hz)	relatif (%)
1	(1,1)	6169,4092	982,39	6179,8	983,5503	0,1179
2	(2,1)	9376,668	1493,1	9257,2	1473,3	1,3439
3	(3,1)	16089,988	2562,1	16381	2607,2	1,7298
4	(1,2)	23306,964	3711,3	23183	3689,6	0,5881
5	(2,2)	24673,492	3928,9	24719	3934,2	0,1347
6	(4,1)	26518,556	4222,7	27228	4333,5	2,5568
7	(3,2)	28494,244	4537,3	28935	4605,1	1,4722
8	(4,2)	35874,5	5712,5	37029	5893,3	3,0678
9	(1,3)	52542,248	8366,6	51745	8235,5	1,5918
10	(2,3)	53374,348	8499,1	52865	8413,7	1,0150
11	(3,3)	55522,736	8841,2	55618	8852	0,1220
12	(4,3)	61586,076	9806,7	61065	9718,7	0,9054
13	(1,4)	92328,56	14702	91765	14605	0,6641
14	(2,4)	92874,92	14789	92730	14758	0,2100
15	(3,4)	94903,36	15112	94864	15098	0,0927
16	(4,4)	98765,56	15727	98877	15737	0,0635

Tableau. V.17Comparaison des résultats numériques et analytiques cas de la plaque
stratifié croisé Kevlar (49)/Epoxyde : AAAA

Dans ce cas aussi et d'après la figure V.14, on peut remarquer une bonne concordance entre les résultats numériques (ABAQUS) et analytiques (Rayleigh). La plaque en carbone/époxyde admet un niveau de fréquences plus élevé par comparaison aux plaques, verre/époxyde et kevlar/époxyde. Ceci peut être expliqué par la rigidité élevée des fibres de carbone par rapport à celle du kevlar et du verre. On peut aussi remarquer que dans ce cas un maillage grossier converge mieux vers la solution analytique.

Fig. V.14 Comparaison des fréquences propres calculées par la méthode de Rayleigh et numériques fournies par ABAQUS : cas des plaques (verre/époxyde –carbone-époxyde-kevlar-époxyde) pour la configuration (AAAA)

V.7.10 Stratifié orthogonal (verre/époxyde)

Comme pour le cas de l'étude analytique, nous avons modélisé sous ABAQUS la plaque stratifiée orthogonal, dans le but de déterminer et calculer numériquement les fréquences et pulsations correspondants aux 16 premiers modes propres. Dans ce premier cas, le modèle étudié est une plaque composite multicouche stratifié orthogonal. Les résultats obtenus à partir de la simulation numérique (ABAQUS) et ceux de l'étude analytique (Chapitre IV) ainsi que l'erreur relative déterminée et calculée d'après la relation (V.1) sont représentés sur le Tableau V.18. Les déformées modales de la plaque qui correspondent aux 4 premiers modes vibratoires (m,n), sont représentées sur la figure V.14.

		Résultat	s: MEF	Résultats : Rayleigh-Ritz		
		(ABA	<u>QUS)</u>		1	
N°	Modes	Pulsations	Fréquences	Pulsations	Fréquences	Ecart
	(m,n)	ω(rad/s)	f(Hz)	ω(rad/s)	f(Hz)	relatif (%)
1	(1,1)	6901,72	1099	6905,2	1099	0
2	(2,1)	8833,448	1406,6	8967,7	1427,2	1,4433
3	(3,1)	13044,816	2077,2	13301	2117	1,8800
4	(4,1)	19771,324	3148,3	20003	3183,6	1,1088
5	(1,2)	26560,004	4229,3	26061	4147,7	1,9670
6	(2,2)	27795,28	4426	27621	4396	0,6824
7	(3,2)	30368,196	4835,7	30732	4891,2	1,1346
8	(4,2)	34858,396	5550,7	35871	5709	2,7728
9	(1,3)	55843,644	8892,3	58054	9239,5	3,7571
10	(2,3)	62123,644	9892,3	59490	9468,1	4,4803
11	(3,3)	62215,332	9906,9	62147	9891	0,1607
12	(4,3)	66925,96	10657	66355	10561	0,9090
13	(1,4)	99839,44	15898	102850	16370	2,8833
14	(2,4)	105912,2	16865	104240	16591	1,6514
15	(3,4)	106113,16	16897	106720	16984	0,5122
16	(4,4)	109692,76	17467	110480	17584	0,9090

Tableau. V.18Comparaison des résultats numériques et analytiques cas de la plaque
stratifié orthogonal Verre(E)/Epoxyde : AAAA

D'après la figure V.15, on peut constater la bonne concordance entre les résultats obtenus par les simulations numériques (ABAQUS) et ceux analytiques par la méthode de Rayleigh. La plaque en carbone/époxyde a toujours le niveau de fréquences le plus élevé par comparaison aux autres plaques. Ceci peut être expliqué par la rigidité élevée des fibres de carbone par rapport à celle du kevlar et du verre. On peut aussi remarquer que dans ce cas un maillage grossier converge mieux vers la solution analytique.

Fig. V.15 Déformées modales de la plaque multicouche (stratifié orthogonal) en Verre(E)/Epoxyde (AAAA) : (quatre premier modes)

V.7.11 Stratifié orthogonal (carbone/époxyde)

Le deuxième cas d'étude est celui de la plaque stratifié orthogonal (carbone/époxyde). Les résultats fournis par (ABAQUS) et ceux de l'étude analytique, ainsi que l'erreur relative déterminée et calculée d'après la relation (V.1) sont représentés sur le Tableau V.19.

		Résultats : MEF Résultats : Rayleigh-Ritz				
		(ABA	AQUS)			
N°	Modes	Pulsations	Fréquences	Pulsations	Fréquences	Ecart
	(m,n)	ω(rad/s)	f(Hz)	ω(rad/s)	f(Hz)	relatif (%)
1	(1,1)	14945,144	2379,8	15218	2422	1,7423
2	(2,1)	17788,1	2832,5	18433	2933,7	3,4494
3	(3,1)	26090,26	4154,5	27261	4338,7	4,2455
4	(4,1)	40500,348	6449,1	42146	6707,7	3,8552
5	(1,2)	59523,724	9478,3	59359	9447,2	0,3291
6	(2,2)	60752,092	9673,9	60871	9688	0,1455
7	(3,2)	66009,08	10511	65049	10353	1,5261
8	(4,2)	78192,28	12451	73732	11735	6,1014
9	(1,3)	131283,4	20905	133130	21188	1,3356
10	(2,3)	132972,72	21174	134270	21369	0,9125
11	(3,3)	138342,12	22029	136960	21798	1,0597
12	(4,3)	144509,08	23011	142300	22648	1,6027
13	(1,4)	237635,2	37840	236430	37629	0,5607
14	(2,4)	238338,56	37952	237440	37789	0,4313
15	(3,4)	252412,04	40193	239570	38128	5,4159
16	(4,4)	260444,16	41472	243490	38752	7,0189

 Tableau. V.19
 Comparaison des résultats numériques et analytiques cas de la plaque stratifié orthogonal Carbone(E)/Epoxyde : AAAA

V.7.12 Stratifié orthogonal (kevlar/époxyde)

Le dernier cas traité est celui de la plaque stratifié orthogonal (kevlar/époxyde). Une comparaison des résultats numériques et analytiques sont représentés sur le Tableau V.20.

