Faculté des Sciences et de la Technologie Département de Génie Mécanique

## Mémoire \_\_\_\_\_

#### Présentée à



## L'université de TEBESSA -

Par

Fehdi KHEDIDJA

L'obtention du diplôme du :

### Master

Discipline : construction Mécanique

# Etude statique et dynamique des pales de turbomachines

Mémoire soutenue le 9 juillet 2020 devant le jury composé de :

| MCA BELGHALEM Hadj    | Université Larbi Tébeesi-Tébessa   | Président.  |
|-----------------------|------------------------------------|-------------|
| MAA HADJAB Abdelhakin | 1 Université Larbi Tébeesi-Tébessa | Examinateur |
| MAA MALIM Madani      | Université Larbi Tébeesi-Tébessa   | Rapporteur. |

# Remerciements

Nous tenons à adresser nos remerciements à l'ensemble des personnes qui nous ont aidés de prés ou de loin à la réalisation de ce mémoire et de ce projet.

En premier lieu, nous remercions notre encadreur MR. Madani MAALIM pour leur implication totale et leur dévouement tout au long de cette année, pour nous avoir accorder un peu de leur temps pour nous orienter et nous mettre sur la voie sans qui l'évolution du projet n'aurait pas été la même.

En seconde lieu, nous remercions nos familles et nos amis (à vici) qui ont su être au moment opportun pour nous remettre sur la voie et nous encourager

Enfin, nous aimerions exprimer notre reconnaissance envers nos mamans pour avoir eu la patience, le courage et l'envie de nous accompagner dans l'accomplissement de ce travail.

Pour finir, nous avons eu une pensée à toutes les personnes qui nous ont accompagnés pendant notre cursus à l'université et dans notre entourage.

#### RESUME

Dans ce présent sujet, une étude statique et dynamique d'une aube d'une turbomachine est faite Avec la simulation numérique, nous avons étudié la rigidité à la flexion ( analytiquement ,vérification des résultats par RDM6 et simulation numérique par ABAQUS), déterminer les pulsations est les fréquences propre ( analytiquement avec simulation numérique par ABAQUS et SolidWorks) des aubes droites a une section constante lorsqu'en vibre en flexion.

### ABSTRACT

In this present subject, a static and dynamic study of a blade of a turbo machine is made With numerical simulation, we have studied bending stiffness (analytically ,verification of results by RDM6 and numerical simulation by ABAQUS), we determine the pulsations and the natural frequencies (analytically with numerical simulation by ABAQUS and SolidWorks) of straight blades at a constant section when it flexural vibration.

#### ملخص

في هذا الموضوع الحالي ، يتم إجراء دراسة ثابتة وديناميكية لجنيح التوربيني. مع المحاكاة العددية ، درسنا الصلابة المرنة (من الناحية التحليلية ، التحقق من النتائج عن طريق RDM6 والمحاكاة العددية بواسطة ABAQUS) ، وتحديد النبضات و الترددات الطبيعية (تحليليًا, بالمحاكاة العددية بواسطة ABAQUS و SolidWorks و SolidWorks) للجنيحات المستقيمة ثابتة المقطع عندما تهتز (حالة الانحناء) .

# Sommaire

| Chapitre I : Généralités sur les turbomachines              |                                  |  |  |  |
|-------------------------------------------------------------|----------------------------------|--|--|--|
| I .1 Définitions générales des turbomachines                | 1                                |  |  |  |
| I .2 Classification des turbomachines                       | 1                                |  |  |  |
| I.3 Les turbine à gaz                                       |                                  |  |  |  |
| I.3.1 Définition                                            |                                  |  |  |  |
| I.3.2 Principe et fonctionnement                            |                                  |  |  |  |
| I .4. Turbine à vapeur                                      |                                  |  |  |  |
| I.4.1 Définition.                                           | 4                                |  |  |  |
| I.4.2 Objet de la turbine à vapeur. Sa p                    | lace dans la centrale thermique4 |  |  |  |
| I.4.3 Description de la turbine à vapeur                    | r6                               |  |  |  |
| I.4.4 Classification des turbines à vape                    | eur7                             |  |  |  |
| I.5 Aubage et grilles d'aubes                               |                                  |  |  |  |
| I.5.1 L'aube.                                               |                                  |  |  |  |
| I.5.2 Grille d'aube.                                        |                                  |  |  |  |
| I.5.3 Triangles de Vitesses.                                |                                  |  |  |  |
| I. 6. Turbocompresseur.                                     |                                  |  |  |  |
| I.6.1 Les compresseurs                                      |                                  |  |  |  |
| Chapitre II : Etude statique d'une aube de turbine à vapeur |                                  |  |  |  |
| II .1. Notions sur la résistance des matériaux.             |                                  |  |  |  |

| II .2. Flexion      |  |
|---------------------|--|
| II .3. Contraintes. |  |

#### Sommaire

| II .4. Conditions de résistance.        |                                         |    |
|-----------------------------------------|-----------------------------------------|----|
| II .5. Etude de la déformée.            |                                         |    |
| II .6. Déplacement d'une aube a section | constante en flexion plane              | 27 |
| a) Cas encastré- libre charge concer    | ntrée                                   | 27 |
| b) Cas encastré- libre charge unifor    | mément repartie                         | 29 |
| c) Cas encastré- appuyé charge uni      | iformément repartie                     |    |
| d) Cas encastré- encastré charge un     | iformément repartie                     | 31 |
| - Applicaion numerique: flexion d       | l'une aube.                             |    |
|                                         |                                         |    |
| Chapitre III : Etude dyn                | aamique d'une aube de turbine à vapeur. |    |
|                                         |                                         |    |

| III.1. Vibration de l'aube.                |                                | 44  |
|--------------------------------------------|--------------------------------|-----|
| III.2. Modes des vibrations d'aube.        |                                | .44 |
| a) Les aubes isolées                       |                                |     |
| b) Vibration des aubes en p                | aquet.                         |     |
| III.3. Détermination des fréquences propre | de l'aube de section constante | 45  |
| III.4.1 Examen des cas particuliers.       |                                | .50 |
| A. Extrémité libre, sans masse l           | M (encastré-libre)             | 51  |
| B. Extrémité libre avec masse M            | M, K=0, C=0. (encastré -libre) | 58  |
| III.5analyses des forces aérodynamique app | lique sur l'aube.              | 62  |
| - Influence de la force centrifu           | ıge.                           | .62 |
|                                            |                                |     |

Annex a

Annex b

Annex c

## Liste des figures

#### Chapitre I: Généralités sur les turbomachines

- Figure I.1 Eléments constituant les turbomachines monocellulaires
- Figure I.2 Vue intérieure d'une Turbomachine multicellulaire
- Figure I.3 Description d'une turbine.
- Figure I.4 Schéma d'une centrale thermique
- Figure I.5 Turbine à vapeur
- Figure I.6 Principe de fonctionnement d'une centrale thermique
- Figure I.7 Schéma de turbine à vapeur
- Figure I.8 Turbine à action
- Figure I.9 turbine à réaction
- Figure I.10 sens d'écoulement axial
- Figure I.11 sens d'écoulement radial
- Figure I.12 différentes forme des aubes.
- Figure I.13 Exemples de profils d'aube.
- Figure I.14 Géométrie du profil.
- Figure I.15 Ligne du profil.
- Figure I.16 Construction d'aube.
- Figure I.17 une grille d'aube de turbine.
- Figure I.18 Différente types de grille d'aubes.
- Figure I.19 Fonctionnement de l'aubage à action.

Figure I.20 fonctionnement de l'aubage à réaction.

- Figure I.21 Triangles de vitesse à l'entrée et à la sortie de l'aube.
- Figure I.22 Schéma simplifié d'un compresseur axial.
- Figure I.23 Schéma simplifié sur un Compresseur.
- Figure I.24 Différentes formes de la roue du compresseur centrifuge.
- Figure I.25 Diffuseur radial d'un compresseur centrifuge.
- Figure I.26 Le compresseur centrifuge en éléments séparés.
- Figure I.27 Triangle des vitesses à l'entrée et à la sortie de la roue du compresseur.
- Figure I.28 Calage des aubes du compresseur centrifuge.
- Figure I.29 Taux de compression en fonction du débit massique.

Chapitre II: Etude statique d'une Aube de turbine à vapeur.

- Figure II.1 Éléments de réduction : tranchantes et moment fléchissant.
- Figure II.2 Fibres tendues et comprimées sollicitées en flexion.
- Figure II.3 Dimensions de l'aube simplifiée à une poutre.
- Figure II.4 Dimensions de poutre.
- Figure II.5 le déplacement de la poutre suivant y.
- Figure II.6 une poutre soumise a une charge uniformément repartie.
- **Figure II.7** la courbe numérique de la flexion 1<sup>er</sup> cas.
- **Figure II.8** la courbe numérique de la flexion 2<sup>éme</sup> cas.
- **Figure II.9** la courbe numérique de la flexion 3<sup>éme</sup> cas.
- Figure II.10 la courbe numérique de la flexion 4<sup>éme</sup> cas.

#### Chapitre III: Etude dynamique d'une Aube de turbine à vapeur.

- Figure III.1 Vibration des aubes isolées.
- Figure III.2 Vibration des aubes en paquet.
- Figure III.3 Vibration des aubes de section constante.
- Figure III.4 Racine de l'équation aux fréquences propres.
- Figure III.5 la flexion suivant l'axe y (poutre).
- Figure III.6 la flexion suivant l'axe y (aube).
- Figure III.7 Déformée modale 1.
- Figure III.8 Déformée modale 2.
- Figure III.9 Déformée modale 3.
- Figure III.10 Déformée modale 4.
- Figure III.11 Déformée modale 5.
- Figure III.12 graphe de l'harmonique 2.
- Figure III.13 Détermination des fréquences propres de l'aube d'une section constante.
- Figure III.14 solution graphique de l'équation (11) (cas de l'application).

## Liste des tableaux

Chapitre II: Etude statique d'une Aube de turbine à vapeur.

- **Tableau II.1** Résultats de calcule de code ABAQUS1 <sup>er</sup> cas.
- **Tableau II.2** Résultats de calcule de code ABAQUS 2<sup>eme</sup> cas.
- **Tableau II.3** Résultats de calcule de code ABAQUS 3<sup>eme</sup> cas.
- **Tableau II.4** Résultats de calcule de code ABAQUS 4<sup>eme</sup> cas.

Chapitre III : Etude dynamique d'une Aube de turbine à vapeur.

- Tableau III.1 Les solutions graphiques de l'équation des fréquences (10).
- **Tableau III.2** Résultats de calcule analytique cas de poutre.
- **Tableau III.3** Résultats de calcule de code ABAQUS cas de poutre.
- **Tableau III.4** Erreurs relatives entre le calcul analytique et le calcule de code ABAQUS.
- **Tableau III.5** Résultats de calcule analytique cas d'une aube.
- **Tableau III.6** Résultats de calcule de code ABAQUS cas d'une aube.
- **Tableau III.7** Erreurs relatives entre le calcul analytique et le calcule de code ABAQUS.
- **Tableau III.8** Erreurs relatives entre les résultats des fréquences de 1<sup>er</sup> et 2<sup>éme</sup> cas.
- Tableau II.9 Les solutions graphiques de l'équation des fréquences (11)(cas de l'application).
- **Tableau III.10** Résultats de calcule analytique cas encastré libre avec masse M.
- Tableau III.11 Résultats de calcule de code SOLIDWORKS cas encastré libre avec masse M.

**Tableau III.12** Erreurs relatives entre le calcul analytique et le calcule de codeSOLIDWORKS.

### Introduction générale

Les aubes sont des pièces maitresses dans un tel système turbomachine ; elles sont montées sur des disques ou arbres en rotation, alors qu'elles sont sollicitées aux la flexion et à vibrations sous l'effet de fluide circulant entre eux.

La plupart des aubes sont caractérisées par le fait que leurs dimensions longitudinale dans la direction Z est importante par rapport aux dimensions suivant X et Y ; c'est pour cela dans une partie de notre étude (chapitre II) on va la considérer comme une poutre en flexion, alors on va proposer quatre configurations différentes à étudier:

1) poutre encastré-libre avec charge concentrée

- 2) poutre encastré-libre avec charge uniformément repartie
- 3) poutre encastré encastré avec charge uniformément repartie
- 4) poutre encastré appuyé avec charge uniformément repartie

Le comportement dynamique est un paramètre important dont il faut tenir compte lors de l'étude et la conception des structures et mécanismes.

Dans le cas des vibrations linéaires la détermination des paramètres modaux d'une structure, à savoir les fréquences et déformées propres des modes de résonance ainsi que les amortissements modaux associés, permet de localiser les problèmes liés aux vibrations et de construire un modèle de comportement en basses fréquences de cette structure, servant à prédire la réponse de celle-ci aux différents types de chargements dynamiques, et ainsi à vérifier les solutions apportées pour le contrôle de ces problèmes.

Dans cette étude nous nous impliquons de contribuer à la compréhension de quelques aspects du comportement statique et vibratoire et de calculer les fréquences et les pulsations propres, analytiquement par la méthode de Euler et numériquement grâce au codes de calculs par éléments finis ABAQUS, RDM6, SolidWorks.

#### > Plan de travail.

Après une introduction générale, ce mémoire est composé de trois chapitres.

- Le premier chapitre présente quelques généralités sur les turbomachines et les différents types existants.
- Le second chapitre est consacré à l'étude de la rigidité à la flexion des aubes droites par la méthode analytique et la simulation numérique avec le logiciel ABAQUS dont on a déterminé les contraintes max, les flèches max et les moments de flexion max pour différentes configurations de poutres et aubes fini par comparaison des résultats.
- Le troisième chapitre est réservé à l'étude dynamique des aubes droites par la méthode analytique en déterminant leurs modes propres et leurs fréquences propres, comme on a effectué des simulations numériques avec les logiciels ABAQUS et SOLIDWORKS pour différentes cas d'étude et finir par une comparaison des résultats des deux méthodes.

Les divers résultats obtenus sont repris enfin dans la conclusion qui constitue la clôture de ce travail.

# Généralités sur les turbomachines

### **Chapitre I** Généralités sur les turbomachines

#### I .1 Définitions générales des turbomachines.

On appelle turbomachine un ensemble mécanique de révolution comportant une ou plusieurs roues mobiles (rotor) munies d'aubes (ailettes) qui ménagent entre elles des canaux à travers les quels le fluide s'écoule. L'échange d'énergie s'effectue dans le rotor et résulte du travail des forces aérodynamiques sur les aubes produites par l'écoulement de fluide autour de celle-ci, et qui résultent principalement de la différence de pression entre les deux forces des aubes [1].

#### I.2 Classification des turbomachines.

De nombreux critères servent à classer les turbomachines. Les plus importants sont le suivant :

- le Sens de l'échange d'énergie, on distingue :
  - a) Turbomachines réceptrices : ce sont des machines qui reçoivent du travail (les compresseurs, les turbopompes) elles ont pour but de faire passer le fluide d'une pression inférieure à une pression supérieure.
  - b) Turbomachines motrices : ce sont des machines qui fournissent un travail (turbines à vapeur et à gaz). Elles ont pour but de faire passer le fluide d'une pression supérieure à une pression inférieure c'est à dire faire intervenir une détente [1].
- D'après leur constitution, on distingue :
  - a) Turbomachines monocellulaires: ce sont des machines complètes composées de trois organes distincts que le fluide traverse successivement :
     Distributeur: son rôle est de conduire le fluide depuis la section d'entrée de la machine à la section d'entrée du rotor.

**Rotor:** dans lequel s'effectue l'échange d'énergie par le travail des forces aérodynamiques sur les aubes en rotation.

**Diffuseur:** son rôle est de collecter le fluide à la sortie du rotor et de l'amener à la section de la sortie de la machine [1].



#### Figure I.1 Eléments constituant les turbomachines monocellulaires

**b**) **Turbomachines multicellulaires: ce** sont des machines comportant un seul rotor composé de plusieurs étages, chaque étage ne comprend généralement que deux éléments, à savoir un distributeur et un rotor pour les turbines, un rotor et un diffuseur pour les pompes et les compresseurs [1].



Figure I.2 Vue intérieure d'une Turbomachine multicellulaire [3]

#### I.3 Turbine à gaz.

Chapitre i

#### I.3.1 Définition.

Les turbines à gaz font partie de la catégorie des TURBOMACHINES dans lesquels a lieu un échange d'énergie entre un rotor tournant autour d'un axe à vitesse constante et un fluide en écoulement permanent.

Selon le type de fluide utilisé, dit fluide actif ou fluide moteur, on a affaire à une turbine hydraulique, une turbine à vapeur ou une turbine à gaz. Dans ce dernier cas, le fluide moteur le plus fréquemment utilisé provient des gaz de combustion d'un combustible solide, liquide ou gazeux.

Selon le type d'énergie délivrée, les turbines à gaz se répartissent en deux classes : d'une part, les turbomoteurs fournissant de l'énergie mécanique disponible sur un arbre et, d'autre part, les turboréacteurs fournissant de l'énergie cinétique utilisable pour la propulsion. C'est dans la turbomachine que la turbine à gaz s'est imposée en priorité. Les turboréacteurs sont utilisés de façon quasi universelle pour la propulsion des appareils à voilure fixe : avions et missiles [4].

#### **I.3.2** Principe et fonctionnement.

Dans sa forme la plus simple et la plus répandue, une turbine à gaz est composée essentiellement de trois éléments:

- un compresseur, centrifuge ou plus généralement axial, qui a pour rôle de comprimer de l'air ambiant à une pression comprise entre 10 et 30 bars environ.
- une chambre de combustion, dans laquelle un combustible gazeux ou liquide est injecté sous pression, puis brûlé avec l'air comprimé, avec un fort excès d'air afin de limiter la température des gaz d'échappement.
- une turbine proprement dite, dans laquelle sont détendus les gaz qui sortent de la chambre de combustion. Schématiquement on peut classer les fonctions remplies par une turbine à gaz dans l'ordre suivant:
- Aspiration de l'air ambiant extérieur.
- Compression.
- Combustion du mélange air combustible.
- Détente des gaz brûlés.

- Echappement.



#### Figure I.3 Description d'une turbine. [1]

#### I.4. Turbine à vapeur.

#### I.4.1 Définition.

La turbine à vapeur est un moteur thermique rotatif qui convertit l'énergie d'un courant de vapeur d'eau ou en énergie mécanique. Plus généralement c'est un organe qui permet la détente d'un fluide en transformant son énergie sous forme mécanique [1].