		Résultats : MEF Rés (ABAQUS)		Résultats : R	ésultats : Rayleigh-Ritz	
N°	Modes	Pulsations	Fréquences	Pulsations	Fréquences	Ecart
	(m,n)	ω(rad/s)	f(Hz)	ω(rad/s)	f(Hz)	relatif (%)
1	(1,1)	10160,412	1617,9	10146	1614,8	0,1919
2	(2,1)	12180,688	1939,6	12347	1965,1	1,2976
3	(3,1)	17919,98	2853,5	18264	2906,9	1,8370
4	(4,1)	27944,744	4449,8	28183	4485,4	0,7936
5	(1,2)	39964,664	6363,8	39497	6286,1	1,2360
6	(2,2)	40649,812	6472,9	40585	6459,2	0,2121
7	(3,2)	42804,48	6816	43484	6920,7	1,5128
8	(4,2)	47775,1	7607,5	49389	7860,5	3,2186
9	(1,3)	89019	14175	88547	14093	0,5818
10	(2,3)	90959,52	14484	89388	14227	1,8064
11	(3,3)	94664,72	15074	91315	14533	3,7225
12	(4,3)	95022,68	15131	95042	15126	0,0330
13	(1,4)	155725,16	24797	157230	25025	0,9110
14	(2,4)	160039,52	25484	157990	25145	1,3481
15	(3,4)	166319,52	26480	159540	25392	4,3005
16	(4,4)	167814,16	26722	162340	25837	3,4253

Tableau. V.20Comparaison des résultats numériques et analytiques cas de la plaque
stratifié orthogonal Kevlar (49)/Epoxyde : AAAA

Comme pour les cas précédents, la figure V.16 montre une bonne concordance entre les résultats numériques (ABAQUS) et analytiques (Rayleigh). La plaque en carbone/époxyde possède toujours le niveau de fréquences le plus élevé par comparaison aux autres plaques. Ceci peut être expliqué par la rigidité élevée des fibres de carbone par rapport à celle du kevlar et du verre. On peut aussi remarquer que dans ce cas un maillage grossier converge mieux vers la solution analytique.

Fig. V.16 Comparaison des fréquences propres calculées par la méthode de Rayleigh et numériques fournies par ABAQUS : cas des plaques (verre/époxyde –carbone-époxyde-kevlar-époxyde) pour la configuration (AAAA)

Conclusion générale

Ce travail de mémoire constitue une contribution à l'étude des vibrations libres des plaques minces en matériaux composites possédant un comportement mécanique anisotrope élastique par deux approches analytique basée sur la méthode de Rayleigh-Ritz et numérique par le code de calcul par éléments finis ABAQUS. Les structures étudiées sont des plaques composites monocouches et stratifiées avec différentes configurations géométriques et trois types de matériaux différents (verre/époxyde, carbone/époxyde et kevlar/époxyde). Suite à cette étude nous nous sommes parvenu aux résultats suivants :

- Calcul et détermination des pulsations et des fréquences naturelles des plaques analytiquement à partir de la résolution des équations différentielles du mouvement analytiquement par la méthode de Rayleigh-Ritz et numériquement grâce au code de calcul ABAQUS.
- Réalisation d'un programme de calcul écrit en langage MATLAB qui permet de calculer les pulsations et les fréquences naturelles des plaques pour différentes configurations de conditions aux limites, du rapport (longueur/largeur), d'angle d'orientation des fibres, et du type de stratification.
- Que quelque soit le type et le matériau de la plaque composite, la plaque EEEE présente le niveau de fréquence le plus élevée et la plaque AAAA le niveau de fréquence le plus bas. Ainsi les fréquences propres de la plaque augmentent avec l'augmentation de la rigidité de la plaque.
- Les plaques composites renforcées par les fibres de carbone présentent le niveau des fréquences le plus élevé, suivi de celle en kevlar et enfin de la plaque en verre.
- Le comportement vibratoire des plaques composites est fortement influencé par le facteur de forme (rapport longueur/largeur).
- Les résultats du calcul analytique et numérique sont en parfaites concordances, ce qui permet de valider l'approche numérique.
- En plus des résultats trouvé nous avons pu grâce à ce travail, compléter les lacunes de notre formation et nous somme parvenu à apprendre et voir même maitriser quelques logiciels (ABAQUS, MATLAB MAPLE10, EXCELL...etc.).

Références bibliographiques

- A.ZINE, « Modélisation d'une plaque rectangulaire en composite en vibration sous effet thermique avec variation linéaire d'épaisseur », Mémoire de Magistère en Génie mécanique de l'université de Boumerdès (2011).
- [2] A.E.MEBARKI, « Analyse dynamique libre des plaques composites multicouches », Mémoire de Magistère en Génie mécanique de l'université de Constantine (2009).
- [3] L.GORNET, « Généralités sur les matériaux composites », Nantes, (2008).
- [4] O.KOPMAZ AND S.TELLI, « Free vibration of rectangular plate carrying a distributed mass », Journal of sound and vibration, (2001), 251 (1), 39-97.
- [5] J.M.BERTHELOT, « Matériaux composites comportement mécanique et analyse des structures », 3^{ème} édition Technique documentation, (1999).
- [6] Y.DJEBLOUN, « Contribution à la caractérisation des matériaux composites renforcés de fibres végétales », Thèse de Doctorat en Génie mécanique de l'université de Biskra (2018).
- [7] A.CARMA, « Glossaire des matériaux composites », octobre, (2006).
- [8] G.FRAMEZELLE, F.LEPILLER, « Contrôle non destructif de structures composites pour l'aéronautique ».
- [9] T. ZARZA, « Analyse Dynamique des Plaques Homogènes et Non-Homogènes », Thèse de Doctorat d'État en Génie Civil de l'université de Constantine.
- [10] H. CHERIDI, « Analyse dynamique des plaques minces et épaisses: Application aux matériaux homogènes et non homogènes », Mémoire de Magistère en Génie mécanique de l'université de Constantine.
- [11] **B.MIMOUNE,** « Etude numérique du comportement dynamique des plaques trouées en matériaux isotrope », Mémoire de Master, Université de Msila (2017).
- [12] R.W.CLOUGH, J.PENZIN, « dynamique des structures », Tome 1.
- [13] JUC JAOUEN, « Vibration de flexion des plaques », Rapport de recherche Université de Sherbrooke, (2002).
- [14] O.KOPMAZ AND S.TELLI, « Free vibration of rectangular plate carrying a distributed mass », Journal of sound and vibration, (2001), 251 (1), 39-97.
- [15] LALANE. M., BETHIER P., HAGOPAIN J.D, « Mécanique des vibrations linéaires ».

- [16] S.MOUSSAOUI, « Réponse dynamique d'une plaque orthotrope mince en flexion simple sous excitations impulsives », Mémoire de magistère, Université de Guelma, (2002).
- [17] S.AGUIB, « Vibrations des plaques stratifiées, influence de la cinématique », Mémoire de Magistère en Génie mécanique de l'université de Boumerdès (2006).
- [18] I.E HARIK. X. Liu and N. malakrishnan, « Analytical solution to free vibration of rectangular plates », Journal of sound and vibration, (1992), 153(1), 51-62.
- [19] DANIEL GAY, « Matériaux Composites », Hermès, (1997).
- [20] R.F.S. HEARMAN, « The frequency of flexural vibration of rectangular orthotropic with clamped or supportd edges », Journal of applied mechanics 26 (1959) 537-540.
- [21] WHITNEY, J .M, « Structed Analysis of Laminated Anisotropie Plates », technnomic publishing CO, Lancaster ,PA (1987).
- [22] K.M LIEW, S. KITIPORNCHAR, A.Y.T. LEANG, C W. LI, « Analysis of the free vibration of rectangular plates with central cu-outs using the Discrete Ritz Method », international journal of mechanical sciences (2005), 45, 941-959.
- [23] M.LASSOUAD, « Etude de la concentration des contraintes dans une plaque trouée sollicitée en traction », Mémoire de Master, Université de Tébessa, (2011).
- [24] H.LAADJAL, « Etude Et Simulation Numérique du champ de contraintes dans une plaque composite stratifiée soumise à un champ de traction », Mémoire de Master, Université de Tébessa, (2014).
- [25] Y.MELLAB, « Investigation numérique du comportement thérmomécanique d'une plaque carré isotrope », Mémoire de Master, Université de Tébessa, (2018).
- [26] S.DEGHBOUDJ, « Méthode des éléments finis : Polycopié de travaux pratiques, Logiciel de simulation numérique en mécanique, ABAQUS Département de génie mécanique », Université de Tébessa, (2019).
- [27] ABAQUS, Documentation User Manual 6.14.

Annexe I

Tableau I.1 Coefficients intervenant dans l'expression des fréquences propres de vibrationd'une plaque composite (côtés encastrés : *E* ou en appuis simples : *A*) [5].

Conditions aux frontières	т	п	c_1	<i>c</i> ₃	<i>c</i> ₂
	1 1 2, 3, 4, 2, 3, 4,	1 2, 3, 4, 1 2, 3, 4,	4,730 4,730 $(m+0,5)\pi$ $(m+0,5)\pi$	$4,730 (n+0,5)\pi 4,730 (n+0,5)\pi$	$12, 3^{2} = 151, 3$ $12, 3c_{3}(c_{3} - 2)$ $12, 3c_{1}(c_{1} - 2)$ $c_{1}(c_{1} - 2)c_{3}(c_{3} - 2)$
A A A A X	1, 2, 3,	1, 2, 3,	$m\pi$	nπ	$m^2 n^2 \pi^4$
$\begin{array}{c} \bullet y \\ \bullet \\ \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \\ \bullet \\ \mathbf{X} \end{array}$	1, 2, 3,	1, 2, 3,	$(m+0,25)\pi$	$(n+0,25)\pi$	$c_1(c_1 - 2)c_3(c_3 - 2)$
^y A E E A	1 2, 3, 4,	1, 2, 3, 1, 2, 3,	4,730 $(m+0,5)\pi$	nπ nπ	$12, 3n^2 \pi^2$ $n^2 \pi^2 c_1 (c_1 - 2)$
	1 2, 3, 4,	1, 2, 3, 1, 2, 3,	4,730 $(m+0,5)\pi$	$(n+0,25)\pi$ $(n+0,25)\pi$	$12, 3c_3(c_3 - 2)$ $c_1(c_1 - 2)c_3(c_3 - 2)$
Y A E A A x	1, 2, 3,	1, 2, 3,	$(m+0,25)\pi$	nπ	$n^2 \pi^2 c_1 (c_1 - 2)$

	vene(L)/epoxyde avec unterents tapport (K a/o) . ELEL									
		Fréquence f _{mn} [Hz]								
N°	R=0.5	R=1	R=1.5	R=2	R=2.5					
(1,1)	2.0251e+003	578.7487	343.7619	278.9	255.5822					
(1,2)	2.2078e+003	888.9191	717.2924	673.43	656.8913					
(1,3)	2.5852e+003	1.4490e+003	1.3158e+003	1279.8	1.2652e+003					
(1,4)	3.2055e+003	2.2371e+003	2.1235e+003	2090.8	2.0770e+003					
(2,1)	5.4980e+003	1.4309e+003	694.6995	452.42	351.2946					
(2,2)	5.6712e+003	1.6712e+003	1.0040e+003	808.06	732.1416					
(2,3)	5.9830e+003	2.1350e+003	1.5580e+003	1396.9	1.3335e+003					
(2,4)	6.4725e+003	2.8443e+003	2.3418e+003	2200.3	2.1428e+003					
(3,1)	1.0724e+004	2.7332e+003	1.2629e+003	758.19	533.5064					
(3,2)	1.0897e+004	2.9448e+003	1.5242e+003	1066.4	877.6377					
(3,3)	1.1192e+004	3.3399e+003	2.0152e+003	1617	1.4585e+003					
(3,4)	1.1632e+004	3.9586e+003	2.7487e+003	2398.1	2.2579e+003					
(4,1)	1.7689e+004	4.4734e+003	2.0319e+003	1183.9	797.7600					
(4,2)	1.7865e+004	4.6732e+003	2.2661e+003	1456.2	1.1056e+003					
(4,3)	1.8155e+004	5.0305e+003	2.7039e+003	1960.6	1.6543e+003					
(4,4)	1.8576e+004	5.5834e+003	3.3772e+003	2705.3	2.4339e+003					

Tableau I.2 Fréquences naturelles de la plaque monocouche unidirectionnelle en verre(E)/époxyde avec différents rapport (R=a/b) : EEEE

Tableau I.3 Fréquences naturelles de la plaque monocouche unidirectionnelle enverre(E)/époxyde avec différents rapport (R=a/b) : AAEE

	Fréquence f _{mn} [Hz]							
N°	R=0.5	R=1	R=1.5	R=2	R=2.5			
(1,1)	1.3905e+003	394.2057	233.4147	189.79	174.4618			
(1,2)	1.5463e+003	669.9443	563.4759	536.98	527.1551			
(1,3)	1.9099e+003	1.1943e+003	1.1151e+003	1093.8	1.0851e+003			
(1,4)	2.5263e+003	1.9410e+003	1.8740e+003	1854.5	1.8462e+003			
(2,1)	4.4408e+003	1.1437e+003	543.7834	343.99	259.4281			
(2,2)	4.5821e+003	1.3439e+003	805.9518	649.46	589.4567			
(2,3)	4.8622e+003	1.7694e+003	1.3152e+003	1190.2	1.1413e+003			
(2,4)	5.3231e+003	2.4417e+003	2.0533e+003	1944.7	1.9005e+003			
(3,1)	9.2306e+003	2.3389e+003	1.0681e+003	629.21	431.6886			
(3,2)	9.3738e+003	2.5131e+003	1.2841e+003	886.66	722.5328			
(3,3)	9.6370e+003	2.8688e+003	1.7295e+003	1388.6	1.2536e+003			
(3,4)	1.0045e+004	3.4486e+003	2.4181e+003	2121.7	2.0035e+003			
(4,1)	1.5760e+004	3.9709e+003	1.7909e+003	1031.5	683.8139			
(4,2)	1.5906e+004	4.1356e+003	1.9832e+003	1255.7	938.9830			
(4,3)	1.6166e+004	4.4553e+003	2.3760e+003	1710.8	1.4367e+003			
(4,4)	1.6555e+004	4.9686e+003	3.0039e+003	2407.1	2.1667e+003			

	Fréquence f _{mn} [Hz]								
N°	R=0.5	R=1	R=1.5	R=2	R=2.5				
(1,1)	2.0070e+003	533.5669	268.6399	182.39	146.6091				
(1,2)	2.1343e+003	729.5950	517.6915	459.32	436.8305				
(1,3)	2.4178e+003	1.1648e+003	1.0031e+003	958.6	940.6409				
(1,4)	2.9184e+003	1.8373e+003	1.7042e+003	1665.7	1.6496e+003				
(2,1)	5.4837e+003	1.4058e+003	653.6775	387.89	276.0957				
(2,2)	5.6231e+003	1.5745e+003	858.2219	629.63	535.1489				
(2,3)	5.8831e+003	1.9310e+003	1.2899e+003	1100.3	1.0239e+003				
(2,4)	6.2979e+003	2.5186e+003	1.9561e+003	1793.2	1.7263e+003				
(3,1)	1.0710e+004	2.7141e+003	1.2349e+003	718.93	481.8534				
(3,2)	1.0856e+004	2.8758e+003	1.4186e+003	926.63	711.6990				
(3,3)	1.1114e+004	3.1919e+003	1.7991e+003	1356.5	1.1728e+003				
(3,4)	1.1503e+004	3.7066e+003	2.4115e+003	2019.5	1.8592e+003				
(4,1)	1.7676e+004	4.4567e+003	2.0096e+003	1154.2	759.4358				
(4,2)	1.7827e+004	4.6170e+003	2.1842e+003	1346	969.1130				
(4,3)	1.8087e+004	4.9145e+003	2.5304e+003	1738.6	1.3982e+003				
(4,4)	1.8468e+004	5.3840e+003	3.0908e+003	2362.7	2.0596e+003				