#### I.4.2 Objet de la turbine à vapeur. Sa place dans la centrale thermique.

Une centrale thermique fonctionne grâce à la combustion du (gaz naturel, du charbon pulvérisé) ou du fuel dans une chaudière à vapeur. La chaleur des gaz de fumées et des flammes sert à chauffer la tuyauterie de la chaudière et transforme progressivement l'eau qui y circule en vapeur. La vapeur fait tourner la turbine à vapeur, qui à son tour entraîne l'alternateur pour produire l'électricité. Le transformateur élève la tension du courant produit, avant qu'il ne soit injecté dans le réseau de transport (*figure 4.1*) [1].



1: Chaudière à vapeur5 : Transformateur2: Electro filtre4: Alternateur6 : Condenseur3: Turbine à vapeur7 : Tour de refroidissement

#### Figure I.4 Schéma d'une centrale thermique

La turbine à vapeur représente l'un des éléments essentiels de la centrale thermique, c'est une machine thermique dans laquelle le fluide (vapeur d'eau) échange de l'énergie avec des roues appelées rotors, munies d'aubes tournantes. Elle a pour rôle la transformation de l'énergie enthalpique (de pression) contenue dans la vapeur en énergie cinétique puis mécanique de rotation (*figure 5.1*) [1].

1. Aubes de turbines

- 2. Carters de turbines
- 3. Carters de turbines
- 4. Arbre de turbine à vapeur
- 5. Diaphragme de turbine à

vapeur



Figure I.5 Turbine à vapeur

La centrale thermique est composée principalement des éléments suivants (figure 6.1). :

- Une chaudière qui représente la source chaude.
- Une turbine à vapeur.
- Un condenseur qui représente la source froide.
- Une pompe [1].



#### Figure I.6 Principe de fonctionnement d'une centrale thermique

#### **I.4.3Description** de la turbine à vapeur.

La turbine à vapeur comprend une partie fixe appelée stator qui porte des aubages

directeurs. La vapeur en provenance de l'évaporateur est admise dans un collecteur. Elle s'écoule ensuite dans des canaux fixes (c'est là où l'énergie thermique se transforme en énergie cinétique) et dans des canaux mobiles (les énergies thermiques et cinétiques sont transformées en énergie mécanique). Les canaux fixes et mobiles se succèdent les uns à la suite des autres dans le sens de l'écoulement. La vapeur en provenance du générateur de vapeur est introduite dans les premiers étages de la turbine à travers des vannes d'admission et des soupapes de





réglage asservies aux dispositifs de sécurité et de réglage de la turbine. La vapeur est détendue adiabatiquement en produisant un travail mécanique. La détente de la vapeur à travers les divers étages de la turbine se fait de façon différente selon qu'il s'agisse de turbines à action ou à réaction [6].

#### I.4.4 Classification des turbines à vapeur.

On peut classer les turbines à vapeur selon leurs mode de fonctionnement en :

#### ✓ Turbine à action

La forme la plus simple de turbine à vapeur est la turbine à action, dans la quelle les jets sont fixés sur la partie intérieure de l'enveloppe de la turbine, les aubes sont placées sur le bord des roues tournantes montées sur un arbre central. La vapeur qui se déplace dans une tuyère fixe passe sur ces ailettes incurvées, qui absorbent une partie de l'énergie cinétique de la vapeur dilatée, faisant ainsi tourner la roue et l'arbre sur lesquels elles sont montées. Cette turbine est conçue de manière à ce que la vapeur entrant par une extrémité de la turbine se dilate à travers une succession de tuyères jusqu'à ce qu'elle ait perdu la majeure partie de son énergie interne [6].



1: aubages fixes 2: aubages mobiles 3: diaphragmes 4: disque 5: arbre,
6: dispositif d'étanchéité Rm: rayon mayen La flèche: sans de l'écoulement de la vapeur

Figure I.8 Turbine à action

#### ✓ Turbine à réaction

Dans la turbine à réaction, une partie de l'énergie mécanique est obtenue par l'impact de la vapeur sur les aubes. La partie la plus importante est obtenue par l'accélération de la vapeur lors de son passage dans la roue de la turbine, où elle se dilate. Une turbine de ce type se compose de deux jeux d'aubes, l'un fixe l'autre mobile. Ces aubes sont disposées de telle façon que chaque paire joue le rôle de tuyère, à travers laquelle la vapeur se dilate lors de son passage. Dans chaque étage, une faible quantité d'énergie thermique est convertie en énergie cinétique. La vapeur se détend dans les aubes fixes, puis entraîne les aubes mobiles disposées sur la roue ou le tambour de la turbine. Les aubes d'une turbine à réaction sont en général montées sur un tambour. Les turbines à réaction nécessitent en général davantage d'étages que les turbines à action. Il a été démontré que, pour le même diamètre et la même gamme énergétique, une turbine à réaction à besoin de deux fois plus d'étages pour obtenir un rendement maximal. Les grosses turbines, qui sont généralement à action ,utilisent une certaine réaction à la base du trajet de vapeur pour assurer un débit efficace à travers les aubes un certain nombre de turbines, qui sont normalement à réaction, disposent d'un premier étage de commande d'impulsion, qui permet d'envisager la réduction du nombre total d'étages nécessaires. Les arbres des turbines de chaque étage sont reliés entre eux au moyen d'accouplements [6].



Figure I.9 turbine à réaction

Un autre critère de classement est de les classées selon la direction du jet de vapeur, on peut distinguer ainsi les turbines axiales et les turbines radiales.

#### ✓ Turbines axiales

Dans ce type de turbines le flux de vapeur est essentiellement parallèle à l'axe de la turbine .Les turbines axiales sont essentiellement composées d'un tore d'admission qui canalise le fluide vers l'entrée et d'un stator portant des aubes fixes ou distributeurs ou l'énergie cinétique thermique du fluide se transforme entièrement cas de la turbine à action ou partiellement cas de la turbine à réaction en énergie cinétique. Le rotor porte les aubes ou l'énergie cinétique et l'énergie thermique restantes se transforment en énergie mécanique [6].



Figure I.10 sens d'écoulement axiale

#### ✓ Turbines radiales

Le flux de vapeur entre dans ce cas perpendiculairement à l'axe du rotor. Ces turbines fonctionnent comme un compresseur centrifuge avec un écoulement inversé (centripète) et une rotation dans le sens opposé. Elles sont est en général utilisées pour de petites puissances et pour des applications ou la turbine axiale plus langue (donc plus encombrante) ne peut être utilisée [6].



Figure I.11 sens d'écoulement radial

#### I.5 Aubage et grilles d'aubes.

#### **I.5.1 Aube.**

On définit les aubes comme étant des obstacles profilés plongés dans un écoulement formant entre elles des canaux à travers lesquelles le fluide circule. [6] Une turbine comporte plusieurs aubes réparties régulièrement sur son pourtour.



#### Figure I.12 différentes forme des aubes [1]

Comme une aile, une aube est composée d'un bord d'attaque d'une âme et d'un bord de fuite, et son profil est optimisé pour respecter le domaine d'utilisation de l'étage du compresseur auquel elle appartient. [7]

#### ✓ Détails d'aube.

#### 📥 Profil d'aube.

Les profils d'aube sont des formes aérodynamique sont caractérisés par un contour dont la courbure varie d'une façon continue et par une haute résistance mécanique. La réalisation de ses profils d'aube à de tout temps, particulièrement intéressé les constructeurs des turbines, ce qui se traduit par la grande diversité de variantes qu'on rencontre, dans l'étude d'un profil d'aube il faut satisfaire non seulement les conditions relevant de la M.D.F, mais encore celles relatives à la résistance et à la fabrication. C'est surtout à partir du début des années soixante que de grands efforts ont été faits afin de calculer la qualité aérodynamique d'un profil. Cela est aujourd'hui du domaine du possible dans différents condition ; on détermine des grandeurs appropriée caractérisant la qualité aérodynamique et la résistance à la flexion d'un profil, et permettant ainsi une sélection judicieuse parmi différentes variantes. [1]



Figure I.13 Exemples de profils d'aub[4]

10

On trouve plusieurs formes d'aube a partir de la variation de leur longueur, section, Géométrie du profil, tel que : les aube droit (section constante et ne variée pas), les aube vrillée (la géométrie de la profile change dans chaque plans), ...

• Géométrie du profil.



Figure I.14 Géométrie du profil. [7]

1.Ligne de portance nulle; 2 Bord d'attaque ; 3 Cylindre du bord d'attaque; 4 Cambrure;
5 Epaisseur maximale; 6 Extrados; 7 Bord de fuite; 8 Ligne moyenne de cambrure;

Les paramètres dans le code numérique peuvent être saisies dans les équations pour générer précisément la section de l'aile et de calculer ses propriétés. Toutes les dimensions en % sont entendues en % de longueur de corde, la droite reliant bord d'attaque et bord de fuite, par rapport au bord d'attaque sauf lorsque précisé. [7]



*Figure I.15 Ligne du profil* [7] 1-Corde; 2- Cambrure; 3- Longueur; 4- Ligne médiane.

11

#### Construction des aubes.

Ci-dessous deux sortes d'ailettes avec pied de sapin qui assure la liaison avec le disque ou bien le tambour. A droite l'ailette (Un corps qui reçoit l'action de la vapeur) porte un talon.



#### Figure I.16 construction d'aube [7]

L'ensemble de ces talons forment une couronne. Face à cette couronne est fixé sur l'anneau extérieur ou les demi-carters un joint abradable, ce qui permet d'améliorer l'étanchéité et donc d'augmenter le rendement de la turbine. [7]

#### I.5.2 Grille d'aube.

On appelle grille d'aubes un ensemble fixe ou mobile d'obstacles profilés déduit les uns de l'autre par un déplacement géométrique, conçues d'une manière très spéciale afin de guider l'écoulement du fluide



Figure I.17 une grille d'aube de turbine

et pour échanger avec lui les efforts mécanique, La vitesse du fluide par rapport à chaque grille d'aubes fixes ou mobiles d'une turbine axiale est définie par trois vecteurs différents  $\vec{v}$ ,  $\vec{w}$ ,  $\vec{u}$  qui représentent respectivement les vitesses, absolue et relative de la vapeur ainsi que la vitesse d'entrainement de l'aube Le courant de vapeur provient du distributeur avec une vitesse absolue  $\vec{v}$ , les aubes s'en suivent la vitesse tangentielle (d'entrainement)  $\vec{u}$ , de la combinaison de ces deux vitesses résulte la vitesse relative notée  $\vec{w}$ , Il existe plusieurs types de grilles d'aubes tels que :

- La grille plane parallèle (figure14.Ia)
- La grille cylindrique de la turbine axiale (figure 14.Ib)
- La grille radiante de la turbine radiale (figure 14.Ic).



a. Grille plane parallèle b. Grille cylindrique c. Grille plane radiante *Figure I.18 Différente types de grille d'aubes* [1]

#### 🖊 Aubage à action

Il existe deux types d'aube à action:

**Aubage fixe :** Qui est lui-même de deux formes ; tuyères ou distributeur qui permettent la détente de la vapeur grâce à une géométrie particulière et les redresseurs, existant au niveau d'étages de vitesse leurs rôles est de dévier le jet de vapeur tout en maintenant constante la pression de la vapeur. [6]

**Aubage mobile :** C'est à leur niveau que la transformation de l'énergie cinétique de la vapeur issue du distributeur en énergie mécanique de rotation, elles sont caractérisées par un écoulement à pression constante et une diminution de la vitesse absolue de la vapeur. [6]



Figure I.19 Fonctionnement de l'aubage à action [6]

#### **4** Aubage à réaction.

L'aubage à réaction est aussi de deux types, fixe et mobile, une partie seulement de la chute d'enthalpie est transformée en énergie cinétique à la sortie de la tuyère, le reste est directement transformé en énergie mécanique par les aubages mobiles



Figure I.20 fonctionnement de l'aubage à réaction [6]

15

Chapitre

#### I.5.3 Triangles de Vitesses

La figure 21.I représente une coupe en plan, d'une partie d'un étage de turbine à vapeur, composée d'un distributeur de vapeur et d'un ensemble d'aubes, formant entre elles un canal permettant le passage de la vapeur. Le courant de vapeur provient du distributeur avec une vitesse absolue notée $\vec{V}$ , les aubes tournent avec une vitesse tangentielle  $\vec{U}$  ou vitesse périphérique de l'aube. La vitesse de la vapeur arrivant au niveau des aubes mobiles est appelée vitesse relative et notée $\vec{W}$ 

Les lois de la mécanique permettent de calculer les valeurs ainsi que les directions de ces vitesses grâce à la relation géométrique obtenue à partir de la construction graphique des triangles de vitesses.



Figure I.21 Triangles de vitesse à l'entrée et à la sortie de l'aube. [6]

#### I. 6. Turbocompresseur.

Les Turbocompresseurs sont des Turbomachines qui réalisent la compression de Faire sans lui imposer diminution de volume. Us sont très refendus dans Industrie moderne, ils fonctionnent comme des machines individuelles (compresseurs alimentant les mines, les hauts fourneaux, les foyers des chaudières...etc.) et dans les groupes de machines (Turbosoufflante de suralimentation de moteurs à piston, turbine à gaz, Turbomoteurs...etc.) Dans la famille des Turbocompresseurs on distingue:

a) *Compresseur:* machine dont le gain de pression est supérieur à 2 bar.

- b) *Pompe à vide :* machine qui refoule un gaz de la zone à très basse pression à la zone de pression atmosphérique ou la pression est inférieure à la pression atmosphérique.
- c) *Soufflante* : machine dont le gain de pression net compris entre 0,1 à 2 bar.
- d) *Ventilateur* : le gain de pression ne dépasse pas 0,1 bar. [9]

#### I.6.1 Compresseurs :

Compresseurs axiaux :

Un turboréacteur est généralement composé :

- ✤ d'une compresseur basse pression.
- ✤ d'une compresseur haute pression.

Le taux de compression des compresseurs est lié à sa vitesse de rotation et au nombre d'étages qu'il comporte, Conçus de la même manière, les compresseur basses et hautes pressions se différencient par la taille de leurs aubes et par leur vitesse de rotation, Un compresseur axial se compose d'une suite d'étages axiaux disposés en série chacun comprenant une roue à aubes mobile rotor et d'un stator à aubes redresseur, tous ces étages sont calculés pour adapter parfaitement leurs conditions de fonctionnement à celles des étages en amont et en aval.



Figure I.22 Schéma simplifié d'un compresseur axial [7]

L'aubage mobile rotor est constitué d'un disque circulaire sur lequel sont fixées des aubes (ailettes) et tourne devant l'aubage fixe redresseur. L'enverguer des ailettes varie le long de l'écoulement pour compenser les variations de la masse volumique du fluide et pour conserver à la vitesse débitante axiale une valeur constante [7]

#### Compresseurs centrifuges :

Un compresseur centrifuge est composé d'un rouet à palettes radiales qui aspire l'air axialement. Les palettes étant divergentes, l'air sous l'effet de la force centrifuge va être accéléré, comprimé et refoulé radialement. Cet air est ensuite redressé dans un diffuseur (aubage fixe) qui transforme une partie de sa vitesse en pression. Un collecteur récupère finalement cet air comprimé pour l'amener dans l'axe de la chambre de combustion. [7]



Figure I.23 Schéma simplifié sur un Compresseur [7]

#### 🖊 Rotor (roue):

La roue est l'élément fondamental du compresseur, car elle assure l'échange de travail, il s'agit en effet du seul élément mobile de l'étage. La roue de la figure (24..I) comporte ce que l'on appelle une zone inductrice, c'est-à-dire que les pales commencent dans un sens axial et finissent par la direction radiale.



Figure I.24 Différentes formes de la roue du compresseur centrifuge [10]

La figure (24.I) présente diverses formes géométriques de roues de compresseurs centrifuges. On remarque notamment les différences entres ces roues en terme de nombre de aubes, de hauteur des aubages et d'angle de calage a la sortie. La complexité de ce type de géométrie pleinement tridimensionnelle nécessite l'introduction de surfaces de référence, qui rendent l'analyse des écoulements plus accessible. Les surfaces méridiennes sont obtenues par projection sur le plan générant le volume de la roue ; les surfaces aube-à-aube sont généralement représentées par une transformation conforme au plan moyen et les coupes orthogonales qui peuvent être considérées comme quasi-planes. [10]

#### **4** Diffuser:

A la sortie du rotor, la pression statique de l'écoulement augmente, mais une partie de la pression totale apportée par la roue est présente sous forme d'énergie cinétique. Le rôle du diffuseur est alors de ralentir cet écoulement, figure (25.I), car les pertes dans les conduits en aval dépendent fortement du nombre de Mach de l'écoulement. Ce ralentissement permet aussi la conversion d'une partie de l'énergie cinétique en énergie pression statique. [10]



Figure I.25 Diffuseur radial d'un compresseur centrifuge. [10]

#### 📥 Volute :

Le rôle principal de la volute est de collecter l'écoulement radial à la sortie du diffuseur, pour le restituer au système par un conduit tubulaire, par le biais d'une évolution de la section de passage. L'écoulement dans la volute est souvent modélisé (hypothèse de fluide incompressible) par des spirales logarithmiques, mais une partie du fluide effectue la giration complète et se juxtapose à l'écoulement principal au niveau du bec (zone de commencement de la spirale)

Si la roue se met en rotation, elle donne un débit à la sortie, l'air est ensuite collecté par la volute figure (26.I.b), ou bien par un système qui change la direction suivant l'axe de rotation pour le cas des turboréacteurs, figure (26.I.a) [10]



Figure I.26 Le compresseur centrifuge en éléments séparés. [10]

#### Triangle des vitesses et degré de réaction.

Les particules fluides pénètrent dans la roue, figure (27.I), par un passage axial de la section défini par  $(S_{r'1} - S_{r1})$  ensuit radial, avec une vitesse  $\vec{C}_1$  inclinée d'un angle  $\alpha_1$  par rapport à la vitesse périphérique  $\vec{U}_1$  et en sortent par une surface cylindrique de rayon  $r_2$ , avec une vitesse absolue  $\vec{C}_2$  inclinée d'un angle  $\alpha_2$  par rapport à la vitesse périphérique  $\vec{u}_2$ .

Les états du mouvement à l'entrée et la sortie de la roue tournant à une vitesse angulaire constante  $\omega$ , sont représentés par les triangles des vitesses. Nous décomposons la vitesse Absolue  $\vec{c_1}$  sur le bord d'attaque en vitesse périphérique  $\vec{U_1} = r_1 \vec{\omega}$  et en vitesse relative  $\vec{w_1}$ , tangente au premier élément de l'aube. La composante méridienne de la vitesse absolue  $\vec{c_1}$  sera désignée par le symbole  $\vec{c}_{m1}$  et la composante périphérique par  $\vec{c}_{u1}$ . De la même façon nous décomposons la vitesse absolue  $\vec{c}_2$  à la sortie de la roue, pour obtenir les vitesses  $\vec{U}_2 = r_2 \vec{\omega}$  et  $\vec{w}_2$ , tangente au dernier élément de l'aube. La composante méridienne de la vitesse absolue à la sortie sera désignée par  $\vec{c}_{m2}$  et la composante périphérique par  $\vec{c}_{u2}$ .