Tableau I.4 Fréquences naturelles de la plaque monocouche unidirectionnelle en verre(E)/époxyde avec différents rapport (R=a/b) : AEAE

Tableau I.5 Fréquences naturelles de la plaque monocouche unidirectionnelle en verre(E)/époxyde avec différents rapport (R=a/b) : EEAE

		ŀ	requence f _{mn} [Hz]						
N°	R=0.5	R=1	R=1.5	R=2	R=2.5				
(1,1)	2.0034e+003	540.6338	289.4561	215.16	187.5448				
(1,2)	2.1467e+003	787.3629	601.6810	554.28	536.7542				
(1,3)	2.4693e+003	1.2867e+003	1.1462e+003	1108.9	1.0941e+003				
(1,4)	3.0266e+003	2.0197e+003	1.9023e+003	1869	1.8550e+003				
(2,1)	5.4752e+003	1.4014e+003	655.8146	403.72	294.5044				
(2,2)	5.6166e+003	1.5922e+003	903.6494	696.3	615.3344				
(2,3)	5.8898e+003	1.9961e+003	1.3972e+003	1229.1	1.1635e+003				
(2,4)	6.3315e+003	2.6442e+003	2.1252e+003	1979.9	1.9213e+003				
(3,1)	1.0700e+004	2.7061e+003	1.2304e+003	719.12	487.5414				
(3,2)	1.0844e+004	2.8769e+003	1.4389e+003	966.78	768.6694				
(3,3)	1.1106e+004	3.2213e+003	1.8696e+003	1457.1	1.2923e+003				
(3,4)	1.1507e+004	3.7817e+003	2.5431e+003	2182.2	2.0382e+003				
(4,1)	1.7665e+004	4.4470e+003	2.0021e+003	1149.7	758.5535				
(4,2)	1.7811e+004	4.6103e+003	2.1906e+003	1367.8	1.0063e+003				
(4,3)	1.8071e+004	4.9242e+003	2.5730e+003	1811.7	1.4948e+003				
(4,4)	1.8457e+004	5.4252e+003	3.1863e+003	2497.1	2.2182e+003				

	Fréquence f _{mn} [Hz]								
N°	R=0.5 R=1 R=1.5 R=2 R=2.1								
(1,1)	1.3916e+003	380.8090	204.0237	149.32	127.7182				
(1,2)	1.5233e+003	597.2960	470.6638	437.08	424.1472				
(1,3)	1.8362e+003	1.0590e+003	965.9853	940.23	929.6886				
(1,4)	2.3892e+003	1.7483e+003	1.6716e+003	1649	1.6393e+003				
(2,1)	4.4486e+003	1.1465e+003	538.7430	329.8	236.3094				
(2,2)	4.5859e+003	1.3192e+003	751.8727	575.37	503.6786				
(2,3)	4.8487e+003	1.6917e+003	1.1981e+003	1055.1	997.6043				
(2,4)	5.2768e+003	2.3015e+003	1.8758e+003	1753.1	1.7024e+003				
(3,1)	9.2405e+003	2.3463e+003	1.0714e+003	627.22	423.5791				
(3,2)	9.3852e+003	2.5089e+003	1.2588e+003	840.6	659.8973				
(3,3)	9.6429e+003	2.8324e+003	1.6506e+003	1280.8	1.1287e+003				
(3,4)	1.0036e+004	3.3624e+003	2.2769e+003	1952.5	1.8201e+003				
(4,1)	1.5771e+004	3.9803e+003	1.7978e+003	1035.2	683.4129				
(4,2)	1.5921e+004	4.1407e+003	1.9741e+003	1230.1	897.3415				
(4,3)	1.6180e+004	4.4416e+003	2.3274e+003	1631.2	1.3344e+003				
(4,4)	1.6563e+004	4.9203e+003	2.8999e+003	2265.4	2.0027e+003				

Tableau I.6 Fréquences naturelles de la plaque monocouche unidirectionnelle en verre(E)/époxyde avec différents rapport (R=a/b) : AAAE

Tableau I.7Fréquences propres de la plaque unidirectionnelle (EEEE) en Verre/époxydeavec différentes angles d'orientation des fibres (θ), R=2.5

	Fréquence f _{mn} [Hz]						
N°	$\theta = 15^{\circ}$	$\theta = 30^{\circ}$	$\theta = 45^{\circ}$	$\theta = 60^{\circ}$	$\theta = 75^{\circ}$	$\theta = 90^{\circ}$	
(1,1)	264.6231	297.5393	356.6346	425.8038	480.3369	500.8789	
(1,2)	677.7966	765.4723	936.9469	1.1434e+003	1.3072e+003	1.3690e+003	
(1,3)	1.3002e+003	1.4636e+003	1.8024e+003	2.2182e+003	2.5500e+003	2.6753e+003	
(1,4)	2.1296e+003	2.3923e+003	2.9538e+003	3.6495e+003	4.2062e+003	4.4165e+003	
(2,1)	364.0420	397.8535	442.1177	484.7415	515.1233	526.0975	
(2,2)	768.8988	877.9090	1.0412e+003	1.2149e+003	1.3464e+003	1.3952e+003	
(2,3)	1.3897e+003	1.5836e+003	1.9161e+003	2.2956e+003	2.5914e+003	2.7023e+003	
(2,4)	2.2194e+003	2.5173e+003	3.0733e+003	3.7305e+003	4.2490e+003	4.4443e+003	
(3,1)	542.2207	561.3527	577.2992	582.3652	579.3346	576.7903	
(3,2)	928.2261	1.0528e+003	1.1994e+003	1.3270e+003	1.4114e+003	1.4407e+003	
(3,3)	1.5404e+003	1.7690e+003	2.0896e+003	2.4164e+003	2.6581e+003	2.7470e+003	
(3,4)	2.3669e+003	2.7109e+003	3.2570e+003	3.8569e+003	4.3174e+003	4.4892e+003	
(4,1)	796.0365	786.4208	761.1451	720.5243	679.4685	661.6671	
(4,2)	1.1622e+003	1.2884e+003	1.4079e+003	1.4796e+003	1.5059e+003	1.5102e+003	
(4,3)	1.7598e+003	2.0177e+003	2.3190e+003	2.5802e+003	2.7525e+003	2.8123e+003	
(4,4)	2.5786e+003	2.9709e+003	3.5016e+003	4.0286e+003	4.4128e+003	4.5532e+003	

			Fréquence	f _{mn} [Hz]				
N°	$\theta = 15^{\circ}$	$\theta = 30^{\circ}$	$\theta = 45^{\circ}$	$\theta = 60^{\circ}$	$\theta = 75^{\circ}$	$\theta = 90^{\circ}$		
(1,1)	179.9355	201.4423	242.1813	290.9636	329.7377	344.3809		
(1,2)	542.4880	611.1847	750.5550	920.4830	1.0559e+003	1.1070e+003		
(1,3)	1.1130e+003	1.2506e+003	1.5432e+003	1.9053e+003	2.1949e+003	2.3043e+003		
(1,4)	1.8905e+003	2.1209e+003	2.6222e+003	3.2469e+003	3.7474e+003	3.9366e+003		
(2,1)	266.2047	285.0169	311.2905	338.1067	357.9997	365.3278		
(2,2)	617.7188	703.6996	835.8601	978.7421	1.0877e+003	1.1282e+003		
(2,3)	1.1870e+003	1.3503e+003	1.6376e+003	1.9694e+003	2.2290e+003	2.3265e+003		
(2,4)	1.9650e+003	2.2252e+003	2.7219e+003	3.3143e+003	3.7830e+003	3.9596e+003		
(3,1)	432.7545	434.0161	431.8237	425.0714	417.0935	413.5007		
(3,2)	762.1461	860.1697	976.2795	1.0779e+003	1.1453e+003	1.1688e+003		
(3,3)	1.3225e+003	1.5171e+003	1.7934e+003	2.0775e+003	2.2887e+003	2.3665e+003		
(3,4)	2.0976e+003	2.3999e+003	2.8877e+003	3.4281e+003	3.8444e+003	3.9999e+003		
(4,1)	673.7720	644.9579	601.8611	553.5759	514.0690	498.5427		
(4,2)	982.1043	1.0778e+003	1.1669e+003	1.2173e+003	1.2325e+003	1.2337e+003		
(4,3)	1.5269e+003	1.7473e+003	2.0050e+003	2.2284e+003	2.3757e+003	2.4268e+003		
(4,4)	2.2940e+003	2.6413e+003	3.1145e+003	3.5871e+003	3.9326e+003	4.0591e+003		

Tableau I.8 Fréquences propres de la plaque unidirectionnelle (AAEE) en Verre/époxydeavec différentes angles d'orientation des fibres (θ), R=2.5

Tableau I.9Fréquences propres de la plaque unidirectionnelle (AEAE) en Verre/époxydeavec différentes angles d'orientation des fibres (θ), R=2.5

	Fréquence f _{mn} [Hz]						
N°	$\theta = 15^{\circ}$	$\theta = 30^{\circ}$	$\theta = 45^{\circ}$	$\theta = 60^{\circ}$	$\theta = 75^{\circ}$	$\theta = 90^{\circ}$	
(1,1)	154.2169	173.0287	195.2337	214.5486	228.3366	231.6849	
(1,2)	454.9897	517.9185	626.1374	749.8533	847.4890	882.5523	
(1,3)	970.4066	1.0965e+003	1.3445e+003	1.6434e+003	1.8819e+003	1.9702e+003	
(1,4)	1.6946e+003	1.9073e+003	2.3503e+003	2.8947e+003	3.3304e+003	3.4934e+003	
(2,1)	285.1031	302.3198	310.5606	302.3195	288.2473	276.0908	
(2,2)	570.4737	656.3688	756.0352	841.8837	902.2595	917.7534	
(2,3)	1.0778e+003	1.2383e+003	1.4796e+003	1.7366e+003	1.9353e+003	2.0033e+003	
(2,4)	1.7983e+003	2.0506e+003	2.4876e+003	2.9883e+003	3.3833e+003	3.5256e+003	
(3,1)	484.6656	484.9545	467.5650	427.2309	384.1604	356.1852	
(3,2)	758.1693	856.4774	940.3630	979.2074	990.2303	978.3064	
(3,3)	1.2532e+003	1.4495e+003	1.6791e+003	1.8791e+003	2.0204e+003	2.0579e+003	
(3,4)	1.9663e+003	2.2679e+003	2.6950e+003	3.1330e+003	3.4672e+003	3.5779e+003	
(4,1)	750.8532	721.5335	665.7442	587.0444	515.4483	474.0813	
(4,2)	1.0174e+003	1.1123e+003	1.1707e+003	1.1572e+003	1.1130e+003	1.0691e+003	
(4,3)	1.5000e+003	1.7229e+003	1.9343e+003	2.0676e+003	2.1385e+003	2.1372e+003	
(4,4)	2.2028e+003	2.5534e+003	2.9657e+003	3.3270e+003	3.5832e+003	3.6524e+003	

			Fréquence	f _{mn} [Hz]			
N°	$\theta = 15^{\circ}$	$\theta = 30^{\circ}$	$\theta = 45^{\circ}$	$\theta = 60^{\circ}$	$\theta = 75^{\circ}$	$\theta = 90^{\circ}$	
(1,1)	193.7060	215.4468	253.8319	298.6951	334.1499	347.5273	
(1,2)	554.6263	626.8563	765.0947	930.2750	1.0611e+003	1.1104e+003	
(1,3)	1.1252e+003	1.2675e+003	1.5592e+003	1.9161e+003	2.2006e+003	2.3080e+003	
(1,4)	1.9029e+003	2.1385e+003	2.6390e+003	3.2582e+003	3.7534e+003	3.9404e+003	
(2,1)	300.4757	316.2476	336.6560	355.9798	369.5228	374.3648	
(2,2)	646.9360	736.9301	866.0093	999.7182	1.0995e+003	1.1364e+003	
(2,3)	1.2148e+003	1.3858e+003	1.6710e+003	1.9923e+003	2.2415e+003	2.3348e+003	
(2,4)	1.9925e+003	2.2624e+003	2.7573e+003	3.3385e+003	3.7959e+003	3.9680e+003	
(3,1)	486.2678	481.0788	469.7785	453.3116	437.6273	431.0466	
(3,2)	809.9977	908.9535	1.0194e+003	1.1090e+003	1.1642e+003	1.1825e+003	
(3,3)	1.3669e+003	1.5689e+003	1.8413e+003	2.1113e+003	2.3078e+003	2.3795e+003	
(3,4)	2.1405e+003	2.4542e+003	2.9389e+003	3.4637e+003	3.8639e+003	4.0128e+003	
(4,1)	745.0570	707.0309	651.8779	592.1254	544.5632	526.1500	
(4,2)	1.0489e+003	1.1415e+003	1.2219e+003	1.2583e+003	1.2593e+003	1.2543e+003	
(4,3)	1.5893e+003	1.8144e+003	2.0660e+003	2.2726e+003	2.4020e+003	2.4454e+003	
(4,4)	2.3537e+003	2.7116e+003	3.1801e+003	3.6337e+003	3.9590e+003	4.0770e+003	

Tableau I.10Fréquences propres de la plaque unidirectionnelle (EEAE) en Verre/époxydeavec différentes angles d'orientation des fibres (θ) , R=2.5

Tableau I.11Fréquences propres de la plaque unidirectionnelle (AAAE) en Verre/époxydeavec différentes angles d'orientation des fibres (θ) , R=2.5

	Fréquence f _{mn} [Hz]						
N°	$\theta = 15^{\circ}$	$\theta = 30^{\circ}$	$\theta = 45^{\circ}$	$\theta = 60^{\circ}$	$\theta = 75^{\circ}$	$\theta = 90^{\circ}$	
(1,1)	134.0592	151.6430	176.1046	200.9159	219.2266	225.9502	
(1,2)	438.9110	497.0767	606.5564	736.4816	839.1374	877.7920	
(1,3)	955.5336	1.0759e+003	1.3248e+003	1.6301e+003	1.8737e+003	1.9656e+003	
(1,4)	1.6802e+003	1.8868e+003	2.3305e+003	2.8814e+003	3.3222e+003	3.4888e+003	
(2,1)	245.8362	265.0465	277.7984	276.8066	267.3434	261.8847	
(2,2)	535.0046	615.7880	718.1793	814.5645	882.4325	906.8111	
(2,3)	1.0449e+003	1.1963e+003	1.4396e+003	1.7088e+003	1.9158e+003	1.9931e+003	
(2,4)	1.7667e+003	2.0078e+003	2.4467e+003	2.9602e+003	3.3640e+003	3.5158e+003	
(3,1)	428.4845	434.2720	424.4707	392.6814	352.1758	332.6057	
(3,2)	704.4365	801.0439	889.6911	940.8645	958.1648	960.4885	
(3,3)	1.2027e+003	1.3906e+003	1.6237e+003	1.8390e+003	1.9886e+003	2.0420e+003	
(3,4)	1.9179e+003	2.2069e+003	2.6368e+003	3.0921e+003	3.4356e+003	3.5628e+003	
(4,1)	678.1023	657.2772	612.2938	543.8563	473.1377	441.1072	
(4,2)	946.0426	1.0433e+003	1.1091e+003	1.1091e+003	1.0679e+003	1.0434e+003	
(4,3)	1.4316e+003	1.6491e+003	1.8658e+003	2.0164e+003	2.0931e+003	2.1149e+003	
(4,4)	2.1372e+003	2.4760e+003	2.8925e+003	3.2741e+003	3.5377e+003	3.6316e+003	