Figure I.27 Triangle des vitesses à l'entrée et à la sortie de la roue du compresseur [10]

Les angles  $\alpha_1$  et  $\alpha_2$  formés respectivement par les vecteurs  $(\vec{c_1} et \vec{u_1}), (\vec{c_2} et \vec{u_2})$ sont appelés angles des vitesses absolues respectivement à l'entrée et à la sortie, tandis que les angles  $\beta_1 et \beta_2$  formés respectivement par les vecteurs  $(\vec{w_1} et - \vec{u_1}), (\vec{w_2} et - \vec{u_2})$  sont les angles des vitesses relatives respectivement d'entrée et de sortie de la roue. Les angles  $\beta_1 et \beta_2$  constituent en même temps les angles de l'aube, que l'on appelle habituellement angle à l'entrée de l'aubage et angle à la sortie de l'aubage respectivement. [10]

#### 4 Influence de l'ange du calage des aubes sur les performances du compresseur.

Les aubes d'un compresseur ont différents calages : incliné vers l'avant $\beta_2 < 90^\circ$ , incliné vers l'arrière  $\beta_2 > 90^\circ$ ou radiale  $\beta_2 = 90^\circ$ , figure (22.I).



#### Figure I.28 Calage des aubes du compresseur centrifuge [10]

Les aubes inclinées vers l'avant causent beaucoup de pression et provoque moins du débit. Les aubes radiales sont encore moins résistantes que les aubes inclinées vers l'avant, par contre les inclinées vers l'arrière sont plus favorises au passage du débit que l'élévation de pression celles figure (29.I). Mais un avantage qui ce caractérise par moins de consommation de la puissance ce qui implique un rendement meilleur. Pour les aubes inclinées vers l'arrière. [10]



Figure I.29 Taux de compression en fonction du débit massique [10]

## Etude statique d'une aube de turbine à vapeur

## Chapitre II

*Etude statique d'une Aube de turbine à vapeur (par la méthode analytique et vérification par RDM6 simulation par ABAQUS)* 

#### Introduction

Dans ce chapitre nous allons étudier la rigidité à la flexion des aubes droites par la méthode analytique en déterminant les contraintes max, les flèches max et les moments de flexion max pour différentes configuration de poutres et aubes, et on va vérifier les résultats de calcul analytique par le logiciel RDM, Une validation de l'approche proposée est effectuée au travers de comparaisons avec des simulations numériques on utilisant le code de calcul ABAQUS pour les différentes cas d'étude

#### II .1. Notions sur la résistance des matériaux.

La résistance des matériaux, aussi appelée RDM, est une discipline particulière de la mécanique des milieux continus permettant le calcul des contraintes et déformations dans les structures des différents matériaux dans le but de déterminer ou de vérifier leurs dimensions afin qu'ils supportent les charges dans des conditions de sécurité satisfaisantes et au meilleur coût (optimisation des formes, des dimensions, des matériaux...) [6]

#### II .2. Flexion

Une poutre est sollicitée à la flexion plane simple lorsque le système des forces extérieures se réduit à un système plan et que toutes les forces qui agissent sur ce système sont perpendiculaires à la ligne moyenne. L'ensemble des efforts de cohésion se réduit à deux composantes. Un effort tranchant (Ty) porté par l'axe Gy, exprimé en (Newton).

• Un moment de flexion (Mfz) porté par l'axe Gz, exprimé en (Newton. mètre).

Il existe plusieurs types de flexions (pure, plane, déviée). Nous limiterons notre étude au cas de la flexion plane simple. [6]


Figure II.1 Éléments de réduction : tranchantes et moment fléchissant

### **II**.3. Contraintes.

Dans le cas de la flexion plane simple, les contraintes se réduisent essentiellement à des contraintes normales. Les contraintes de cisaillement sont négligeables. La contrainte normale  $\sigma_{max}$ 

En un point M d'une section droite (*s*) est proportionnelle à la distance *y* entre ce point et le plan

$$\sigma = \frac{M_{\rm f}(x)}{I} \, . \, y$$

*I* : Le moment quadratique calculé par rapport à l'axe qui passe par le centre de gravité de la section perpendiculairement au chargement.

 $M_{\rm f}(x)$ : La valeur maxi du moment fléchissant dans la section étudiée.

y: Variable représentant la cote algébrique entre la fibre neutre et les fibres extrêmes (supérieure et inférieure) de la section. [6]



Figure II.2 Fibres tendues et comprimées sollicitées en flexion

### II .4. Conditions de résistance.

Pour des raisons de sécurité, la contrainte normale doit rester inférieure à une valeur limite appelée contrainte pratique à l'extension  $\sigma_{pe}$ .

On a : 
$$\sigma_{pe} = \frac{\sigma_e}{s}$$

S : Coefficient de sécurité

La condition de résistance traduit simplement le fait que la contrainte réelle ne doit pas dépasser le seuil précédent, soit :

$$\sigma_{\text{reélle}} = \frac{M_{\text{f}}(x)}{\frac{I}{y}} < \sigma_{pe}[6]$$

### II .5. Etude de la déformée.

Cette étude permet de donner l'équation de la déformée de la poutre sous la forme y = f(x). Elle est principalement basée sur la résolution de l'équation différentielle suivante :

$$-M_{\rm f} = E.I.y''$$

Il faut alors procéder à deux intégrations successives:

$$-M_{\rm f} = E.I.y''$$

$$\int E.I.y'' = E.I.y'$$

$$y' = -\frac{1}{EI} \int M_{\rm f} \, dx + c_1$$

$$y = \int \left(-\frac{1}{EI} \int M_{\rm f} \, dx + c_1\right) dx$$

$$y = -\frac{1}{EI} \int \left(\int M_{\rm f} \, dx\right) + c_1 x + c_2$$

Les constantes d'intégration s'obtiennent grâce aux conditions aux limites (appuis, encastrements...), y(x):C'est l'équation de la ligne élastique. [6]

### II .6. Déplacement d'une aube a section constante en flexion plane.

Chaque ailette considérée comme une poutre ( $h \ll L$ ) encastré à sa base, libre ou appuyé a son extrémité, est soumise à l'action de jet de vapeur (cas d'une aube de turbine a vapeur) et de la force centrifuge. [11]

On détermine généralement la contrainte résultante à l'encastrement.



Figure II.3 Dimensions de l'aube simplifiée à une poutre [13]

### **4** Cas encastré- libre charge concentrée.

En flexion simple, pour le cas d'une poutre de longueur L et d'une section rectangulaire (b, h).



Figure II.4 Dimensions de poutre

Encastre libre soumise a une force concentré P



La déformation de la poutre provoque un déplacement transversal de la ligne moyenne dans la direction de *y*.



Figure II.5 le déplacement de la poutre suivant y

On trouve  $M_{\rm f}(x)$ :



L'équation de la ligne élastique:

$$E.I. y'' = -M_{f} = -(P L - PX)$$
$$E.I. y' = -\int P L - PX \, dx = -\frac{Px^{2}}{2} + PLx + c_{1} \qquad \dots (1)$$

$$E.I. \mathbf{y} = -\frac{Px^3}{6} + PL\frac{x^2}{2} + c_1 \mathbf{x} + c_2 \qquad \dots (2)$$

Pour trouve  $c_1 et c_2$  on applique les conditions aux limite:

à l'encastrement : y(0) = 0 et y'(0) = 0

on remplace y'(0) = 0 dans(1), en trouve  $c_1 = 0$ 

on remplace y(0) = 0 dans(2), en trouve  $c_2 = 0$ 

L'équation de la ligne élastique dans ce cas et donnée par la formule suivante:

$$E.I.\mathbf{y} = -\frac{Px^3}{6} + PL\frac{x^2}{2}$$

L'équation de la flèche max est décrite par la formule suivante:

$$y(l) = \frac{PL^3}{3EI} \qquad avec: \quad I = \frac{bh^3}{12}$$

### **4** Cas encastré- libre charge uniformément repartie.

On se propose d'étudier la flexion d'une poutre encastrée par une de ses extrémités et libre de l'autre, soumise à une charge uniformément répartie q

On pendre les mêmes les caractéristiques géométriques de l'exemple 1



Figure II.6 une poutre soumise a une charge uniformément repartie [14]

On trouve  $M_f(x)$ :

On a, pour  $0 \le x \le L$ :

$$T(x) = q.x$$
$$M_{\rm f}(x) = \frac{q.x^2}{2}$$

L'équation de la ligne élastique:

$$E.I.y'' = -M_{\rm f} = \frac{-q.x^2}{2}$$

$$E.I.y' = \int -\frac{q.x^2}{2} dx = -\frac{qx^3}{6} + c_1 \qquad \dots (1)$$

$$E.I.y = -\frac{qx^4}{24} + c_1 x + c_2 \qquad \dots (2)$$

Pour trouve  $c_1$  *et*  $c_2$  on applique les conditions aux limite:

L'équation de la ligne élastique dans ce cas et donnée par la formule suivante:

E.I. 
$$\mathbf{y} = -\frac{qx^2}{24}(x^2 - 4Lx + 6L^2)$$

L'équation de la flèche max est décrite par la formule suivante:

$$y(l) = -rac{qL^4}{8EI}$$
 avec:  $I = rac{bh^3}{12}$ 

• Pour un système hyperstatique, on utilise la méthode de **Castigliano** qui permet de donner la flèche max

### théorème de Castigliano.

Considérons un système de forces  $P_i$  ( $i = 1 \dots n$ ) applique à une structure, ces forces et les réactions constituent le système I, à chaque point d'application de ces forces, on a un déplacement  $u_I$ 



$$u_1 = \frac{\partial w_I}{\partial p_1}, \quad u_2 = \frac{\partial w_I}{\partial p_2}, \quad u_3 = \frac{\partial w_I}{\partial p_3}, \dots u_I = \frac{\partial w_I}{\partial p_I}$$

 $w_I$ : L'énergie de déformation du système I

 $u_I$ : Le travail effectué par la force  $p_I$ 

### D'où :

L'énergie de déformation du système pour la flexion est:

$$w = \int_0^l \frac{M_f^2(x)}{2EI} \, dx$$

### **4** Cas encastré- appuyé charge uniformément repartie.

On se propose d'étudier la flexion d'une poutre encastrée par une de ses extrémités et appuyé de l'autre, soumise à une charge uniformément répartie *q* On pendre les mêmes les caractéristiques géométriques de l'exemple 1 Chapitre II



### Déterminer les actions en A et B:

Equations de statique :

Equilibre vertical :  $\vec{R}_{AY} + \vec{R}_{BY} = q.L$ Equilibre de rotation:

$$\sum_{V \in M_{d}(x)} M_{Z/b} = -\vec{R}_{AY} L + \frac{ql^{2}}{2} + M_{B}$$

ſ

q

 $\overline{MB}$ 

On trouve  $M_{\rm f}(x)$ :

On a, pour  $0 \le x \le L$ :

$$M_{\rm f}(x) = R_{Ay} \cdot x - \frac{q \cdot x^2}{2}$$

Puis :

$$w = \int_0^l \frac{M_f^2(x)}{2EI} \, dx = \frac{1}{2EI} \left( R_A^2 \, \frac{L^3}{3} - q R_A \frac{L^4}{4} + q \frac{L^5}{20} \right)$$

Lorsque le déplacement vertical du point A est nul:

$$\frac{\partial w_I}{\partial R_A} = \frac{1}{2EI} \left( 2 R_A \frac{L^3}{3} - q \frac{L^4}{4} \right) = 0$$

L'équation de la flèche max est décrite par la formule suivante:

$$y(0.421L) = -\frac{qL^4}{185EI}$$
 avec:  $I = \frac{bh^3}{12}$ 

### **4** Cas encastré- encastré charge uniformément repartie.

On se propose d'étudier la flexion d'une poutre encastrée par les deux de ses extrémités, soumise à une charge uniformément répartie q

On pendre les mêmes les caractéristiques géométriques de l'exemple 1

### Par le même méthode en trouve:



### Déterminer les actions en A et B:

Equations de statique :

Equilibre vertical :  $\vec{R}_{AY} = \vec{R}_{BY} = \frac{qL}{2}$ (symétrie) Equilibre de rotation:  $\sum M_{Z/A} = 0$ ,  $M_A = -M_B = \frac{qL^2}{12}$ (Symétrie)



On a, pour  $0 \le x \le L$ :

On trouve  $M_{\rm f}(x)$ :

$$M_{\rm f}(x) = R_{Ay} \cdot x - M_A - \frac{q \cdot x^2}{2}$$

L'équation de la flèche max est décrite par la formule suivante:

$$y(l/2) = -\frac{qL^4}{384EI}$$
 avec:  $I = \frac{bh^3}{12}$ 

### Application numérique : flexion d'une aube

On se propose d'appliquer la théorie précédentes des quatre cas de flexion sur une aube en l'assimilant à une poutre tout en calculant la contrainte max et la flèche max pour chaque cas :

1- Analytiquement.

- 2 numériquement par le logiciel RDM6
- 3- Comparaison des résultats analytiques et numériques

Etant donné que :

- La charge concentrée P = 250 N, de langueur de section rectangulaire
- La charge uniformément répartie q =100 N/m avec :
- Les caractéristiques géométriques : L = 250 mm, b =100mm, h= 10mm
- Le module de young E= 210000MPa

### A- La solution analytique

1)Cas encastré- libre avec charge concentrée

- la contrainte max:

$$\sigma_{max} = \left| \frac{6 M_{\rm f} (x)_{max}}{b h^2} \right|$$

$$M_{\rm f}(x)_{max} = PL = 250.250 = 62500 \, N. \, mm$$

$$\sigma_{max} = \left| \frac{6.62500}{100 \cdot 10^2} \right| = 37,5 \frac{N}{mm^2} \quad ou \ bien : -37,5 \frac{N}{mm^2}$$

- <u>la flèche max</u>:

$$y(l) = -\frac{PL^3}{3EI} = -\frac{4PL^3}{Ebh^3} = -\frac{4 \cdot 250 \cdot 250^3}{210000 \cdot 100 \cdot 10^3}$$
$$= -7,44 \cdot 10^{-1} mm$$

2)Cas encastré-libre avec charge uniformément repartie

- la contrainte max:

$$\sigma_{max} = \left| \frac{6 \, M_{\rm f} \, (x)_{max}}{b h^2} \right|$$

$$M_{\rm f}(x)_{max} = \frac{q \cdot x^2}{2} = \frac{100.250^2}{2} = 3125000N.mm$$
$$\sigma_{max} = \left|\frac{6.3125000}{100 \cdot 10^2}\right| = 1875 \frac{N}{mm^2}$$

- la flèche max:

$$y(l) = -\frac{qL^4}{8EI} = -\frac{3qL^4}{2Ebh^3} = -\frac{3.\ 100.\ 250^4}{2.\ 210000.\ 100.\ 10^3} = -27,9\ mm$$

### 3) Cas encastré - encastré avec charge uniformément repartie

- la contrainte max:

$$\sigma_{max} = \left| \frac{6 M_{\rm f} (x)_{max}}{b h^2} \right|$$

$$\begin{split} M_{\rm f}(x)_{max} &= R_{Ay} \cdot x - M_A - \frac{q \cdot x^2}{2} = \frac{qL}{2} \cdot x - \frac{qL^2}{12} - \frac{q \cdot x^2}{2} \\ &= \frac{100.250}{2} \cdot 250 - \frac{100.250^2}{12} - \frac{100.250^2}{2} = -5.2083 \times 10^5 N \cdot mm \\ \sigma_{max} &= \left| \frac{6 \cdot -5.2083 \times 10^5}{100 \cdot 10^2} \right| = -312 \cdot 50 \frac{N}{mm^2} \end{split}$$

- la flèche max:

$$y(l/2) = -\frac{qL^4}{384EI} = -\frac{qL^4}{384E\frac{bh^3}{12}} = -\frac{100 \cdot 250^4}{384 \cdot 210000 \cdot \frac{100 \cdot 10^3}{12}}$$
$$= -5,813 \times 10^{-1} mm$$

4) Cas encastré - appuyé avec charge uniformément repartie

- la contrainte max:

$$\sigma_{max} = \left| \frac{6 \, M_{\rm f} \, (x)_{max}}{b h^2} \right|$$

$$M_{f}(x)_{max} = R_{Ay} \cdot x - \frac{q \cdot x^{2}}{2} = \frac{3qL}{8} \cdot x - \frac{q \cdot x^{2}}{2} = \frac{3.100.250}{8} \cdot 250 - \frac{100.250^{2}}{2}$$
$$= -7,8125 \times 10^{5} N \cdot mm$$
$$\sigma_{max} = \left| \frac{6 \cdot -7,8125 \times 10^{5}}{100 \cdot 10^{2}} \right| = -468,75 \frac{N}{mm^{2}}$$

- <u>la flèche max</u>:

Chapitre II

$$y(l/2) = -\frac{qL^4}{185EI} = -\frac{qL^4}{185E\frac{bh^3}{12}} = -\frac{100 \cdot 250^4}{185 \cdot 210000 \cdot \frac{100 \cdot 10^3}{12}}$$
$$= -1.206 \, mm$$

### B- vérification du Solution par le logiciel RDM6:

### 1) Cas encastré- libre avec charge concentrée

- la contrainte max:



- la flèche max:



### 2) Cas encastré- libre avec charge uniformément repartie



- la flèche max:



3) Cas encastré - encastré avec charge uniformément repartie



- la flèche max:



### 4) Cas encastré - appuyé avec charge uniformément repartie

- La contrainte max:



- la flèche max:



- Solution numérique par élément fini\_(ABAQUS)
- 1) <u>Cas encastré-libre avec charge concentrée:</u>



| Υ        | X   |
|----------|-----|
| -2,5E-34 | 0   |
| -0,001   | 10  |
| -0,007   | 20  |
| -0,015   | 30, |
| -0,027   | 40  |
| -0,041   | 50  |
| -0,059   | 60  |
| -0,079   | 70  |
| -0,102   | 80  |
| -0,127   | 90  |
| -0,155   | 100 |
| -0,184   | 110 |
| -0,216   | 120 |
| -0,249   | 130 |
| -0,285   | 140 |
| -0,321   | 150 |
| -0,360   | 160 |
| -0,399   | 170 |
| -0,440   | 180 |
| -0,481   | 190 |
| -0,524   | 200 |
| -0,567   | 210 |
| -0,611   | 220 |
| -0,655   | 230 |
| -0,700   | 240 |
| -0,744   | 250 |

|      | la courbe numérique de la flexion 1 <sup>er</sup> |    |      |      |              |      |              |      |      |       |       |      |      |      |      |      |      |      |      |      |      |      |      |      |  |
|------|---------------------------------------------------|----|------|------|--------------|------|--------------|------|------|-------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|--|
|      | cas                                               |    |      |      |              |      |              |      |      |       |       |      |      |      |      |      |      |      |      |      |      |      |      |      |  |
| 0    |                                                   | -  |      |      | -            |      |              |      |      |       |       |      |      |      |      |      |      |      |      |      |      |      |      |      |  |
| -0,1 |                                                   | 10 | 0191 | 0572 | 1144<br>2289 | 3815 | 6104<br>0202 | 1444 | 1526 | 1984  | 2518  | 3052 | 3662 | 4272 | 5035 | 5798 | 6561 | 7477 | 8392 | 9308 | 0223 | 1139 | 2054 | 3123 |  |
| -0,2 | -                                                 |    | 0000 | 0000 |              | 0000 |              | 0001 | ,000 | 000'( | 000'( | ,000 | ,000 | 000( | 000( | 000( | 000( | 000( | ,000 | ,000 | ,001 | ,001 | ,001 | ,001 |  |
| -0,3 | -                                                 |    | 20,( | 30,0 | 40,(<br>50,( | 60,( | 20,0         | 0,00 | 100  | 110   | 120   | 130  | 140  | 150  | 160  | 170  | 180  | 190  | 200  | 210  | 220  | 230  | 240  | 250  |  |
| -0,4 | -                                                 |    |      |      |              |      |              |      |      |       |       |      |      |      |      |      |      |      |      |      |      |      |      |      |  |
| -0,5 | -                                                 |    |      |      |              |      |              |      |      |       |       |      |      |      |      |      |      |      |      |      |      |      |      |      |  |
| -0,6 | -                                                 |    |      |      |              |      |              |      |      |       |       |      |      |      |      |      |      |      |      |      |      |      |      |      |  |
| -0,7 | -                                                 |    |      |      |              |      |              |      |      |       |       |      |      |      |      |      |      |      |      |      |      |      |      |      |  |
| -0,8 |                                                   |    |      |      |              |      |              |      |      |       |       |      |      |      |      |      |      |      |      |      |      |      |      |      |  |

## 2) <u>Cas encastré- libre avec charge uniformément repartie</u>

| U, U2<br>+0.000e+00<br>-2.330e+00<br>-4.660e+00<br>-6.990e+00<br>-9.320e+00<br>-1.165e+01<br>-1.398e+01<br>-1.631e+01<br>-1.864e+01<br>-2.097e+01<br>-2.330e+01<br>-2.563e+01<br>-2.796e+01 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                             |  |

| Y         | X   |
|-----------|-----|
| -2,45E-32 | 0   |
| -0,090    | 10  |
| -0,345    | 20  |
| -0,750    | 30  |
| -1,295    | 40  |
| -1,965    | 50  |
| -2,749    | 60  |
| -3,636    | 70  |
| -4,616    | 80  |
| -5,679    | 90  |
| -6,814    | 100 |
| -8,014    | 110 |
| -9,270    | 120 |
| -10,574   | 130 |
| -11,919   | 140 |
| -13,29958 | 150 |
| -14,707   | 160 |
| -16,139   | 170 |
| -17,588   | 180 |
| -19,052   | 190 |
| -20,526   | 200 |
| -22,006   | 210 |
| -23,492   | 220 |
| -24,980   | 230 |
| -26,469   | 240 |
| -27,958   | 250 |

|     | la courbe numérique de la flexion<br>2 <sup>éme</sup> |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |
|-----|-------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| 0   |                                                       |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |
| -5  | 0<br>040722<br>365257<br>118866                       | 867999999999999999999999999999999999999                          | 593063<br>437851<br>525225<br>525252<br>525252<br>573212<br>55845<br>558455<br>558455<br>558455<br>558455<br>558455<br>558455<br>558455<br>5584755<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>5584725<br>558475<br>558475<br>558475<br>558475<br>558475<br>558475<br>558475<br>55845<br>558575<br>55845<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>557575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>558575<br>557575<br>557575<br>557575<br>557575<br>557575<br>557575<br>557575<br>557575<br>557575<br>557575<br>557575<br>557575<br>55757575<br>5575757575<br>5575757575757575757575757575757575757575 |  |  |  |  |  |  |  |  |  |  |
| -10 | 10,000<br>20,000<br>30,00                             | 40,020<br>50,02<br>60,079<br>70,119<br>80,16<br>90,222<br>100,23 | 110,3<br>120,3<br>120,7<br>120,7<br>120,7<br>120,7<br>120,8<br>111,0<br>111,1<br>191,1<br>111,0<br>221,2<br>221,3<br>221,3<br>221,3<br>221,3<br>221,3<br>221,3<br>221,3<br>221,3<br>221,3<br>221,3<br>221,3<br>221,3<br>221,3<br>221,3<br>221,3<br>221,5<br>221,5<br>221,5<br>221,5<br>221,5<br>221,5<br>221,5<br>221,5<br>221,5<br>221,5<br>221,5<br>221,5<br>221,5<br>221,5<br>21,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
| -15 |                                                       |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |
| -20 |                                                       |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |
| -25 |                                                       |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |
| -30 |                                                       |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |

Υ

-0,173

-0,108

-0,053

-0,015 -1,2E-32 210

220

230 240

250

# 3) <u>Cas encastré - encastré avec charge uniformément repartie</u>



| Υ        | X   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|-----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -1,2E-32 | 0   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0,015   | 10  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0,053   | 20  | 0 —           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0,108   | 30  | C             | 2444<br>2327<br>2327<br>2327<br>2327<br>2327<br>2327<br>2449<br>23355<br>2449<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>25261<br>255 |
| -0,173   | 40  | S -0,1 →      | 000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000     000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -0,244   | 50  | 3éme          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0,317   | 60  | <b>6</b> -0.2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0,386   | 70  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0,449   | 80  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0,503   | 90  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0,545   | 100 | idne          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0,575   | 110 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0,589   | 120 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0,589   | 130 | <b>9</b> -0,5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0,575   | 140 | COL           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0,545   | 150 | <u>e</u> -0,6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0,503   | 160 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0,449   | 170 | -0,7 上        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0,386   | 180 | ·             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0,317   | 190 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -0,244   | 200 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

### 4) Cas encastré - appuyé avec charge uniformément repartie



| • <u> </u> | <b>^</b> |
|------------|----------|
| -1,512E-32 | 0        |
| -0,022     | 10       |
| -0,081     | 20       |
| -0,168     | 30       |
| -0,274     | 40       |
| -0,394     | 50       |
| -0,522     | 60       |
| -0,650     | 70       |
| -0,774     | 80       |
| -0,890     | 90       |
| -0,993     | 100      |
| -1,080     | 110      |
| -1,148     | 120      |
| -1,194     | 130      |
| -1,217     | 140      |
| -1,216     | 150      |
| -1,189     | 160,     |
| -1,138     | 170      |
| -1,061     | 180      |
| -0,961     | 190      |
| -0,840     | 200      |
| -0,698     | 210      |
| -0,540     | 220      |
| -0,368     | 230      |
| -0,186     | 240      |
| -8,884E-33 | 250      |
|            |          |



- > Comparaison entre Résultats analytiques et numériques
- 1) <u>Cas encastré-libre avec charge concentrée:</u>



2) Cas encastré-libre avec charge uniformément repartie:



### Conclusion

Dans ce chapitre nous avons étudié la rigidité à la flexion des aubes droites par la méthode analytique et la simulations numériques avec le logiciel RDM6dont on a déterminé les contraintes max, les flèches max et les moments de flexion max pour différentes configurations de poutres et aubes, en effet d'après les résultats obtenus on constate qu'ils sont très proches en comparaison les deux méthodes.

# Etude dynamique d'une aube de turbine à vapeur

# Chapitre III

*Etude dynamique d'une Aube de turbine à vapeur par la méthode analytique et vérification par ABAQUS et SOLIDWORKS* 

### Introduction

Dans ce chapitre nous allons étudier les vibrations à la flexion des aubes droites par la méthode analytique en déterminant leurs modes propres et leurs fréquences propres comme on va effectuer des simulations numériques avec les logiciels ABAQUS et SOLIDWORKS pour différentes cas d'étude et faire une comparaison des résultats des deux méthodes.

### **III.1.Vibration de l'aube:**

En particulier les aubes qui constituent des systèmes à masse réparties possèdent une suite indéfinie de fréquences naturelles de vibration qui sont des éléments particulièrement exposés aux dangers de la rupture résultant des efforts alternés qui se produisent lorsqu'une des fréquences propre de l'aube coïncide avec les fréquences d'excitation.

L'étude de vibration d'un aubage pose deux problèmes :

- La détermination des fréquences propre.
- o L'examen des impulsions excitatrices

La comparaison des chiffres obtenus permet de déterminer des zones de résonance possibles. L'aube peut être assimilée à une poutre de section constante ou non, généralement encastrée au pied dans le disque ou le rotor, mais dont les laissons en tête peuvent être de natures diverses. [11]

### III.2. Modes des vibrations d'aube.

### a) Les aubes isolées

L'aube libre en tête (encastré –libre) peut vibrer en flexion suivant les deux axes d'inertie de la section d'encastrement et en torsion autour de l'axe longitudinal.



Fig.1. III. Vibration des aubes isolées. [11]

#### b) Vibration des aubes en paquet.

On ce qui concerne les aubes appartenant à un paquet en raison de liaison en tête, suivant qu'elles vibrent en phase ou non, la liaison d'extrémité est considérée comme un appui simple ou comme un encastrement, ou encore elle peut n'introduire qu'une masse supplémentaire. [11]



Fig.2.III. Vibration des aubes en paquet [11]

### III.3. Détermination des fréquences propre de l'aube de section constante

On admet au pied de l'aubage un encastrement parfait. En tête, en considère un appui élastique et un couple de liaison résistante proportionnel à la rotation de talon. On admet en outre au talon une masse concentré M dont on néglige l'effet d'inertie de rotation.

L'équilibre de l'élément dx = dl

- Poids propre négligé [11]



Fig.3.III. Vibration des aubes de section constante. [11]

Les efforts normaux de section *s* admettent une résultante nulle, la sollicitation étant une flexion plane simple.

- Équation de projection suivent y:

$$m\frac{\partial^2 y}{\partial t^2} - Ts \cdot \cos\left(\propto -\frac{d \propto}{2}\right) + \left(T + \frac{\partial T}{\partial x} dx\right) s \cdot \cos\left(\propto +\frac{d \propto}{2}\right) = 0$$

$$cos\left(\propto -\frac{d\alpha}{2}\right) = cos\left(\propto +\frac{d\alpha}{2}\right) \approx 1$$
 Petite mouvements

D'où :

$$m\frac{\partial^2 y}{\partial t^2} + \frac{\partial T}{\partial x} dx \cdot s = 0$$

Avec :

 $m = \frac{\overline{\omega}}{g} \cdot s \cdot dx$  avec :  $\overline{\omega}$ : volume massique , m: la masse , s: la section

Soit :

$$\frac{\overline{\omega}}{g}\frac{\partial^2 y}{\partial t^2} + \frac{\partial T}{\partial x} = 0 \quad \dots (1)$$

Or :

$$Ts = -\frac{\partial \mathcal{M}}{\partial x} \text{ et } \frac{\partial^2 y}{\partial t^2} = -\frac{\mathcal{M}}{EI} \quad \text{Équation de la flexion}$$
$$T = -\frac{1}{s}\frac{\partial \mathcal{M}}{\partial x} = \frac{EI}{s}\frac{\partial^3 y}{\partial x^3}\frac{\partial T}{\partial x} = \frac{EI}{s}\frac{\partial^4 y}{\partial x^4}$$

1 devient:

$$\frac{\overline{\omega}}{g}\frac{\partial^2 y}{\partial t^2} + \frac{EI}{S}\frac{\partial^4 y}{\partial x^4} = 0$$

Soit :

$$\frac{\partial^4 y}{\partial x^4} + k \frac{\partial^2 y}{\partial t^2} = 0 \dots (2) \qquad \text{avec} : k = \frac{\overline{\omega}}{g} \frac{S}{EI} .$$

Pour résoudre l'équation (2) posons :  $y = z(x) \sin \omega t$ 

$$\frac{\partial^4 y}{\partial x^4} = \sin \omega t \ \frac{d^4 z}{dx^4} \frac{\partial^2 y}{\partial t^2} = -\omega^2 . z . \sin \omega t$$

2 devient:

$$\frac{d^4z}{dx^4} - \hat{k}\omega^2 \cdot z = 0 \qquad (3)$$

Dont les solutions en pose:  $A^4 = k\omega^2 = \frac{\overline{\omega}}{g}\frac{s}{EI} \cdot \omega^2$ 

$$z = c_1 sh Ax + c_2 ch Ax + c_3 sin Ax + c_4 cos Ax (4)$$

Dans le cas générale la lame est encastrée au pied, porte en tête une masse *M* concentrée. En tête, également appui élastique de raideur *K*. de couple résistant *C*.

Condition aux limites :

• Au pied : x = 0 z = 0  $\frac{dz}{dx} = 0$ 

D'où :

$$c_2 + c_4 = 0$$
 (5)  
 $c_1 + c_3 = 0$  (6)

• A l'extrémité :

x = l

Couple de liaison  $C = \frac{\partial y}{\partial x}$  égal et oppose au moment de flexion.

$$C \quad \frac{\partial y}{\partial x} = -\mathcal{M} = -EI \quad \frac{\partial^2 y}{\partial x^2}$$
 Soit  $\frac{d^2 z}{dx^2} = \frac{c}{EI} \frac{dz}{dx}$ 

qui conduit à :

$$A[c_1 sh Al + c_2 ch Al - c_3 sin Al - c_4 cos Al]$$
  
=  $\frac{c}{El} [c_1 ch Al + c_2 sh Al + c_3 cos Al - c_4 sin Al]$ 

Soit :

$$c_{1}[sh Al - \propto ch Al] + c_{2}[ch Al - \propto sh Al] - c_{3}[sin Al + \propto cos Al]$$
$$- c_{4}[cos Al - \propto sin Al] = 0 \qquad \dots (7)$$

Avec: 
$$\propto = \frac{Cl}{Al.EI}$$

L'effort tranchant est équilibré par la raideur élastique de l'appui et la force d'inertie de la masse *M*.

$$Ts = Ky + M \frac{\partial^2 y}{\partial t^2}$$
  
Soit :  $EI \frac{\partial^3 y}{\partial x^3} = Ky + M \frac{\partial^2 y}{\partial t^2}$   
Ou :  $\frac{d^3 z}{dx^3} = \left(\frac{K}{EI} - \frac{M\omega^2}{EI}\right)z$ 

qui conduite à:

$$A^{3}[c_{1}ch Al + c_{2}sh Al - c_{3}\cos Al + c_{4}\sin Al]$$
  
=  $\left(\frac{K}{EI} - \frac{M\omega^{2}}{EI}\right)(c_{1}sh Al + c_{2}ch Al + c_{3}\sin Al + c_{4}\cos Al)$ 

Ou: 
$$c_1 \left[ ch Al - \left( \frac{K}{A^3 EI} - \frac{M\omega^2}{A^3 EI} \right) sh Al \right] + c_2 \left[ sh Al - \left( \frac{K}{A^3 EI} - \frac{M\omega^2}{A^3 EI} \right) ch Al \right] - c_3 \left[ cos Al + \left( \frac{K}{A^3 EI} - \frac{M\omega^2}{A^3 EI} \right) sin Al \right] + c_4 \left[ sin Al - \left( \frac{K}{A^3 EI} - \frac{M\omega^2}{A^3 EI} \right) cos Al \right] = 0$$

En posant  $k' = \frac{3EI}{l^3}$  raideur de lame à la flexion, en remarquant que

$$\frac{\omega^2}{EI} = \frac{g A^4}{\bar{\omega}s} \text{et que} \quad M_0 = \frac{\bar{\omega}}{g} \cdot s \cdot l \quad \text{masse de lame, on obtient:}$$
$$\frac{K}{A^3 EI} - \frac{M\omega^2}{A^3 EI} = \frac{k}{k'} \cdot \frac{3}{A^3 l^3} - \frac{M}{M_0} Al = \beta \text{et}$$

$$c_1(ch Al - \beta sh Al) + c_2(sh Al - \beta ch Al) - c_3(\cos Al + \beta \sin Al) + c_4(\sin Al - \beta \cos Al)$$
$$= 0 \quad \dots (8)$$

Le système de l'équation 5, 6,7 et 8 homogènes on à  $c_1, c_2, c_3, c_4$  admet des solutions si le déterminant définis ci-dessous est nulle :

$$\Delta = 0$$

$$\Delta = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ sh Al - \propto ch Al & ch Al - \propto sh Al & sin Al + \propto cos Al & cos Al - \propto sin Al \\ ch Al - \beta sh Al & sh Al - \beta ch Al & cos Al + \beta sin Al & sin Al - \beta cos Al \end{bmatrix} = 0$$

Soit:  $-(1 + \cos Al \ chAl) + \beta (\cos Al \ sh \ Al - \sin Al \ chAl) + \propto (\sin Al \ chAl + \cos Al \ sh \ Al) + \propto \beta (1 - \cos Al \ chAl) = 0$ 

Ou: 
$$-(1 + \cos Al \ chAl) + \left[\frac{k}{k'} \cdot \frac{3}{A^3 l^3} - \frac{M}{M_0} Al\right] (\cos Al \ sh \ Al - \sin Al \ chAl) +$$

$$\frac{Cl}{Al \cdot El} (\sin Al \ chAl + \cos Al \ sh \ Al) + \frac{Cl}{Al \cdot El} \left[\frac{k}{k'} \cdot \frac{3}{A^3 l^3} - \frac{M}{M_0} \ Al\right] (1 - \cos Al \ chAl) = 0 \quad \dots (9)$$

### III.4.1 Examen des cas particuliers.

Les équations des fréquences se déduisant de l'équation générale indiquée ci-dessus (9)

A. Extrémité libre, sans masse M (encastré-libre)  $\longrightarrow M=0, K=0, c=0$ (9) devient:  $\cos AL \cdot chAL + 1 = 0$  (10)

On détermine graphiquement les racines de l'équation (10) en utilisant le logiciel SCIENTIFIC WORKPLACE :





Figure III.4 Racine de l'équation aux fréquences propres (10)

Dont les racines sont :

| ¢ | 1,876 | 4,696 | 7,857 | 10,995 | 14,132 |
|---|-------|-------|-------|--------|--------|
|---|-------|-------|-------|--------|--------|

Tableau III.1.Les solutions graphiques de l'équation des fréquences (10)

On à :

$$AL = \left(\frac{\overline{\omega}}{g}\frac{s}{EI}\right)^{1/4} \omega^{1/2} . l$$

Ou l'expression des pulsations propres sera comme suit :

$$\omega_i = (AL)^2 \cdot \sqrt{\frac{EI}{\rho SL^4}} \omega_i = (\alpha^2) \cdot \sqrt{\frac{EI}{M_0 L^3}} \quad et \qquad \alpha = AL$$

i : indice indiquant l'ordre du mode vibratoire.