Annexe II

	deux memoues, K-2.3						
	Fréquence f _{mn} [Hz]						
	EEEE		AAEE		AEAE		
N°	ABAQUS	Rayleigh	ABAQUS	Rayleigh	ABAQUS	Rayleigh	
(1,1)	255.66	255.5822	182.43	174.4618	146.25	146.6091	
(1,2)	659.47	656.8913	534.06	527.1551	437	436.8305	
(1,3)	1278.2	1.2652e+003	1089.9	1.0851e+003	946.38	940.6409	
(1,4)	2036.7	2.0770e+003	1847.1	1.8462e+003	1672	1.6496e+003	
(2,1)	350.8	351.2946	275.32	259.4281	275.61	276.0957	
(2,2)	733.44	732.1416	606.43	589.4567	534.25	535.1489	
(2,3)	1344.1	1.3335e+003	1155.2	1.1413e+003	1027.3	1.0239e+003	
(2,4)	2115.2	2.1428e+003	1909.4	1.9005e+003	1712.5	1.7263e+003	
(3,1)	532.38	533.5064	450.22	431.6886	481.45	481.8534	
(3,2)	877.8	877.6377	748.29	722.5328	710.5	711.6990	
(3,3)	1467.2	1.4585e+003	1270.7	1.2536e+003	1174.9	1.1728e+003	
(3,4)	2273.8	2.2579e+003	2021.7	2.0035e+003	1875.2	1.8592e+003	
(4,1)	796.08	797.7600	702.08	683.8139	759.31	759.4358	
(4,2)	1104	1.1056e+003	969.58	938.9830	967.52	969.1130	
(4,3)	1660.3	1.6543e+003	1421	1.4367e+003	1398.6	1.3982e+003	
(4,4)	2461.1	2.4339e+003	2194	2.1667e+003	2072.2	2.0596e+003	
\searrow	EEAE		AAAE		A	AAA	
N°	ABAQUS	Rayleigh	ABAQUS	Rayleigh	ABAQUS	Rayleigh	
(1,1)	192.21	187.5448	133.22	127.7182	124.41	124.4789	
(1,2)	538.63	536.7542	427.36	424.1472	427.79	426.4664	
(1,3)	1093.6	1.0941e+003	935.1	929.6886	932.16	933.2413	
(1,4)	1852.1	1.8550e+003	1643.6	1.6393e+003	1668.1	1.6433e+003	
(2,1)	305.61	294.5044	241.62	236.3094	213.34	213.6456	
(2,2)	623.58	615.3344	513.07	503.6786	498.55	497.9154	
(2,3)	1167	1.1635e+003	1007.2	997.6043	1005	998.4054	
(2,4)	1920.2	1.9213e+003	1710.7	1.7024e+003	1729.2	1.7059e+003	
(3,1)	501.3	487.5414	430.15	423.5791	379.63	379.9787	
(3,2)	783.93	768.6694	669.76	659.8973	637.32	637.5634	
(3,3)	1302.6	1.2923e+003	1140.7	1.1287e+003	1125.1	1.1203e+003	
(3,4)	2042.4	2.0382e+003	1831.3	1.8201e+003	1839.4	1.8188e+003	
(4,1)	772.5	758.5535	685.45	683.4129	619.95	620.0393	
(4,2)	1025.8	1.0063e+003	905.53	897.3415	853.62	854.5823	
(4,3)	1511.4	1.4948e+003	1346.3	1.3344e+003	1313.5	1.3109e+003	
(4,4)	192.21	187.5448	2014.9	2.0027e+003	2008.6	1.9917e+003	

Tableau II.1Fréquences propres de la plaque unidirectionnelle en Verre/époxyde avec
deux méthodes, R=2.5

			methodes, I	K-2.3		
	Fréquence f _{mn} [Hz]					
	EEEE		AAEE		AEAE	
N°	ABAQUS	Rayleigh	ABAQUS	Rayleigh	ABAQUS	Rayleigh
(1,1)	293.6	293.5180	208.2	200.7121	160.17	160.5213
(1,2)	769.85	767.2165	623.17	616.9793	506.26	505.9196
(1,3)	1475.7	1.4838e+003	1277.9	1.2740e+003	1106.7	1.1002e+003
(1,4)	2432.7	2.4396e+003	2169.6	2.1702e+003	1960	1.9353e+003
(2,1)	380.24	380.6684	294.33	278.1718	283.97	284.4297
(2,2)	836.6	835.2118	689.06	673.1327	595.27	596.0072
(2,3)	1550.9	1.5458e+003	1318.8	1.3250e+003	1180.3	1.1761e+003
(2,4)	2479.6	2.4996e+003	2226.4	2.2197e+003	2008.8	2.0053e+003
(3,1)	552.25	553.1599	462.46	442.5530	485.83	486.0902
(3,2)	968.68	968.2796	820.13	794.7474	760.59	761.5672
(3,3)	1668.6	1.6593e+003	1420.2	1.4269e+003	1315.8	1.3129e+003
(3,4)	2587.6	2.6042e+003	2328.9	2.3133e+003	2145.2	2.1269e+003
(4,1)	808.31	809.5352	689.06	688.7265	760.38	760.1495
(4,2)	1180.1	1.1812e+003	1028.5	997.4239	1007.2	1.0084e+003
(4,3)	1845.6	1.8389e+003	1625.9	1.5948e+003	1524.2	1.5229e+003
(4,4)	2793.7	2.7647e+003	2486.5	2.4620e+003	2326.1	2.3111e+003
\geq	EEAE		AA	AAE	A	AAA
N°	ABAQUS	Rayleigh	ABAQUS	Rayleigh	ABAQUS	Rayleigh
(1,1)	216.74	212.3306	148.43	143.1288	140.58	140.6207
(1,2)	626.9	625.6058	499.82	494.4398	498.24	496.7639
(1,3)	1280.2	1.2822e+003	1094.4	1.0902e+003	1101.9	1.0936e+003
(1,4)	2171.3	2.1782e+003	1927.2	1.9259e+003	1956.6	1.9297e+003
(2,1)	322.57	311.1036	251.44	245.8863	224.62	224.9039
(2,2)	704.04	696.5721	575.86	566.9937	563.3	562.4828
(2,3)	1346.8	1.3451e+003	1160.2	1.1521e+003	1160.6	1.1534e+003
(2,4)	2242.8	2.2385e+003	1988.6	1.9835e+003	1985.6	1.9871e+003
(3,1)	577.74	496.7639	432.94	428.7485	386.46	386.7659
(3,2)	852.5	837.5062	722.44	712.5707	692.82	692.8694
(3,3)	1470.7	1.4622e+003	1282.9	1.2722e+003	1271.1	1.2656e+003
(3,4)	2344.5	2.3449e+003	2088.4	2.0910e+003	2113.5	2.0906e+003
(4,1)	777.97	762.1742	687.59	684.9975	623.17	623.1235
(4,2)	1081.7	1.0613e+003	947.85	939.1113	898.88	899.6154
(4,3)	1663.6	1.6485e+003	1474.3	1.4631e+003	1446.3	1.4429e+003
(4,4)	2514.2	2.5091e+003	2267.9	2.2587e+003	2269.1	2.2499e+003