L'expression des fréquences propres est donnée par la relation:

$$f_i = \frac{\omega_i}{2\pi}$$

- Pour obtenir les déformées modales, il faut utiliser les relations entre les différents coefficients $c_1, c_2, c_3, c_4$  déterminé par les conditions aux limites :

pour x = 0 on à  $c_2 = -c_4 \ etc_1 = -c_3$  En utilisant ces relations dans l'équation z'' = 0.

$$c_4(Sinh Al_i - sin Al_i) + c_3(cosh Al_i + cos Al_i) = 0$$

$$c_{3} = -\frac{(Sinh Al_{i} - sin Al_{i})}{(cosh Al_{i} + cos Al_{i})}c_{4}$$

La déformée du mode i de la poutre est alors donnée par :

$$z_i(x) = c_1 \left[ \sin Ax_i - \sinh Ax_i - \frac{(\sinh Al_i + \sin Al_i)}{(\cosh Al_i + \cos Al_i)} (-\cosh Ax_i + \cos Ax_i) \right]$$

### • Application numérique: Calcul des fréquences propres

### <u>1<sup>er</sup>cas: Cas d' une poutre</u>

Calcul des fréquences propres Lorsque on a considérée l'aube comme une poutre Les données ci-dessous sont déterminées par SOLIDWORKS:

- En prend l'épaisseur max de l'aube (cas de l'exemple) comme une épaisseur de poutre. h=10mm.
- En prendre la même larguer de profile comme une larguer de poutre, et la même longueur. (b=100mm, L=250mm)
- Avec un moment quadratique de section :

$$I_x = 8333, 3 mm^4$$
  
 $I_y = 8,3 \times 10^5 mm^4$ 

- Une section de l'aire :  $S = 10^3 mm^2$
- Une masse : m = 1,9625 kg
- le module de Young :E = 205000 Mpa
- Coefficient de poisson v = 0,29

La masse volumique  $\rho = 7850 \ kg/m^3 = 7,85. \ 10^{-6} kg/mm^3$ 

• Pour la flexion suivant l'axey :



Figure III.5 la flexion suivant l'axe y (poutre)

La force appliquée est perpendiculaire à l'axe x, en utilisant le moment d'inertie au centre de gravité de la section de poutre (Ix):

### Résultats du calcul analytique :

| Mode<br>vibratoire   | Premier | Second  | Troisième | Quatrième | cinquième |
|----------------------|---------|---------|-----------|-----------|-----------|
| Pulsation<br>(rad/s) | 829,88  | 5200,86 | 14562,66  | 28536,49  | 47173,42  |
| Fréquence<br>(Hz)    | 132,08  | 827,74  | 2317,72   | 4541,72   | 7507,88   |

Tableau III.2. Résultats de calcule analytique cas de poutre

### Résultats du code de calcul ABAQUS (ANNEXE c) :

| Mode<br>vibratoire   | Premier | Second | Troisième | Quatrième | cinquième |
|----------------------|---------|--------|-----------|-----------|-----------|
| Pulsation<br>(rad/s) | 843, 84 | 5236,5 | 24848.    | 39036     | 56484     |
| Fréquence<br>(Hz)    | 134,37  | 833,83 | 3956,7    | 6216,0    | 8994,2    |

Tableau III.3. Résultats de calcule de code ABAQUS cas de poutre

### • <u>Erreurs relatives entre le calcul analytique et le calcul d'ABAQUS:</u>

On compare les résultats du calcul analytique et les résultats du code de calcul ABAQUS pour trouver l'erreur relative entre les deux résultats:

| Mode<br>vibratoire      | Premier | Second | Troisième | Quatrième | cinquième |
|-------------------------|---------|--------|-----------|-----------|-----------|
| Fréquence<br>analytique | 132,08  | 827,74 | 2317,72   | 4541,72   | 7507,88   |
| Fréquence<br>Abaqus     | 134,37  | 833,83 | 3956,7    | 6216,0    | 8994,2    |
| Erreur<br>relative      | 0.01    | 0.007  | 0.7       | 0.36      | 0.19      |

Tableau III.4. Erreurs relatives entre le calcul analytique et le calcule de code ABAQUS

### ✓ Conclusion

On constate que les erreurs calculées entre la méthode analytique et numérique concernant la poutre sont très minimisées surtout pour les premiers modes; ce qui prouve une très bonne concordance des résultats entre ces deux méthodes et l'influence de type de maillage et le choix de la taille de l'élément.

### 2<sup>eme</sup> cas: Cas d' une Aube :

Calcul des fréquences propres d'une aube droite (section constante) avec les données ci-dessous déterminé par SOLIDWORKS (ANNEXE A):

- Centre de gravité de profile : (millimètres)

$$X = 42,97$$
  
 $Y = 4,98$   
 $Z = 250,00$ 

- Une longueur l = 250 mm = 0,25m
- Une section de profile :  $S = 635,47 mm^2 = 6,3547.10^{-4}m^2$
- Le module de Young :  $E = 2,1.10^{11} N/m^2 = 210000 Mpa$
- Coefficient de poisson v = 0,29
- La masse volumique  $\rho = 7850 \ kg/m^3 = 7,85. \ 10^{-6} kg/mm^3$
- $M_0 = 1285,52 g = 1,285 kg$
- Moment d'inertie de la profile de l'aube, au centre de gravité  $(mm^4)$ :

$$lx = 4696,71(mm^4)$$
  
 $ly = 321600,19(mm^4)$ 

Pour la flexion suivant l'axey :



Figure III.6 la flexion suivant l'axe y (aube)

La force appliqué est perpendiculaire a l'axe x, en utilise le moment d'inertie au centre de gravité de profile d'aube (Ix):

| Mode<br>vibratoire   | Premier | Second  | Troisième | Quatrième | cinquième |
|----------------------|---------|---------|-----------|-----------|-----------|
| Pulsation<br>(rad/s) | 761,97  | 4775,28 | 13371,01  | 26201,38  | 43313,28  |
| Fréquence<br>(Hz)    | 121,27  | 760,01  | 2128,06   | 4170,07   | 6893,52   |

Résultats du calcul analytique :

Tableau III.5. Résultats de calcule analytique cas d'une aube

| Mode<br>vibratoire   | Premier | Second | Troisième | Quatrième | cinquième |
|----------------------|---------|--------|-----------|-----------|-----------|
| Pulsation<br>(rad/s) | 787, 32 | 4803,0 | 23302     | 34212     | 46145     |
| Fréquence<br>(Hz)    | 125,37  | 764,81 | 3710,5    | 5447,7    | 7348,0    |

### Résultats du code de calcule ABAQUS (ANNEXE c) :

Tableau III.6. Résultats de calcule de code ABAQUS cas d'une aube

### Erreurs relatives entre les résultats analytique et les résultats de code de calcule ABAQUS:

On compare les résultats du calcul analytique et les résultats du code de calcul ABAQUS pour trouver l'erreur relative entre les deux résultats:

| Mode vibratoire         | Premier | Second | Troisième | Quatrième | cinquième |
|-------------------------|---------|--------|-----------|-----------|-----------|
| Fréquence<br>analytique | 121,27  | 760,01 | 2128,06   | 4170,07   | 6893,52   |
| Fréquence<br>Abaqus     | 125,37  | 764,81 | 3710,5    | 5447,7    | 7348,0    |
| Erreur relative         | 0.03    | 0.006  | 0.74      | 0.30      | 0.06      |

Tableau III.7. Erreurs relatives entre le calcul analytique et le calcule de code ABAQUS

### Conclusion

On constate que les erreurs calculées entre la méthode analytique et numérique concernant l'aube sont très minimisées surtout pour les premiers modes; ce qui prouve une très bonne concordance des résultats entre ces deux méthodes et l'influence de type de maillage et le choix de la taille de l'élément.

### Erreurs relatives entre le cas du poutre et d'aube:

(On prend en considération les résultats de la simulation par ABAQUS)

On compare les résultats du code de calcul ABAQUS pour le cas de poutre et le cas d'aube pour trouver l'erreur relative entre les deux résultats:

| Mode vibratoire            | Premier | Second | Troisième | Quatrième | cinquième |
|----------------------------|---------|--------|-----------|-----------|-----------|
| Fréquencecasd'aube         | 125,37  | 764,81 | 3710,5    | 5447,7    | 7348,0    |
| Fréquence<br>Cas de poutre | 134,37  | 833,83 | 3956,7    | 6216,0    | 8994,2    |
| Erreur relative            | 0,06    | 0,08   | 0,06      | 0,12      | 0,18      |

Tableau III.8. Erreurs relatives entre les résultats des fréquences de 1<sup>er</sup> et 2<sup>éme</sup> cas

### ✓ Conclusion

Pour que les résultats des deux forme soit très proche d'eux même on a pris leurs dimensions proportionnelles qui corresponds a la théorie d'égale résistance.

Après calcul On a trouvé que les erreurs calculées entre la poutre et l'aube sont très minimisées surtout pour les premiers modes; ce qui prouve une très bonne concordance des résultats entre ces deux modèles géométriques.

# Les cinq premiers modes propres de vibration de l'aube sont représentés sur les figures suivantes :



Figure III.7 Déformée modale 1





Figure III.8 Déformée modale 2



Figure III.9 Déformée modale 3



Figure III.10 Déformée modale 4



Figure III.11 Déformée modale 5

B. Extrémité libre avec masse M, K=0, C=0. (encastre-libre)  

$$1 + \cos AL \ chAL + \frac{M}{M_0} Al(\cos Al \ sh \ Al - sin \ Al \ chAl ) = 0$$

Soit :

$$-\frac{M}{M_0} Al = \frac{1 + \cos AL \, chAL}{\cos Al \, sh \, Al - \sin Al \, chAl} \qquad \dots (11)$$

Le diagramme fig. a sur lequel on a tracé les fonctions:

$$y_1 = -\frac{M}{M_0} Al$$
  $et$   $y_2 = \frac{1 + \cos AL \ chAL}{\cos Al \ sh \ Al - sin \ Al \ chAl}$ 



Figure III.12 graphe de l'harmonique 2

Donne les solutions pour diverses valeurs de  $M/M_0$  variant de 0.1 à 1.5 jusqu'à l'harmonique

2.



Figure III.13 Détermination des fréquences propres de l'aube d'une section constante

### • Application numérique:



```
• pour l'extrémité libre avec masse M ou: \frac{M}{M_0} = 0.5
```

Figure III.14 solution graphique de l'équation (11) (cas de l'application)

Dont les racines sont :

| ¢                                                                                                      | 1,415 | 4,112 | 7,190 | 10,2988 | 13,421 |  |
|--------------------------------------------------------------------------------------------------------|-------|-------|-------|---------|--------|--|
| Tableau II.9.Les solutions graphiques de l'équation des fréquences (11)( <i>cas de l'application</i> ) |       |       |       |         |        |  |

Calcul des fréquences propres d'une aube droite (section constante) avec les données ci-

dessous déterminé par SOLIDWORKS (ANNEXE A):

- Centre de gravité de profile : (millimètres)

$$X = 42,97$$
  
 $Y = 4,98$   
 $Z = 250,00$ 

- Une longueur l = 250 mm = 0,25m
- Une section de profile :  $S = 635,47 mm^2 = 6,3547.10^{-4}m^2$
- Le module de Young :  $E = 2, 1.10^{11} N/m^2 = 210000 Mpa$
- Coefficient de poisson v = 0,29
- La masse volumique  $\rho = 7850 \ kg/m^3 = 7,85. \ 10^{-6} kg/mm^3$
- $M_0 = 1285,52 \ g = 1,285 \ kg$
- $-M = 0,6425 \, kg$
- Moment d'inertie de la profile de l'aube, au centre de gravité  $(mm^4)$ :

 $Ix = 4696,71(mm^4)Iy = 321600,19(mm^4)$
| Mode<br>vibratoire   | Premier | Second  | Troisième | Quatrième | cinquième |
|----------------------|---------|---------|-----------|-----------|-----------|
| Pulsation<br>(rad/s) | 433,91  | 3664,37 | 11203,45  | 22986,21  | 39035,88  |
| Fréquence<br>(Hz)    | 69,06   | 583,20  | 1783,08   | 3658,37   | 6212,75   |

#### Résultats du calcul analytique :

Tableau III.10. Résultats de calcule analytique cas encastré libre avec masse M

#### Résultats du code de calcule SOLIDWORKS (ANNEXE B) :

| Mode<br>vibratoire   | Premier | Second | Troisième | Quatrième | cinquième |
|----------------------|---------|--------|-----------|-----------|-----------|
| Pulsation<br>(rad/s) | 452,66  | 3704,8 | 10870.0   | 23035     | 41862     |
| Fréquence<br>(Hz)    | 72,08   | 589,94 | 1730,9    | 3668      | 6666      |

Tableau III.11. Résultats de calcule de code SOLIDWORKS cas encastré libre avec masse M

#### Erreurs relatives entre les résultats analytiques et les résultats obtenus par SOLIDWORKS:

On compare les résultats du calcul analytique et les résultats du code de calcul

SOLIDWORKS pour trouver l'erreur relative entre les deux résultats:

| Mode<br>vibratoire      | Premier           | Second             | Troisième          | Quatrième         | cinquième |
|-------------------------|-------------------|--------------------|--------------------|-------------------|-----------|
| Fréquence<br>analytique | 69,06             | 583,20             | 1783,08            | 3658,37           | 6212,75   |
| Fréquence<br>SOLIDWORKS | 72,08             | 589,94             | 1730,9             | 3668              | 6666      |
| Erreur relative         | 0,04              | 0,01               | 0,01               | 0,01              | 0,01      |
| Tableau II              | 1.12. Erreurs rel | atives entre le ca | lcul analytique et | le calcule de coo | de        |

SOLIDWORKS

#### Conclusion

On a utilisé l'étude de simulation SolidWorks pour la configuration encastré porté une masse M a son extrémité parce qu'il contient un complément d'étude de la masse a distance et pour varier notre connaissances en utilisant différentes logiciels de simulation.

Apres calcul et simulation on a constaté que les erreurs calculées entre la méthode analytique et numérique concernant l'aube sont très minimisées surtout pour les premiers modes; ce qui

prouve une très bonne concordance des résultats entre ces deux méthodes et l'influence de type de maillage et le choix de la taille de l'élément entre en jeu.

#### III.5analyses des forces aérodynamique applique sur l'aube.

#### **4** Influence de la force centrifuge.

La force centrifuge a pour effet de raidir l'ailette et d'accroitre la fréquence propre. On peut employer la formule de Scharffenberg qui n'est rigoureusement valable que dans le cas particulier d'une aube de section constante encastrée avec l'autre extrémité libre.

$$\omega^2 = \omega_0^2 + \Omega^2 \left[ 2\frac{R}{L} - \frac{1}{2} \right]$$

 $\omega$ : Pulsation compte tenu de la force centrifuge.

 $\omega_0$ : Pulsation sans tenir compte de l'influence de la force centrifuge.

 $\Omega$ : vitesse angulaire de la roue mobile.

*R* :rayon moyen, *L* langueur de l'aube.

Lorsque la rigidité provoquée par la force centrifuge devient prépondérante devant la rigidité propre de l'ailette ce qui peut être le cas pour certaines de section uniforme ou non se ramène à la détermination des figures de vibration d'une chaine suspendue par son extrémité et soumise à la pesanteur.

La force centrifuge appliquée à un élément d'ailette de longueur dx et de masse  $\frac{\overline{\omega}}{g}$ . S. dx est :

$$\frac{\overline{\omega}}{g}.S.dx\,(R-x)\Omega^2$$

La tension provoquée dans une section à la distance x est :

$$T = \frac{\overline{\omega}}{g} \Omega^2 \cdot \int_0^x (R - x) S \cdot dx$$

Les formes d'ailettes habituellement utilisées sont telles que la fonction T(x) peut sensiblement être représentée par une droite :

Chapitre III

$$T(x) = \propto \frac{P}{g} \Omega^2. R. x \tag{1}$$

En posant *P*, *l* (poids et longueur de l'ailette) et  $\propto$  coefficient à déterminer fonction de la forme de l'aube.

Si la rigidité de l'aube peut être négligée vis-à-vis des efforts centrifuges l'étude revient à celle d'une chaine suspendue pour laquelle:

$$T(x) = P.x \tag{2}$$

Pour passer 2 à 1 il suffit de remplacer dans l'étude de la chaine l'accélération de la pesanteur g par l'accélération centrifuge:  $\propto \Omega^2 R$ 

La figure b précise les actions appliquées à un élément de chainette traduit par une équation de projection conduit à :

$$x\frac{\partial^2 y}{\partial x^2} + \frac{\partial y}{\partial x} = \frac{1}{g}\frac{\partial^2 y}{\partial t^2}$$
(3)

Qui, en admettant la vibration propre de la chainette définie par:

$$y = z(x) \sin \omega t$$

Devient :

$$x\frac{d^2z}{dx^2} + \frac{dz}{dx} - \frac{\omega^2}{g}z = 0$$
(4)

Dont la solution est exprimée par une série entière :

$$z = a_0 + a_1 \cdot x + a_2 x^2 \dots + a_n x^n$$

Dont les coefficients obtenus par identification donnent :

$$z = 1 - \frac{\omega^2}{g} x + \left(\frac{\omega^2}{g}\right)^2 \frac{x^2}{2^2} - \left(\frac{\omega^2}{g}\right)^3 \frac{x^3}{2^2 \cdot 3^2} \dots + (-1)^n \left(\frac{\omega^2}{g}\right)^n \frac{x^n}{2^2 \cdot 3^2 \cdot 4^2 \dots n^2}$$

Qui doit satisfaire aux conditions aux limites, en particulier: x = l, y = 0,

Soit z(l) = 0. d'où l'équation:

$$z = 1 - \frac{\omega^2}{g} l + \left(\frac{\omega^2}{g}\right)^2 \frac{l^2}{2^2} - \left(\frac{\omega^2}{g}\right)^3 \frac{l^3}{2^2 \cdot 3^2} \dots + (-1)^n \left(\frac{\omega^2}{g}\right)^n \frac{l^n}{2^2 \cdot 3^2 \cdot 4^2 \dots n^2}$$

Qui donne les pulsations des mouvements d'oscillations propres, les trois premières solutions sont:

$$\frac{\omega^2 \cdot l}{g} = 1.446 \dots 7.619 \dots 18.69$$

## **Conclusion générale**

Ce travail de mémoire a traité en premier lieu une étude statique d'une aube de turbine axiale considérée comme poutre de différentes configurations, dont on a calculé les contraintes max, les flèches max et les moments de flexion max pour différentes configurations de poutres et d'aubes fini par comparaison des résultats.

Ensuite on a entamé une étude dynamique d'une aube par deux approches analytique et numérique par le code de calcul par éléments finis ABAQUS et SolidWorks

- Suite à cette étude nous nous sommes parvenu aux résultats suivants :

on a déterminé les contraintes max, les flèches max et les moments de flexion max pour différentes configurations de poutres et aubes, par l'étude statique analytique et numérique avec le logiciel RDM6.

Calcul et détermination des pulsations et des fréquences naturelles des aubes analytiquement à partir de la résolution des équations différentielles du mouvement analytiquement par la méthode de Euler et numériquement grâce au codes de calculs par éléments finis ABAQUS, RDM6, SolidWorks.

Le comportement vibratoire des aubes est fortement influencé par le facteur de forme (rapport longueur/largeur).

Les résultats du calcul analytique et numérique sont en parfaites concordances, ce qui permet de valider l'approche numérique.

En plus des résultats trouvé nous avons pu grâce à ce travail, compléter les lacunes de notre formation et nous somme parvenu à apprendre et voir même maitriser quelques logiciels (ABAQUS, RDM6, SolidWorks, EXCEL...etc.).

Annexe A

# Annexe A

# Détermination des caractéristiques géométriques d'une aube avec SOLIDWORKS.

Les caractéristiques géométriques de l'aube telle que:

- $\circ$  La section.
- Les moments.
- Le centre de gravité.

Reste toujours la base dans tous calculs de résistance mécanique ou vibratoire, Le travail que nous présentons dans cette annexe a pour but de déterminer les caractéristiques géométriques d'une aube Avec **SOLIDWORKS** :

#### Conception d'une aube sur SOLIDWORKS:

• Création de profil d'une aube:

Ce tableau présente les coordonnés des points de profile :Naca 65 (fi=28.63)

| Intra      | ados       | Extrados   |            |  |  |
|------------|------------|------------|------------|--|--|
| X          | Y          | X          | Y          |  |  |
| 0          | 0          | 0          | 0          |  |  |
| 0,68897028 | -6,22E-01  | 0,31102972 | 0,87542346 |  |  |
| 0,97698291 | -0,714083  | 0,52301709 | 1,09379174 |  |  |
| 1,53181243 | -0,8197935 | 0,96818757 | 1,44925279 |  |  |
| 2,86971694 | -0,908956  | 2,13028306 | 2,15096904 |  |  |
| 5,48444219 | -0,9140565 | 4,51555782 | 3,33077316 |  |  |
| 8,05630618 | -0,8255264 | 6,94369382 | 4,35023724 |  |  |
| 10,6013185 | -0,6966582 | 9,39868147 | 5,26321297 |  |  |
| 15,6344998 | -0,3837561 | 14,3655002 | 6,83759166 |  |  |
| 20,6146207 | -0,0560186 | 19,3853793 | 8,13829415 |  |  |
| 25,5566894 | 0,25905601 | 24,4433106 | 9,19596955 |  |  |
| 30,4707691 | 0,55068799 | 29,5292309 | 10,024014  |  |  |
| 35,3652417 | 0,81127097 | 34,6347583 | 10,6321415 |  |  |
| 40,2470549 | 1,04150033 | 39,7529451 | 11,0212759 |  |  |
| 45,1227115 | 1,25548677 | 44,8772885 | 11,1784522 |  |  |
| 50         | 1,46679212 | 50         | 11,0907921 |  |  |
| 54,8879945 | 1,68835439 | 55,1120055 | 10,7455846 |  |  |
| 59,7949781 | 1,89046042 | 60,2050219 | 10,1723158 |  |  |
| 64,7268847 | 2,04984949 | 65,2731153 | 9,393563   |  |  |
| 69,6878682 | 2,14682401 | 70,3121318 | 8,42787798 |  |  |
| 74,6805495 | 2,16333506 | 75,3194505 | 7,29169051 |  |  |
| 79,7052254 | 2,07612457 | 80,2947747 | 6,00615098 |  |  |
| 84,7602885 | 1,86281975 | 85,2397115 | 4,59101579 |  |  |
| 89,8397803 | 1,48928141 | 90,1602197 | 3,07727339 |  |  |
| 94,9319066 | 0,91003083 | 95,0680934 | 1,50668581 |  |  |
| 100        | 0          | 100        | 0          |  |  |

- Ouvrir une nouvelle pièce :
- Sélectionner le plan de dessus.
- clique sur la fonction point et entrer les coordonnées de ces points représentées

dans le tableau(x, y), en utilisant la fonction fixe **Fixe** pour fixer les point :



🖊 Vous devez avoir :

| *                                      | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * |   |   |   |
|----------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ************************************** | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * |

Cliquer sur la fonction spline de Tracez la ligne en respectant l'ordre des points
vous devez avoir :



-En fin en ajoutant la matière par la fonction bossage in entrer la valeur de la longueur
Vous devez avoir :



• <u>Choix du matériaux</u> :

Cliquer sur la fonction matériaux Matériau, choisir : éditer le matériau,
 Choisir ou ajouter un matériau de la bibliothèque suivante, avec les propriétés mécanique

Matériau

nécessaires:(Ces propriétés que nous avons utilisé pour le calcul analytique et numérique )

| 🔺 📔 Acier                                                                                                | Propriétés Table                                     | s & Courbes Appa                                       | rence Hachures                             | Personnalisé                       | Données d'application   F     |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|--------------------------------------------|------------------------------------|-------------------------------|
| <ul> <li>         = 1023 Tôle d'acier au carbone (SS)</li></ul>                                          | Propriétés du m<br>Les matériaux d<br>d'abord copier | natériau<br>e la bibliothèque p<br>le matériau vers un | ar défaut ne sont p<br>e bibliothèque pers | as modifiables.<br>connalisée afin | Vous devez<br>de le modifier. |
| 🚆 AISI 1010 Barre d'acier laminée à chaud                                                                | Type de modèle                                       | Plasticité - von Mi                                    | ses 🗸                                      |                                    |                               |
| AISI 1015 Acier étiré à froid (SS)                                                                       | Unités:                                              | SI - N/m^2 (Pa)                                        | ¥                                          | Créer cou                          | urbe                          |
| AISI 1020 Acier laminé à froid                                                                           | Nom:                                                 | AISI 1035 Acier (S                                     | 5)                                         | contrainte-dé                      | formation                     |
| AISI 1045 Acier étiré à froid                                                                            | Critère de ruine<br>par défaut:                      | Contrainte de vor                                      | n Mises max \vee                           |                                    |                               |
| e AISI 304<br>AISI 316 Barre d'acier inoxydable recuit (SS)                                              | Source:                                              |                                                        |                                            |                                    |                               |
| AISI 316 Tôle d'acier inoxydable (SS)                                                                    | Durabilité:                                          | Définie                                                |                                            |                                    |                               |
| AISI 347 Acier inoxydable recuit (SS)                                                                    | Propriété                                            |                                                        | Valeur                                     | Unités                             |                               |
| 🚰 AISI 4130 Acier recuit à 865C                                                                          | Module d'élastic                                     | ité                                                    | 2.049999984e+011                           | N/m^2                              |                               |
| 💭 AISI 4130 Acier normalisé à 870C                                                                       | Coefficient de Po                                    | pisson                                                 | 0.29                                       | S.O.                               |                               |
| 🚰 AISI 4340 Acier recuit                                                                                 | Limite de traction                                   | n                                                      | 585000002.9                                | N/m^2                              |                               |
| 🚰 AISI 4340 Acier normalisé                                                                              | Limite d'élasticit                                   | é                                                      | 282685049                                  | N/m^2                              |                               |
| 🚰 AISI Acier inoxydable type 316L                                                                        | Module tangent                                       |                                                        |                                            | N/m^2                              |                               |
| 🚰 AISI Acier à outil type A2                                                                             | Coefficient de di                                    | latation thermique                                     | 1.1e-005                                   | /K                                 |                               |
| 🚰 Acier allié                                                                                            | Masse volumiqu                                       | e                                                      | /850                                       | kg/m^3                             |                               |
| 🚰 Acier allié (SS)                                                                                       | Facteur d'ecroui                                     | ssage                                                  | 0.85                                       | 5.0.                               |                               |
| STM A36 Acier                                                                                            |                                                      |                                                        |                                            |                                    |                               |
| iquez <u>ici</u> pour accéder à plus de matériaux à l'aide du Ouvrir<br>ortail Web SOLIDWORKS Materials. |                                                      | Appliquer Fer                                          | mer Enregistrer                            | Config                             | AideAdtiver Wind              |

## Les caractéristiques géométriques de la section du profile de l'aube

- **4** on sélectionne la section verticale de l'aube.
- 4 Cliquer sur la fonction outils, évaluer, propriétés de la section.
- **Vous devez avoir cette fenêtre :**

| 2 | Propriétés de la section 🛛 – 🗀 🔼 🐴                                                                                                                                                                                                                                                                              |   | Pièce1.SLDPRT                           | Rechercher de     |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------|-------------------|
| Ø | Face<1> Options                                                                                                                                                                                                                                                                                                 | P |                                         | 💩 🔯 🕲 📽 🔹         |
|   | Recalculer                                                                                                                                                                                                                                                                                                      | 3 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ) 🔞   路 🐝 附   🎁 🔹 |
|   |                                                                                                                                                                                                                                                                                                                 | Ø | Défaut 🗸 🔗 🖉 🖡                          | 🗇 🏈 📁 🍐 🏷 🖉 🕼     |
|   |                                                                                                                                                                                                                                                                                                                 | Г |                                         |                   |
|   | Indiquer les valeurs de par défaut 🗸 🗸                                                                                                                                                                                                                                                                          |   |                                         |                   |
|   | Propriétés de section de la face sélectionnée de Pièce1                                                                                                                                                                                                                                                         |   |                                         |                   |
|   | Aire = 653.47 millimètres^2                                                                                                                                                                                                                                                                                     |   |                                         |                   |
|   | Centre de gravité par rapport à l'origine du système de coordonnées de sort<br>X = 42.97<br>Y = 4.98<br>Z = 250.00                                                                                                                                                                                              |   |                                         |                   |
|   | Moment d'inertie de la zone, au centre de gravité: (millimètres ^ 4)           Lxx = 4914.14         Lxy = -8297.99         Lxz = 0.00           Lyx = -8297.99         Lyy = 321382.76         Lyz = 0.00           Lzx = 0.00         Lzy = 0.00         Lzz = 326296.90                                      |   |                                         |                   |
|   | Moment d'inertie polaire de la zone, au centre de gravité = 326296.90 millim                                                                                                                                                                                                                                    |   |                                         | - 17              |
|   | Angle entre les axes principaux et les axes de pièce = 1.50 degrés                                                                                                                                                                                                                                              |   |                                         |                   |
|   | Principaux moments d'inertie de la zone, au centre de gravité: (millimètres ^<br>lx = 4696.71<br>ly = 321600.19                                                                                                                                                                                                 |   |                                         |                   |
|   | Moment d'inertie de la zone, au système de coordonnées de sortie: (millimè           LXX = 40862853.40         LXY = 148035.44         LXZ = 7020427.97           LYX = 148035.44         LYY = 42369906.22         LYZ = 812930.94           LZX = 7020427.97         LZY = 812930.94         LZZ = 1549242.92 |   |                                         |                   |
|   |                                                                                                                                                                                                                                                                                                                 |   |                                         | Activ             |
|   | < >                                                                                                                                                                                                                                                                                                             |   |                                         | Accéde            |
|   | Aide Imprimer Copier dans le Presse-papiers                                                                                                                                                                                                                                                                     |   |                                         | activer           |
|   |                                                                                                                                                                                                                                                                                                                 |   |                                         |                   |

#### Les caractéristiques géométriques volumiques de l'aube

Cliquer sur la fonction outils, évaluer, propriétés de masse.

- Vous devez avoir :

| ;          | Propriétés de mas                                                                                                                                                                                                                                   | sse – 🗆 🗙                                                                            | Pièce1.SLDPRT |              |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------|--------------|
| (          | Pièce1.SLDPRT                                                                                                                                                                                                                                       | Options                                                                              |               | ) گن<br>چو ج |
| -          | Remplacer les propriétés de masse Re<br>✓ Inclure les corps/composants cachés<br>Créer la fonction Centre de masse                                                                                                                                  | calculer                                                                             | ☐ Défaut      |              |
| -          | Afficher la masse du cordon de soudure<br>Indiquer les valeurs de<br>coordonnées relatives à:                                                                                                                                                       | aut 🗸 🗸                                                                              |               |              |
| •<br>-<br> | Propriétés de masse de Pièce1<br>Configuration: Défaut<br>Système de coordonnées: par défaut                                                                                                                                                        | ^                                                                                    |               |              |
| -          | Densite = 0.01 grammes par millimetre cube<br>Masse = 1285.52 grammes<br>Volume = 163759 94 millimètres cubes                                                                                                                                       |                                                                                      |               |              |
| -          | Superficie = 52384.09 millimètres carrés<br>Centre de gravité: (millimètres)<br>X = 43.02<br>Y = 4.96                                                                                                                                               |                                                                                      |               |              |
|            | Z = 124.96<br>Principaux axes et moments d'inertie: (grammes<br>Pris au centre de gravité.<br>Ix = (0.00, 0.00, 1.00) Px = 641885.28<br>Iy = (1.00, 0.03, 0.00) Py = 6701663.65                                                                     | * millimètres carrés )                                                               | Y IZ          |              |
|            | Iz = (-0.03, 1.00, 0.00) Pz = 7324557.99<br>Moments d'inertie: (grammes * millimètres carr<br>Pris au centre de gravité et aligné avec le systèm<br>Lox = 6702081.26 Loy = 16124.84<br>Lyx = 16124.84 Lyy = 7324140.27<br>Lzx = .741.38 Lzy = 37.04 | és )<br>e de coordonnées de sor<br>Lxz = -741.38<br>7 Lyz = 337.04<br>Lyz = 641885.3 | X             |              |
|            | Moments d'inertie: ( grammes * millimètres carr<br>Pris au système de coordonnées de sorie.<br>lox = 26807917.34 loy = 290578.75<br>lyx = 290578.75 lyy = 29777287.84<br>lyx = 6909876.10 lyx = 7977287.49                                          | és )<br>Ixz = 6909826.<br>8 Iyz = 797584.9<br>Izz = 305252. ×                        |               |              |
|            | Aide Imprimer                                                                                                                                                                                                                                       | Copier dans le Presse-papiers                                                        |               |              |

#### ✓ <u>Conclusion :</u>

On peut déterminer avec SOLIDWORKS :

- Le profil en 2D
- La pièce en 3D
- L'aire de section de l'aube, son centre de gravité et ses moments d'inertie principaux.
- La superficie de l'aube totale, son volume, sa densité, sa masse, son centre de gravité, ses moments principaux d'inertie pris au centre de gravité...etc
- La matière et leurs propriétés.

Annexe B

## Annexe B

### Simulation de la vibration d'une aube avec SOLIDWORKS

La réalisation complète d'une simulation d'une aube à une section constante encastré libre avec une masse en tête et déterminer leurs fréquences propres lorsqu'il vibre en flexion s'effectue après un passage successif dans les étapes intégré dans le code de calcul **SOLIDWORKS** suivant :

- Apre la conception de l'aube et le choix du matériau (voire ANNEXE E).
  - Cliquez sur l'icône simulation puis étude, sélectionnez fréquence.

|                                      | Etude                                                                                                          | ?         |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------|
| <b>~</b> :                           | × ×                                                                                                            |           |
| Messa                                | age                                                                                                            | ^ ^       |
| Etudie<br>défori<br>pour l<br>linéai | e les contraintes, déplacements,<br>mations et le coefficient de sécu<br>les composants avec un matériar<br>re | rité<br>J |
| Nom                                  |                                                                                                                | ^         |
|                                      | Static 1                                                                                                       |           |
| Туре                                 |                                                                                                                | ^         |
| <b>C</b>                             | Static                                                                                                         |           |
| Q                                    | Thermique                                                                                                      |           |
| QY                                   | Fréquence                                                                                                      |           |
| <u>c</u>                             | Flambage                                                                                                       |           |
| Ŷ                                    | Test de chute                                                                                                  |           |
| d'a                                  | Fatigue                                                                                                        |           |
| <b>Q</b> D                           | Conception d'un appareil sou<br>pression                                                                       | s         |
| Fr                                   | Etude de conception                                                                                            |           |

- sélectionnez l'aube pour définie la pièce.

| Pièce1 (-[SW]AISI 1035 Acier (SS)-) |     |
|-------------------------------------|-----|
| Connexions                          |     |
| 🚱 Déplacements imposés              |     |
| 🛃 Chargements externes              | Y   |
| Maillage                            | Y Y |

- Cliquez sur l'icône déplacements imposés puis géométrie fixe pour ajouter un encastrement.
- Sélectionnez la face encastré, cliquez sur ok.

| Déplacement imporé       | 0                    |               |                  |
|--------------------------|----------------------|---------------|------------------|
|                          | <u> </u>             |               |                  |
|                          |                      |               |                  |
| ype Fractionner          |                      |               |                  |
|                          |                      |               |                  |
| xemple                   |                      |               |                  |
|                          |                      |               |                  |
|                          |                      |               |                  |
|                          |                      |               |                  |
|                          | 0                    |               |                  |
|                          | — ſ                  |               |                  |
| tandard (Géométrie fixe) | ^                    |               |                  |
| Géométrie fixe           |                      |               |                  |
| Appui plan               |                      |               |                  |
| Pivot fixe               |                      |               |                  |
| Fares1x                  |                      |               |                  |
|                          |                      |               | OGéométrie fixe: |
|                          |                      |               |                  |
|                          | <b></b>              |               |                  |
|                          |                      |               |                  |
| 0                        |                      |               |                  |
| Modèle Vues 3D           | Etude de mouvement 1 | Y Fréquence 1 |                  |

- Cliquez sur l'icône chargements externes puis chargements/masse à distance pour ajouter une masse.
- Sélectionnez dans la liste type, chargements/masse (connexion rigide).
- Entrez les cordonnées de la position de masse (centre de gravité de l'aube dans notre cas)

| 🍤 📰 🛛 🕅 ↓ 🔶 🛛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Chargements/Masse à distance ③                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |
| r x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |
| ype Fractionner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| ysteme de coordonnees de reterence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Coordonnée X (mm): 42.97      |
| Global                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Coordonnée ¥ (mm): 4.98       |
| 🔿 Défini par l'utilisateur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Coordonnée Z (mm): 250        |
| <u>م</u> ر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Masse à distance (kg): 0.6425 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lxx (kg.m^2); 0               |
| FI and the second secon | Lyy (kg.m^2): 0               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lzz (kg.m^2): 0               |
| 42.97 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lxy (kg.m^2): 0               |
| <b>1.</b> 4.98 ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lyz (kg.m^2): 0               |
| <i>k</i> ₂ 250 ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lxz (kg.m^2): 0               |
| Force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ^                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| <i>₽</i> 0 ✓ ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |

- Entrez la valeur de la masse: (notre cas M = 0,6425 kg)

| Cł      | hargements/M<br>× | lass | e à distance |        | 2 |
|---------|-------------------|------|--------------|--------|---|
| ype     | Fractionner       |      |              |        |   |
| 2       | U                 |      |              | × 1    | ^ |
| Ż       | 0                 |      |              | $\sim$ |   |
| M       | oment             |      |              | ~      |   |
| ' Ma    | asse              |      |              | ^      |   |
| ılıılıı | SI                |      |              | $\sim$ |   |
| ŀ       | 0.6425            | ~    | kg           |        |   |
| ->>>    | 0                 | ~    | kg.m^2       |        |   |
| rr      | 0                 | ~    | kg.m^2       |        |   |
| ZZ      | 0                 | ~    | kg.m^2       |        |   |
| XY      | 0                 | ~    | kg.m^2       |        |   |
| ΥZ      | 0                 | ~    | kg.m^2       |        |   |
|         | 0                 | ~    | kg.m^2       |        |   |

- cliquez sur ok.