 Tableau II.2
 Fréquences propres
 de la plaque orthotrope en Verre/époxyde avec deux méthodes, R=2.5

			methodes, I	K-2.3			
	Fréquence f _{mn} [Hz]						
	EEEE		AAEE		AEAE		
N°	ABAQUS	Rayleigh	ABAQUS	Rayleigh	ABAQUS	Rayleigh	
(1,1)	1942.2	1.9375e+003	1353.8	1.3173e+003	1048	1.0727e+003	
(1,2)	5552.6	5.0648e+003	4024.4	4.0589e+003	3562.3	3.3810e+003	
(1,3)	9838.9	9.7457e+003	8278.4	8.3477e+003	7249.6	7.2645e+003	
(1,4)	16205	1.5978e+004	14211	1.4188e+004	12661	1.2708e+004	
(2,1)	2385.3	2.4650e+003	1841.2	1.7589e+003	1716	1.7896e+003	
(2,2)	5894	5.6320e+003	4466.6	4.5243e+003	4104.4	4.0957e+003	
(2,3)	10688	1.0341e+004	8991.5	8.8406e+003	7890.4	7.9752e+003	
(2,4)	16239	1.6593e+004	14863	1.4700e+004	13359	1.3416e+004	
(3,1)	3214.6	3.3689e+003	2657.3	2.5907e+003	2744.1	2.8375e+003	
(3,2)	6512.1	6.5481e+003	5231.8	5.3447e+003	4993.6	5.1767e+003	
(3,3)	11453	1.1285e+004	9289.8	9.6881e+003	9065.2	9.0692e+003	
(3,4)	16904	1.7562e+004	15547	1.5574e+004	14965	1.4516e+004	
(4,1)	4482.5	4.6495e+003	3790	3.8007e+003	4157.7	4.2115e+003	
(4,2)	7467.1	7.8247e+003	6970	6.5284e+003	6249.6	6.6021e+003	
(4,3)	12659	1.2585e+004	10979	1.0893e+004	10606	1.0530e+004	
(4,4)	19090	1.8892e+004	16819	1.6807e+004	16200	1.5998e+004	
\searrow	EEAE		AA	AAE	A	AAA	
N°	ABAQUS	Rayleigh	ABAQUS	Rayleigh	ABAQUS	Rayleigh	
(1,1)	1411.5	1.3890e+003	990.94	959.4147	967.79	977.2048	
(1,2)	4177.1	4.1364e+003	3356.1	3.2769e+003	3528.9	3.3163e+003	
(1,3)	8072.4	8.4303e+003	7245.8	7.1631e+003	7303.9	7.2072e+003	
(1,4)	14770	1.4274e+004	12390	1.2607e+004	13068	1.2653e+004	
(2,1)	1973.9	1.9302e+003	15750	1.5792e+003	1540	1.5303e+003	
(2,2)	4749.4	4.6956e+003	3869.3	3.8825e+003	3992.8	3.9088e+003	
(2,3)	9398.1	9.0191e+003	7638.3	7.7620e+003	7399.6	7.8134e+003	
(2,4)	14972	1.4885e+004	13191	1.3203e+004	13324	1.3265e+004	
(3,1)	2895.6	2.8586e+003	2463.2	2.5449e+003	2326.4	2.4040e+003	
(3,2)	5519.3	5.6066e+003	4695.1	4.8733e+003	4762.9	4.8518e+003	
(3,3)	9873.1	9.9558e+003	8730.4	8.7604e+003	8689	8.7948e+003	
(3,4)	16048	1.5848e+004	14229	1.4205e+004	14768	1.4266e+004	
(4,1)	4292.4	4.1599e+003	3869.3	3.8374e+003	3549.3	3.5993e+003	
(4,2)	6618	6.8809e+003	5820.2	6.2144e+003	5868.2	6.1212e+003	
(4,3)	11135	1.1249e+004	9683.2	1.0132e+004	10115	1.0126e+004	
(4,4)	17425	1.7171e+004	15750	1.5593e+004	15040	1.5635e+004	

Tableau II.3 Fréquences propres de la plaque stratifié équilibré en Verre/époxyde avec deuxméthodes, R=2.5

1							
	Fréquence f _{mn} [Hz]						
	EEEE		AAEE		AEAE		
N°	ABAQUS	Rayleigh	ABAQUS	Rayleigh	ABAQUS	Rayleigh	
(1,1)	2097.9	2.0728e+003	1457	1.4110e+003	1138.1	1.1609e+003	
(1,2)	5293.2	5.3897e+003	4304	4.3211e+003	3221.8	3.5936e+003	
(1,3)	10273	1.0374e+004	8805.9	8.8892e+003	7300.7	7.7265e+003	
(1,4)	17544	1.7014e+004	15289	1.5114e+004	13497	1.3526e+004	
(2,1)	2637.6	2.7061e+003	2029.8	1.9550e+003	1945	2.0232e+003	
(2,2)	5916.6	5.9975e+003	4772.3	4.8213e+003	4401.1	4.3685e+003	
(2,3)	10999	1.0985e+004	9190.2	9.3941e+003	8805.1	8.4603e+003	
(2,4)	17544	1.7633e+004	15675	1.5628e+004	14181	1.4242e+004	
(3,1)	3920	3.8482e+003	3046.3	3.0222e+003	3221.8	3.3372e+003	
(3,2)	6990.5	7.0411e+003	5598.3	5.7632e+003	5423.6	5.6133e+003	
(3,3)	11999	1.1996e+004	10237	1.0302e+004	9625.6	9.6422e+003	
(3,4)	18625	1.8638e+004	16531	1.6531e+004	15817	1.5388e+004	
(4,1)	5293.2	5.4930e+003	4476.5	4.5876e+003	4963	5.0888e+003	
(4,2)	8147.6	8.5643e+003	6816.7	7.1904e+003	7300.7	7.3251e+003	
(4,3)	13600	1.3449e+004	12090	1.1653e+004	11268	1.1289e+004	
(4,4)	20769	2.0062e+004	17610	1.7852e+004	16769	1.6985e+004	
\searrow	EEAE		AA	AAE	А	AAA	
N°	ABAQUS	Rayleigh	ABAQUS	Rayleigh	ABAQUS	Rayleigh	
(1,1)	1517.8	1.4972e+003	1038.6	1.0294e+003	1027	1.0342e+003	
(1,2)	4466.2	4.4024e+003	3546.2	3.4849e+003	3782.7	3.5197e+003	
(1,3)	8786.4	8.9726e+003	7875.1	7.6241e+003	8116.4	7.6656e+003	
(1,4)	15168	1.5199e+004	13221	1.3426e+004	13324	1.3470e+004	
(2,1)	2195.2	2.1728e+003	1739.4	1.7647e+003	1614.2	1.6681e+003	
(2,2)	4972.8	5.0129e+003	4089.2	4.1319e+003	4201.4	4.1367e+003	
(2,3)	9513.1	9.5816e+003	8307.3	8.2368e+003	8116.4	8.2766e+003	
(2,4)	15607	1.5816e+004	14224	1.4025e+004	14106	1.4079e+004	
(3,1)	3335.1	3.3684e+003	2845.7	2.9673e+003	2663.5	2.7439e+003	
(3,2)	5960.5	6.0738e+003	5023.6	5.2578e+003	5103.2	5.1842e+003	
(3,3)	10423	1.0597e+004	9030.2	9.3033e+003	9239.3	9.3075e+003	
(3,4)	16916	1.6821e+004	15090	1.5059e+004	14683	1.5101e+004	
(4,1)	4972.8	5.0527e+003	4638.8	4.6102e+003	4252.4	4.2598e+003	
(4,2)	7786.4	7.6242e+003	6801.9	6.8542e+003	6466.8	6.6722e+003	
(4,3)	12041	1.2063e+004	11001	1.0834e+004	10467	1.0769e+004	
(4,4)	18391	1.8250e+004	16590	1.6543e+004	16190	1.6547e+004	