- Cliquez sur l'icône maillage puis sélectionnez créer le maillage pour généré un maillage
- Choisi la taille de maillage, cliquez sur ok.



- Cliquez sur l'icône fréquence puis sélectionnez propriété.
- Entrez 20 dans la ligne de le nombre des fréquences.
- Cochez la ligne sélection de serveur automatique, puis cliquez sur ok.

|            |                                         | Fréq                                  | uence          |           | ×    |
|------------|-----------------------------------------|---------------------------------------|----------------|-----------|------|
| Propriétés | Effets therm                            | iques/Ecoulement                      | Remarque       |           |      |
| Option     | s                                       |                                       |                |           |      |
|            | mbre de fréc                            | uences                                | 20             |           |      |
|            | Calculer les<br>de: (Décalag            | fréquences autour<br>le de fréquence) | 0              | Hertz     |      |
|            | nite supérieu                           | re de fréquence:                      | 0              | Hertz     |      |
| Option:    | s de contact :<br>itomatique<br>nplifié | olidaire incompat                     | ible           |           |      |
| Sir        | nplifié                                 |                                       |                |           |      |
| O Pré      | écis (plus lent                         | )                                     |                |           |      |
| Solveur    | lection du co                           |                                       |                |           |      |
| ▼ 3e       | FEPIus                                  |                                       |                |           |      |
| Ter        | nir compte du                           | J Stress Stiffening                   |                |           |      |
|            | iliser une fait                         | le raideur pour st                    | abiliser le mo | dèle      |      |
|            |                                         | Cillian DO Davi                       |                |           |      |
| Dossier    | de resultats                            | C:\USers\PC\Desk                      | top\nouvelle   | etudes    |      |
|            |                                         |                                       |                |           |      |
|            |                                         |                                       |                |           |      |
|            |                                         |                                       |                |           |      |
|            |                                         |                                       |                |           |      |
|            |                                         | ОК                                    | Annuler        | Appliquer | Aide |

-

- Cliquez sur l'icône fréquence puis sélectionnez exécuter.



Cliquez sur l'icône résultats puis sélectionnez lister les fréquences de résonance.

Modes propres

| iéro de mo | Fréquence(Rad/sec) | Fréquence(Hertz) | Période(secondes) |
|------------|--------------------|------------------|-------------------|
| 1          | 452.93             | 72.087           | 0.013872          |
| 2          | 3467.5             | 551.87           | 0.001812          |
| 3          | 3706.7             | 589.94           | 0.0016951         |
| 4          | 4548.9             | 723.98           | 0.0013812         |
| 5          | 10876              | 1730.9           | 0.00057772        |
| 6          | 13619              | 2167.6           | 0.00046135        |
| 7          | 20884              | 3323.9           | 0.00030085        |
| 8          | 22018              | 3504.3           | 0.00028537        |
| 9          | 23047              | 3668             | 0.00027263        |
| 10         | 24218              | 3854.4           | 0.00025944        |
| 11         | 31694              | 5044.3           | 0.00019824        |
| 12         | 35329              | 5622.8           | 0.00017785        |
| 13         | 41884              | 6666             | 0.00015002        |
| 14         | 43605              | 6939.9           | 0.00014409        |
| 15         | 47163              | 7506.3           | 0.00013322        |
| 16         | 48308              | 7688.4           | 0.00013007        |
| 17         | 52538              | 8361.6           | 0.00011959        |
| 18         | 55046              | 8760.8           | 0.00011414        |
| 19         | 56979              | 9068.4           | 0.00011027        |
| 20         | 58241              | 9269.4           | 0.00010788        |
| 21         | 61828              | 9840.3           | 0.00010162        |
| 22         | 65474              | 10420            | 9.5965e-005       |
| 23         | 68741              | 10941            | 9.1403e-005       |
| 24         | 73188              | 11648            | 8.585e-005        |
| 25         | 73611              | 11716            | 8.5357e-005       |

Pour les cinq premiers modes de flexion suivant y on a :
 <u>Mode 1</u>



<u>Mode 2</u>



Mode 3



#### Mode 4



Mode 5



Annexe C

## Annexe C ABAQUS Simulation de la vibration d'une aube

La réalisation complète d'une simulation d'une aube à une section constante et déterminer leurs fréquences propres lorsqu'il vibre en flexion s'effectue après un passage successif dans les modules intégré dans le code de calcul **ABAQUS** suivant :

• Part, • Property, • Step, • Load, • Mesh, • Job, • Visualization.

#### **<u>1. Module Part</u>**

Cliquez sur l'icône File, import puis part, sélectionnez la pièce (aube), puis cliquez sur OK.



#### 2. Module Property:

- Création du matériau
- Cliquez sur l'icône CreateMaterial.
- Entrez dans le champ Name : acier.
- Cliquez sur Mechanical, sélectionnez Elasticity et Elastic.
- Entrez 205e3 sur la ligne Young's modulus.
- Entrez 0.29 sur la ligne Possion's ratio.
- Puis Cliquez sur general, sélectionnez density.
- Entrez 7.85e-9 sur la ligne mass density.
- Cliquez sur OK

| Edit Mate                                                                | rial ×                | 💠 Edit Material 🗙                                                                            |
|--------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------|
| Name: Material-1                                                         |                       | Name: Material-1                                                                             |
| Description:                                                             | 1                     | Description:                                                                                 |
| Material Behaviors                                                       |                       | Material Behaviors                                                                           |
| Elastic                                                                  |                       | Elastic                                                                                      |
| Density                                                                  |                       | Density                                                                                      |
| <u>G</u> eneral <u>M</u> echanical <u>T</u> hermal <u>E</u> lectrical/Ma | ignetic <u>O</u> ther | <u>G</u> eneral <u>M</u> echanical <u>T</u> hermal <u>E</u> lectrical/Magnetic <u>O</u> ther |
| Density                                                                  |                       | Elastic                                                                                      |
| Distribution: Uniform 🛛 🗸 🥭                                              |                       | Type: Isotropic 🗸                                                                            |
| Use temperature-dependent data                                           |                       | Use temperature-dependent data                                                               |
| Number of field variables: 0                                             |                       | Number of field variables:                                                                   |
| Data                                                                     |                       | Moduli time scale (for viscoelasticity): Long-term                                           |
| Mass                                                                     |                       | No compression                                                                               |
| 1 7.85e-9                                                                |                       | No tension                                                                                   |
|                                                                          |                       | Data                                                                                         |
|                                                                          |                       | Young's Poisson's<br>Modulus Ratio                                                           |
|                                                                          |                       | 1 205000 0.29                                                                                |
|                                                                          |                       |                                                                                              |
|                                                                          |                       |                                                                                              |
|                                                                          |                       |                                                                                              |
|                                                                          |                       |                                                                                              |
| ОК                                                                       | Cancel                | OK                                                                                           |

- Création de la section
- Cliquez sur l'icône Create section
- Entrez dans le champ Name : section-1
- Cliquez sur Solid, puis Homogeneous, puis Continue
- Cliquez OK



\_

- Application de la section à l'Aube
- Sélectionnez dans la barre de menu à coté de Part, Aube
- Cliquez sur l'icône Assign Section
  - Cliquez sur la fenêtre graphique un bord de l'Aube, puis sur Done, puis sur OK



#### 3. Module Assembly

Dans ce module, il s'agit de créer une (voire plusieurs) instance à partir des entités que vous avez définies dans le module Part. Ces instances seront celles que vous manipulerez par la suite dans le modèle.

- Création de l'instance
- Sélectionnez Aube dans la liste
- sélectionnez Independent (Mesh on part)
- Cliquez sur OK

| + Create Instance ×                                                            |
|--------------------------------------------------------------------------------|
| Create instances from:<br>Parts O Models<br>Parts                              |
| aube                                                                           |
|                                                                                |
|                                                                                |
|                                                                                |
| Instance Type                                                                  |
| Dependent (mesh on part)                                                       |
| O Independent (mesh on instance)                                               |
| Note: To change a Dependent instance's<br>mesh, you must edit its part's mesh. |
| Auto-offset from other instances                                               |
| OK Apply Cancel                                                                |

#### **<u>4. Module Step</u>**

- Création du pas de calcul Step
- Cliquez sur l'icône Create Step
- Entrez dans le champ Name : Step-1
- Cliquez sur procedure type Sélectionnez dans la liste linear perturbation.
- Sélectionnez dans la liste frequency .
- Cliquez sur continue.
- Entrez 10000 sur la ligne maximum frequency of interest time (cycle/time).
- Cliquez sur OK

| A Create Step X                     | 🗢 Edit Step                                                       |
|-------------------------------------|-------------------------------------------------------------------|
| The create step                     | Name: Step-1                                                      |
| Name: Step-1                        | Type: Frequency                                                   |
| Insert new step after               | Basic Other                                                       |
| inservice step arter                | Description:                                                      |
| Initial                             | Niggerry Off                                                      |
|                                     |                                                                   |
|                                     | Eigensolver: Canczos Coubspace Alvis                              |
|                                     | Number of eigenvalues requested:  All in frequency range          |
|                                     | U Value:                                                          |
|                                     | Frequency shift (cycles/time)**2:                                 |
| Procedure type: Linear perturbation | Minimum frequency of interest (cycles/time):                      |
| Procedure type: Linear perturbation | Maximum frequency of interest (cycles/time): 1000 <b>₫</b>        |
| Buckle                              | Include acoustic-structural coupling where applicable             |
| Frequency                           | Block size:      O Default      Value:                            |
| Static, Linear perturbation         | Maximum number of block Lanczos steps:      O Default      Value: |
| Steady-state dynamics, Direct       | Use SIM-based linear dynamics procedures                          |
| Substructure generation             |                                                                   |
|                                     | Include residual modes                                            |
|                                     |                                                                   |
|                                     |                                                                   |
|                                     |                                                                   |
| Continue Cancel                     | OK                                                                |
|                                     |                                                                   |

#### 5. Module Load

- Condition sur la surface de pied de l'aube
- Cliquez sur l'icône Create Boundary Condition
- Entrez dans le champ Name : BC-1
- Vérifiez que pour la ligne Step l'item soit sur initial
- Sélectionnez dans la liste Category, Mechanical et dans la liste Type for selectedstep,

#### Symmetry/Antisymmetry/Encastre

- Cliquez sur Continue



- Sélectionnez dans la fenêtre graphique la surface de pied de l'aube
- Cliquez Done
- Sélectionnez dans la liste ENCASTRE
- Cliquez sur OK



#### 6. Module Mesh

- Taille des éléments de l'Aube:
- Cliquez sur l'icôneMesh
- Cliquer sur Seed, puis Part dans la barre d'outils



- Dans la barre d'outils cliquez sur Mesh, puis sélectionnez controls, puis wedeg

| <del>9</del>   | Mesh Controls              | ^                 |   |
|----------------|----------------------------|-------------------|---|
| Element Shape  |                            |                   |   |
| ⊖ Hex ⊖ Hex-do | minated 🔿 Tet 💿 Wedge      |                   |   |
| Technique      |                            |                   |   |
| As is          |                            |                   |   |
| 🔵 Free         |                            |                   |   |
| Structured     |                            |                   |   |
| Sweep          |                            |                   |   |
| 🔵 Bottom-up    |                            |                   | 6 |
| Multiple       |                            |                   |   |
|                |                            |                   |   |
|                | Redefine Sween Dath Accien | Stack Direction   |   |
|                | Assign                     | I Stack Direction |   |
| ОК             | Defaults                   | Cancel            |   |

- Cliquez sur OK
- Cliquer sur l'icône Seed Part Instance
- Entrez sur la ligne Global size element (Apporximate) : 4et tapez Entrée au clavier

| 🔶 Global Seeds                                    | × |
|---------------------------------------------------|---|
| Sizing Controls                                   |   |
| Approximate global size:                          |   |
| Curvature control                                 |   |
| Maximum deviation factor (0.0 < h/L < 1.0): 0.1   |   |
| (Approximate number of elements per circle: 8)    |   |
| Minimum size control                              |   |
| By fraction of global size (0.0 < min < 1.0) 0.1  |   |
| O By absolute value (0.0 < min < global size) 0.4 |   |
| OK Apply Defaults Cance                           | : |

- Cliquez sur Done
- Cliquer sur l'icône Mesh Part Instance, puis Yes



#### 7. Module Job

• Création d'un Job de travail.

Cliquez sur l'icône Create Job

Entrez dans le champ Name: job-1

Cliquez sur continue, puis sur OK

• Lancement du calcul.

Cliquez sur l'icône Job Manager

Cliquez sur Submit

| \$      | Job M       | lanager       |         | ×           |
|---------|-------------|---------------|---------|-------------|
| Name    | Model       | Туре          | Status  | Write Input |
| Job-1   | Model-1     | Full Analysis | Running | Data Check  |
|         |             |               |         | Submit      |
|         |             |               |         | Continue    |
|         |             |               |         | Monitor     |
|         |             |               |         | Results     |
|         |             |               |         | Kill        |
| Create. | . Edit Copy | Rename        | Delete  | Dismiss     |
|         |             |               |         |             |

#### **8. Module Visualisation**

Dans l'icône Job Manager cliquez sur Aube, puis sur Results



- Cliquez sur l'icône result puis step /frame.

| 0       |          | Step/Frame                                          | × |
|---------|----------|-----------------------------------------------------|---|
| Step Na | ame      | Description                                         |   |
| Step-1  |          |                                                     |   |
|         |          |                                                     |   |
|         |          |                                                     |   |
|         |          |                                                     |   |
| Frame   |          |                                                     |   |
| Index   | Descript | tion                                                | ~ |
| 0       | Increme  | nt 0: Base State                                    |   |
| 1       | Mode     | 1: Value = 6.20478E+05 Freq = 125.37 (cycles/time)  |   |
| 2       | Mode     | 2: Value = 2.04598E+07 Freq = 719.90 (cvcles/time)  |   |
| 3       | Mode     | 3: Value = 2.30923E+07 Freq = 764.81 (cycles/time)  |   |
| 4       | Mode     | 4: Value = 3.67855E+07 Freq = 965.29 (cycles/time)  |   |
| 5       | Mode     | 5: Value = 1.64955E+08 Freq = 2044.1 (cycles/time)  |   |
| 6       | Mode     | 6: Value = 1.93098E+08 Freq = 2211.6 (cycles/time)  |   |
| 7       | Mode     | 7: Value = 5.43519E+08 Freq = 3710.5 (cycles/time)  |   |
| 8       | Mode     | 8: Value = 5.89988E+08 Freq = 3865.8 (cycles/time)  |   |
| 9       | Mode     | 9: Value = 8.36077E+08 Freq = 4602.0 (cycles/time)  |   |
| 10      | Mode     | 10: Value = 1.03973E+09 Freq = 5131.9 (cycles/time) |   |
| 11      | Mode     | 11: Value = 1.17160E+09 Freq = 5447.7 (cycles/time) |   |
| 12      | Mode     | 12: Value = 1.37101E+09 Freq = 5893.0 (cycles/time) |   |
| 13      | Mode     | 13: Value = 2.13159E+09 Freq = 7348.0 (cycles/time) |   |
| 14      | Mode     | 14: Value = 2.46052E+09 Freq = 7894.7 (cycles/time) |   |
| 15      | Mode     | 15: Value = 2.60147E+09 Freq = 8117.6 (cycles/time) |   |
| 16      | Mode     | 16: Value = 2.83875E+09 Freq = 8479.8 (cycles/time) |   |
| 17      | Mode     | 17: Value = 3.45388E+09 Freq = 9353.5 (cycles/time) |   |
| 18      | Mode     | 18: Value = 3.74164E+09 Freq = 9735.3 (cycles/time) |   |
| 19      | Mode     | 19: Value = 4.04048E+09 Freq = 10117. (cycles/time) |   |
| 20      | Mode     | 20: Value = 4.16067E+09 Freq = 10266. (cycles/time) |   |
| 21      | Mode     | 21: Value = 4.61114E+09 Freq = 10807. (cycles/time) |   |
| 22      | Mode     | 22: Value = 5.62322E+09 Freq = 11935. (cycles/time) |   |
| 23      | Mode     | 23: Value = 6.22178E+09 Freq = 12554. (cycles/time) | ~ |
| <       |          |                                                     | / |
|         | ОК       | Apply Field Output Cancel                           |   |

- Cliquez sur apply pour voir les modes des vibrations :





• Lorsqu'en considérée l'aube comme une poutre en fait les même étapes pour obtient les résultats suivant :

## 1<sup>er</sup> mode :



## 2<sup>eme</sup> mode:

|            |                                                                  | -      |                                    | : 🔭 Visual | zation o | defaults | M 🗗 🕇            | •           |
|------------|------------------------------------------------------------------|--------|------------------------------------|------------|----------|----------|------------------|-------------|
| Step Nar   | ne Description                                                   |        |                                    | H4 +       | . ▶      | m        | <b>B</b> 17      | <b>N</b> 17 |
| Step-1     |                                                                  |        |                                    |            |          |          |                  |             |
|            |                                                                  |        |                                    |            |          |          |                  |             |
|            |                                                                  |        |                                    |            |          |          | *                |             |
| -          |                                                                  |        |                                    |            |          | /        | $\left( \right)$ |             |
| Frame      |                                                                  |        |                                    |            |          | z        |                  |             |
| Index      | Description                                                      | ^      |                                    |            |          |          | $\smile$         |             |
| 0          | Increment 0: Base State                                          |        |                                    |            |          |          |                  |             |
| 1          | Mode 1: Value = 7.13865E+05 Freq = 134.47 (cycles/time           |        |                                    |            |          |          |                  |             |
| 2          | Mode 2: Value = 1.83555E+07 Freq = 681.87 (cycles/time           |        |                                    |            |          |          |                  |             |
| 3          | Mode 3: Value = 2.74485E+07 Freq = 833.83 (cycles/time           |        |                                    |            |          |          |                  |             |
| 4          | Mode 4: Value = 5.59866E+07 Freq = 1190.9 (cycles/time           | 1      |                                    |            |          |          |                  |             |
| 5          | Mode 5: Value = 1.84123E+08 Freq = 2159.6 (cycles/time           | (      |                                    |            | 28R      | A A A    | FRAM             | XX          |
| 6          | Mode 6: Value = 2.11316E+08 Freq = 2313.6 (cycles/time           | (      |                                    |            | XX       |          |                  |             |
| ·          | Mode /: Value = 6.18039E+08 Freq = 3956./ (cycles/time           |        |                                    |            | CH A     | 2X       |                  | X           |
| 8          | Mode 8: Value = 7.84313E+08 Freq = 4457.2 (cycles/time           | (      |                                    |            | t t      |          | XX               | X           |
| 9          | Mode 9: Value = 1.00/03E+09 Freq = 5050.6 (cycles/time           |        |                                    |            | XX       | XX       | XXX              | R)          |
| 10         | Mode 10: Value = 1.03990E+09 Freq = 5132.4 (cycles/tim           | )      |                                    | A ARE      | XX       | XX       | XX               | XD          |
| 11         | Mode 11: Value = 1.16148E+09 Freq = 5424.1 (cycles/tim           | )      |                                    |            | TXX      | XX       | DKD              |             |
| 12         | Mode 12: Value = 1.52539E+09 Freq = 6216.0 (cycles/tim           | ) ~    |                                    | REALE      | XX       | KR       |                  |             |
| <          |                                                                  | >      |                                    | AHHOU      | 11       | XY       |                  |             |
| 0          | K Apply Field Output Canc                                        | I      | Thu Jun 25 18:41:22 GMT+02:00 2020 | CANAN      | M        |          |                  |             |
| / ==       | Mode 3: Value = 2.74485E+0:                                      | Freq = |                                    |            |          |          |                  |             |
|            | Z X Primary Var: U, Magnitude<br>Deformed Var: U Deformation Sca |        |                                    |            |          |          |                  |             |
| <b>5 -</b> |                                                                  |        |                                    |            |          |          |                  |             |

## 3<sup>éme</sup> mode:

| ÷       |         | Step/Frame                                         |                       | ×     |                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · · | lization defau |                    |
|---------|---------|----------------------------------------------------|-----------------------|-------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|--------------------|
| Step Na | me      | Description                                        |                       |       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | : 🞯 Visue                             | inzación derac |                    |
| Step-1  |         |                                                    |                       |       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 144                                   | 4 I I I        | H H K K            |
|         |         |                                                    |                       |       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |
|         |         |                                                    |                       |       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                | 1                  |
|         |         |                                                    |                       |       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                     |                |                    |
| Frame   |         |                                                    |                       |       | CREATE STATE                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |
| Index   | Descrip | tion                                               |                       | ^     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |
| 0       | Increme | nt 0: Base State                                   |                       |       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |
| 1       | Mode    | 1: Value = 7.13865E+05 Freq = 134.47               | (cycles/time)         |       |                                 | PAR KARAKANANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                |                    |
| 2       | Mode    | 2: Value = 1.83555E+07 Freq = 681.87               | (cycles/time)         |       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |
| 3       | Mode    | 3: Value = 2.74485E+07 Freq = 833.83               | (cycles/time)         |       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |
| 4       | Mode    | 4: Value = 5.59866E+07 Freq = 1190.9               | (cycles/time)         |       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |
| 5       | Mode    | 5: Value = 1.84123E+08 Freq = 2159.6               | (cycles/time)         |       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                |                    |
| 6       | Mode    | 6: Value = 2.11316E+08 Freq = 2313.6               | (cycles/time)         |       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                | Contraction of the |
| 7       | Mode    | 7: Value = 6.18039E+08 Freq = 3956.7               | (cycles/time)         |       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                | XXXX               |
| 8       | Mode    | 8: Value = 7.84313E+08 Freq = 4457.2               | (cycles/time)         |       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | PREAK          | XXXX               |
| 9       | Mode    | 9: Value = 1.00703E+09 Freq = 5050.6               | (cycles/time)         |       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HIRAC                                 |                | XXXX               |
| 10      | Mode    | 10: Value = 1.03990E+09 Freq = 5132.4              | (cycles/time)         |       |                                 | XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KIKKK                                 |                | XXXXX              |
| 11      | Mode    | 11: Value = 1.16148E+09 Freq = 5424.1              | (cycles/time)         |       |                                 | A CONTRACT OF A CONTRACT. |                                       |                | XXXXXX             |
| 12      | Mode    | 12: Value = 1.52539E+09 Freg = 6216.0              | (cycles/time)         |       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | XXXX           | XXXXXX             |
| <       |         |                                                    |                       |       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                | KXXXX              |
| -       |         |                                                    |                       | -     | Thu Jun 25 18:41:22 GMT+02:00 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | K K K K        | K KK               |
| 0       | ОК      | Apply Field Output                                 | Cancel                |       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | KIXIXI         | XXX                |
| -       |         | Mode 7: Value = 6                                  | 5.18039E+08 Fr        | eq =  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VIKK                                  |                |                    |
|         |         | X Primary Var: U, Magnitu<br>Deformed Var: U, Defo | de<br>rmation Scale F |       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WXX                                   |                |                    |
| 5 ann 1 |         | Donormica Val. O Dero                              |                       | 00101 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VXN                                   | <u> XIXIXI</u> | 7                  |
|         |         |                                                    |                       |       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Activor Window                        | ÷.             | 2_                 |

## 4<sup>éme</sup> mode:

| F.      |         | step/riame                            |                |   | $z_{x} \uparrow z_{z} \uparrow 1 2 3 4 \lambda$ | : 🤧 Visualiza                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion def |        | au         | ault       | aults       | aults      | aults 🗸 🖍   | aults 🗸 🛱    | aults 🗸 📶 🕇  | aults 🗸 📶 🗸 | aults 🗸 📶 🗸 | aults 🗸 📶 🗸                            | aults 🗸 📶 🗸 |
|---------|---------|---------------------------------------|----------------|---|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|------------|------------|-------------|------------|-------------|--------------|--------------|-------------|-------------|----------------------------------------|-------------|
| Step Na | me      | Description                           |                |   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.1     | 2      | 2000       | 401        | 201         | 2001       |             |              |              |             |             |                                        |             |
| Step-1  |         |                                       |                |   |                                                 | 144 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 2      | •••        | M          | M           | <b>M</b>   | ▶           | M Ⅰ          | ➡ 월 8        |             |             |                                        |             |
|         |         |                                       |                |   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |            |             |            |             |              |              |             |             |                                        |             |
|         |         |                                       |                |   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |            |             |            | l X         | 1 ( <u>*</u> |              | 1           | 1           | 1                                      | 1           |
|         |         |                                       |                |   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |            |             | /          |             |              |              |             |             |                                        |             |
| Frame   |         |                                       |                |   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |            | 1           |            |             |              |              |             |             |                                        |             |
| Index   | Descrip | tion                                  |                | ^ |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            | Z          | Z           | z          | z 🖊         | z 🏹          | z A          | z XX        | z X         | z 🏹 🗙                                  | z Sx        |
| 1       | Mode    | 4: Value - 5 59866E+07 Erec - 1190.9  | (cycles/time)  | - |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |            |             |            |             | $\sim$       | $\smile$     |             |             |                                        |             |
| 5       | Mode    | 5: Value = 1.84123E+08 Freq = 2159.6  | (cycles/time)  |   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |            |             |            |             |              |              |             |             |                                        |             |
| 6       | Mode    | 6: Value = 2.11316E+08 Freq = 2313.6  | (cycles/time)  |   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | -      |            |            |             |            |             |              |              |             |             |                                        |             |
| 7       | Mode    | 7: Value = 6.18030E+08 Freq = 3056.7  | (cycles/time)  |   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ŧX       | XX     | XXX        | XXX        | XXX         | XXX        |             |              |              |             |             |                                        |             |
| 8       | Mode    | 8: Value = 7.8/313E+08 Freq = 4/57.2  | (cycles/time)  |   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×        | 6K     | 6KD        | (A)        | GAX         | KXX        | RXXX        | AXX          | AXXXX        | AXXXX       | SXXXXX      | SAXXXX                                 | SXXXX       |
| 9       | Mode    | 9: Value = 1.00703E+09 Freq = 5050.6  | (cycles/time)  |   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$       | XX     | XXI.       | 3KD        | XXX         | XXXI       | XXXX        | SKIKIKI      | TKKKK        | XXXXXX      | XXXXXX      | XXXXXX                                 | XXXXXXX     |
| 10      | Mode    | 10: Value = 1.03990E+09 Freq = 5132.4 | (cycles/time)  |   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Б        | D      | <b>XX</b>  | AKD        | AKD         | <b>XXX</b> | <b>AKKX</b> | OKIKIKI      | <b>AKKKK</b> | (XXXXXX     | (XXXXXX     | (XXXXXX                                | AKKKKK      |
| 11      | Mode    | 11: Value = 1 16148E+09 Freq = 5424 1 | (cycles/time)  |   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B        |        | XX         | <b>K</b> K | <b>K</b> KD | XXX        | (XXX)       | KKKK         | (XXXXX)      | (XXXXX)     | CKCKCKN     | (XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | CKCKCKNX    |
| 12      | Mode    | 12: Value = 1.52539E+09 Freq = 6216.0 | (cycles/time)  |   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D        | $\Phi$ | <b>A</b> K | AX1        |             | <b>CKX</b> |             |              |              |             |             |                                        |             |
| 13      | Mode    | 13: Value = 1.67701E+09 Freq = 6517.6 | (cycles/time)  | • |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | KP I   | PK         | <b>PK</b>  | PR          | PAX        |             | PAX          |              |             |             |                                        |             |
| 14      | Mode    | 14: Value = 2.11093E+09 Freq = 7312.3 | (cycles/time)  |   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |            |             |            |             | RARK         | XXXX         | XXXXX       | XXXXX       |                                        |             |
| 15      | Mode    | 15: Value = 2.82366E+09 Freq = 8457.2 | (cycles/time)  |   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |            |            | RAB         | A A        | 23AB        | RADAS        | REAR         | REALER      | REALER      | REALER                                 | REALER      |
| 16      | Mode    | 16: Value = 3.19360E+09 Freq = 8994.2 | (cycles/time)  | ~ |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1      | 1 A        | -          | -           |            |             |              |              |             |             |                                        |             |
| <       |         |                                       |                |   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | 2      | 20         | M          | M           | M          | 5000        | TO THE       | ALL ALL      | ALL HALL    | A HAND      | ALL HALL                               | ALL HALL    |
|         | NK I    | Apply Field Output                    | Canaal         | - | Fhu Jun 25 18:41:22 GMT+02:00 2020              | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K        | A      | The        | d D        | 100         | ann        | d DUM       | A DUAN       | A VINAAN     | A VINAANA   | A DUMANNE   | A DUMANNE                              | A DUMANA    |
|         | JK .    | Apply Field Output                    | Cancel         | _ |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D        |        |            |            |             |            |             |              |              |             |             |                                        |             |
|         |         | Mode 12: Value = 1                    | L.52539E+09 Fr |   |                                                 | and the second s |          |        |            |            |             |            |             |              |              |             |             |                                        |             |

## 5<sup>éme</sup> mode:

| e .     |         | Step/riditie                          |                  |   | <sup>1</sup> <sup>2</sup> x <sup>1</sup> <sup>y</sup> z z <sup>y</sup> 1 1 2 3 4 Å | : 🥦 Visu                                | alizatio             | n defa |      |
|---------|---------|---------------------------------------|------------------|---|------------------------------------------------------------------------------------|-----------------------------------------|----------------------|--------|------|
| Step Na | me      | Description                           |                  |   |                                                                                    |                                         |                      |        |      |
| Step-1  |         |                                       |                  |   |                                                                                    | H                                       |                      |        | 거 변  |
|         |         |                                       |                  |   |                                                                                    |                                         |                      |        |      |
|         |         |                                       |                  |   |                                                                                    |                                         |                      |        | *    |
| rame    |         |                                       |                  |   |                                                                                    |                                         |                      |        |      |
| Index   | Descrip | tion                                  |                  | ^ |                                                                                    |                                         |                      |        | z C  |
| 4       | Mode    | 4: Value = 5.59866E+07 Freq = 1190.9  | (cycles/time)    |   |                                                                                    |                                         | 1                    |        |      |
| 5       | Mode    | 5: Value = 1.84123E+08 Freq = 2159.6  | (cycles/time)    |   |                                                                                    | XXXX AXXX                               | XD                   |        |      |
| 6       | Mode    | 6: Value = 2.11316E+08 Freq = 2313.6  | (cycles/time)    |   |                                                                                    | AND | X                    |        |      |
| 7       | Mode    | 7: Value = 6.18039E+08 Freq = 3956.7  | (cycles/time)    |   |                                                                                    |                                         | NX                   | JA.    |      |
| В       | Mode    | 8: Value = 7.84313E+08 Freq = 4457.2  | (cycles/time)    |   |                                                                                    |                                         | NX                   | NX     | N    |
| 9       | Mode    | 9: Value = 1.00703E+09 Freq = 5050.6  | (cycles/time)    |   |                                                                                    |                                         | XD+                  | XV     |      |
| 10      | Mode    | 10: Value = 1.03990E+09 Freq = 5132.4 | (cycles/time)    |   |                                                                                    | XXXXXXXXXXX                             | XX                   | X      | 1 FE |
| 11      | Mode    | 11: Value = 1.16148E+09 Freq = 5424.1 | (cycles/time)    |   |                                                                                    |                                         | TH I                 | A A    | the  |
| 12      | Mode    | 12: Value = 1.52539E+09 Freq = 6216.0 | (cycles/time)    |   |                                                                                    | XXXXXXXXX                               | BAC                  | 8      | AAA  |
| 13      | Mode    | 13: Value = 1.67701E+09 Freq = 6517.6 | (cycles/time)    |   | WHY KK                                                                             | XXXX Contraction                        | FRF                  |        |      |
| 14      | Mode    | 14: Value = 2.11093E+09 Freq = 7312.3 | (cycles/time)    |   |                                                                                    | THE DAY BUD                             | AH .                 | R      | RACE |
| 15      | Mode    | 15: Value = 2.82366E+09 Freq = 8457.2 | (cycles/time)    |   |                                                                                    |                                         | RD                   | Rh     |      |
| 16      | Mode    | 16: Value = 3.19360E+09 Freq = 8994.2 | (cycles/time)    | ~ |                                                                                    |                                         | XXT                  | DXX.   | XX   |
| <       |         |                                       | >                |   |                                                                                    |                                         | Itt                  | NX     | WW/  |
| 0       | )K      | Apply Field Output                    | Cancel           |   | Thu Jun 25 18:41:22 GMT+02:00 2020                                                 | 1XX                                     | M                    | XIV    | KIXD |
|         |         | Theid Output                          | cancer           |   |                                                                                    |                                         | MA                   | X      | XX   |
|         |         | Mode 16: Value = 3                    | 3.19360E+09 Fre  |   |                                                                                    |                                         | W                    | NVX    |      |
| -       |         | Deformed Var: U Defor                 | mation Scale Fac |   |                                                                                    |                                         | $\overline{\Lambda}$ | XN     | XIV  |

# Références bibliographiques

[1] **M DJABRI. S DAGHBOUDJ,** Etude numérique des caractéristiques géométriques des aubes à action des turbines à vapeur, Mémoire master, Université de Tébessa, (2015).

[2] **D. LAXALDE,** Etude d'amortissements non linéaires appliqués aux roues aubagées aux systèmes multi-étages, Mémoire de thèse, école doctoral Lyon.2007.

[3] <u>https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQ6LeqbxXhvhxOXteQqkWw0ze-o-xufrgCLyJwUQ\_mN9w8QtCIA&s</u>

[4] **S HAOUAM. M MAALIM**, simulation d'usinage d'une aube vrillée sur une machine CNC à quatre axes, Mémoire master, Université de Tébessa,

[6] **R ZOGHLAMI. S DAGHBOUDJ,** Etude numérique du vrillage des aubes d'une turbine à vapeur axiale, Mémoire master, Université de Tébessa, (2012).

[7] **E KLAA. R MANAA,** Conception d'une aube de turbine à gaz en matériaux composites, Mémoire master, Université de BATNA, 2015.

[8] <u>https://img.aws.la-croix.com/2016/06/17/1200769565/Une-partie-turbine-9HA-General-</u> Electric-Belfort 0\_730\_485.jpg

[9] **M BOUASLA. R ADJABI**, contribution à l'étude aérothermodynamique d'un compresseur centrifuge multi-étage, mémoire master, Université de ANNABA, 2015.

[10] **M MAAMMEUR**, **A BETTAHAR**, simulation de l'écoulement de l'aire dans la roue d'un compresseur centrifuge, Mémoire de magister, École doctorale Mécanique et Ingénierie des Systèmes, Université Hassiba Ben Bouali de Chlef , 2011.

[11] L. Vivier, 1965, Turbine à vapeur et à gaz, Edition Albin Michel.

[12] **M.A.Djeridane, K. Abdessamed**, analyse défaillance des attaches aubes-disque des roues HP des turbines à gaz, article journal internationale, Département Mécanique, université de Laghouat, novembre 2012.

[13] **H Zamila**, Polycopié de Résistance des Matériaux, Université Hassiba Benbouali de Chlef, 2013.