Tableau II.4Fréquences propres de la plaque stratifié symétrique en Verre/époxyde avec
deux méthodes, R=2.5

			methodes, I	K = 2.3			
	Fréquence f _{mn} [Hz]						
	EEEE		AAEE		AEAE		
N°	ABAQUS	Rayleigh	ABAQUS	Rayleigh	ABAQUS	Rayleigh	
(1,1)	1597.3	1.6118e+003	1111.9	1.1042e+003	833.23	839.4734	
(1,2)	4273.4	4.2767e+003	3303.7	3.4459e+003	2828.7	2.7979e+003	
(1,3)	8413.6	8.3014e+003	7146.8	7.1361e+003	6105.5	6.1404e+003	
(1,4)	14174	1.3669e+004	11933	1.2168e+004	10952	1.0832e+004	
(2,1)	1933.4	1.9705e+003	1458.6	1.4236e+003	1355.4	1.3805e+003	
(2,2)	4499.9	4.5537e+003	3550.2	3.6741e+003	3154.7	3.1702e+003	
(2,3)	8598	8.5548e+003	7373	7.3442e+003	6361.5	6.4519e+003	
(2,4)	14179	1.3915e+004	12401	1.2371e+004	10952	1.1119e+004	
(3,1)	2641.5	2.7140e+003	2161.2	2.1399e+003	2240.5	2.2928e+003	
(3,2)	5187	5.1033e+003	4048.6	4.1761e+003	3786.6	3.8738e+003	
(3,3)	9068	9.0200e+003	7776.9	7.7612e+003	7038.1	7.0183e+003	
(3,4)	14298	1.4343e+004	12904	1.2754e+004	11576	1.1620e+004	
(4,1)	3736.1	3.8572e+003	3303.7	3.2482e+003	3455.8	3.5480e+003	
(4,2)	6053.2	6.0051e+003	4853.8	5.0370e+003	4984.1	4.9538e+003	
(4,3)	9473.2	9.7630e+003	8673	8.4555e+003	7781.2	7.9033e+003	
(4,4)	15029	1.5003e+004	13371	1.3365e+004	12564	1.2384e+004	
\triangleright	EEAE		AA	AAE	A	AAA	
N°	ABAQUS	Rayleigh	ABAQUS	Rayleigh	ABAQUS	Rayleigh	
(1,1)	1149.8	1.1508e+003	779.45	767.1129	756.15	758.3864	
(1,2)	3488.9	3.4808e+003	2688.9	2.7511e+003	2800.7	2.7614e+003	
(1,3)	6961.8	7.1692e+003	6009.9	6.0996e+003	5992.2	6.1137e+003	
(1,4)	12181	1.2201e+004	10806	1.0794e+004	10952	1.0809e+004	
(2,1)	1577.1	1.5640e+003	1208.1	1.2093e+003	1105.4	1.1202e+003	
(2,2)	3648.5	3.7699e+003	3072.5	3.0495e+003	3040.2	3.0335e+003	
(2,3)	7385.9	7.4262e+003	6413.9	6.3532e+003	6347.1	6.3601e+003	
(2,4)	12181	1.2448e+004	10899	1.1030e+004	10952	1.1045e+004	
(3,1)	2369.5	2.3817e+003	1987.1	2.0317e+003	1815.9	1.8447e+003	
(3,2)	4206.2	4.3555e+003	3543.7	3.6633e+003	3536	3.5841e+003	
(3,3)	7765.2	7.9062e+003	7084.6	6.8490e+003	6901.2	6.8255e+003	
(3,4)	12931	1.2884e+004	11644	1.1472e+004	11567	1.1473e+004	
(4,1)	3648.5	3.5823e+003	3543.7	3.2031e+003	2878.3	2.9225e+003	
(4,2)	5083.7	5.3134e+003	4429.3	4.6481e+003	4361.6	4.4809e+003	
(4,3)	8417.3	8.6800e+003	7800.1	7.6495e+003	7500.1	7.5703e+003	
(4,4)	13633	1.3560e+004	12524	1.2165e+004	11990	1.2134e+004	

Tableau II.5Fréquences propres de la plaque stratifié croisé en Verre/époxyde avec deux
méthodes, R=2.5

1							
	Fréquence f _{mn} [Hz]						
	EEEE		AAEE		AEAE		
N°	ABAQUS	Rayleigh	ABAQUS	Rayleigh	ABAQUS	Rayleigh	
(1,1)	2366.5	2.3857e+003	1643.1	1.6379e+003	1164.9	1.1632e+003	
(1,2)	6739.9	6.4424e+003	5272.5	5.2018e+003	4396.2	4.1779e+003	
(1,3)	12372	1.2556e+004	10683	1.0806e+004	9168.5	9.2627e+003	
(1,4)	20983	2.0706e+004	18503	1.8447e+004	16438	1.6390e+004	
(2,1)	2622	2.6839e+003	19030	1.9010e+003	16938	1.6566e+003	
(2,2)	6739.9	6.6849e+003	5446.2	5.4007e+003	4644	4.5073e+003	
(2,3)	13012	1.2785e+004	11043	1.0994e+004	9557	9.5451e+003	
(2,4)	20983	2.0933e+004	18728	1.8634e+004	16938	1.6655e+004	
(3,1)	3231.9	3.3334e+003	2578.4	2.5362e+003	2506.7	2.5422e+003	
(3,2)	7176.4	7.1571e+003	5816.4	5.8297e+003	5150.8	5.1327e+003	
(3,3)	13077	1.3196e+004	11354	1.1362e+004	10557	1.0049e+004	
(3,4)	21483	2.1319e+004	18950	1.8980e+004	16954	1.7107e+004	
(4,1)	4308	4.3973e+003	3649.5	3.5904e+003	3807.6	3.7983e+003	
(4,2)	7758.7	7.9408e+003	6479.7	6.5777e+003	6018.3	6.1222e+003	
(4,3)	14012	1.3843e+004	12024	1.1965e+004	10834	1.0836e+004	
(4,4)	22411	2.1904e+004	19728	1.9521e+004	17859	1.7790e+004	
\geq	EEAE		AA	AAE	A	AAA	
N°	ABAQUS	Rayleigh	ABAQUS	Rayleigh	ABAQUS	Rayleigh	
(1,1)	1688.6	1.6754e+003	1116.9	1.1012e+003	1099	1.0990e+003	
(1,2)	5518.3	5.2326e+003	4145.3	4.1362e+003	4229.3	4.1477e+003	
(1,3)	10923	1.0836e+004	9442.6	9.2253e+003	8892.3	9.2395e+003	
(1,4)	18378	1.8478e+004	16573	1.6354e+004	15898	1.6370e+004	
(2,1)	2043.5	2.0209e+003	14868	1.4966e+003	1406.6	1.4272e+003	
(2,2)	5703.6	5.4827e+003	4376.6	4.4010e+003	4426	4.3960e+003	
(2,3)	10728	1.1067e+004	9442.6	9.4564e+003	9892.3	9.4681e+003	
(2,4)	19122	1.8704e+004	16812	1.6573e+004	16865	1.6591e+004	
(3,1)	2797.4	2.7610e+003	2254.2	2.2849e+003	2077.2	2.1170e+003	
(3,2)	6101.7	5.9837e+003	4908.9	4.9442e+003	4835.7	4.8912e+003	
(3,3)	11923	1.1488e+004	9887.9	9.8990e+003	9906.9	9.8910e+003	
(3,4)	19122	1.9095e+004	17057	1.6974e+004	16865	1.6984e+004	
(4,1)	4006.1	3.9167e+003	3394.6	3.4510e+003	3148.3	3.1836e+003	
(4,2)	6820.9	6.8227e+003	5636.6	5.8386e+003	5550.7	5.7090e+003	
(4,3)	12368	1.2160e+004	10650	1.0610e+004	10657	1.0561e+004	
(4,4)	20096	1.9692e+004	17658	1.7595e+004	17467	1.7584e+004	

Tableau II.6Fréquences propres de la plaque stratifié orthogonal en Verre/époxyde avec
deux méthodes, R=2.5