

République Algérienne Démocratique et Populaire Ministère de l'enseignement supérieur et de la recherche scientifique

Universitaire Larbi Tébessi- Tébessa Faculté des Sciences et de la Technologie

Département de Génie Mécanique

Option Construction Mécanique

Mémoire de Fin D'études en Vue de L'obtention

du Diplôme d'un Master

THEME :

Etude des contraintes autour d'un trou dans une plaque plane

Réalisé par: SOLTANI HADDA

HADJAB ABDELHAKIM	M.A.A	Université de Tébessa Président
BELGAHALEM ELHADJ	M.C.A	Université de Tébessa Rapporteur
HUSAYN KHALIFA	M.A.A	Université de Tébessa Examinateur

PROMOTION 2019

ملخص

الغرض من هذا العمل هو حساب الاجهادات والتشوهات و ازاحة الصفيحة ذات الثقب الموجود في المنتصف عن طريق تطبيق حروف الجر على هذه الحواف . فمذجة العلاقات التي تعطي الاجهادات المختلفة والتشوهات المستوية في الحالة المرنة . يعطي تحليل الاجهادات المستوية والتشوهات المستوية بواسطة طريقة العناصر المحددة نظاما من المعدلات الجبرية كوظائف لإزاحة العقدة .يتم حل هذا النظام عن طريق الخصيم (LU)،والمعروفة باسم طريقة الجبرية تحيل الاحمار المختار هو مثلث بثلاثة عقد، Trizz تحليل النتائج التي تم العثور عليها من خلال تطبيق برنامج Abaqus وبرنامج Fortran التي معرفة القيود عند نقطة التركيز .

Résumé

Le but de ce travail est le calcul du champ de contraintes et les déformations ainsi les déplacements d'une plaque troué au centre en appliquant une force de traction a' ces bords. La modélisation des relations donnant les différentes contraintes planes et déformations planes dans le cas élastique et isotrope.

L'analyse des contraintes planes et les déformations planes par méthode des éléments finis donne un système d'équations algébriques en fonctions des déplacements des nœuds. Ce système est résolu par la méthode de factorisation (LU), dite méthode de CROUT. L'élément choisit est un triangle à trois nœuds,

L'analyse des résultats trouvés en appliquant le logiciel ABAQUS ainsi un programme en FORTRAN donnent la donnent la possibilité de connaitre les contraintes au point de concentration.

Summary

The purpose of this work is the calculation of the stress field and the deformations and displacements of a plate with holes in the center by applying a traction force to these edges. The modeling of relations giving the different plane stresses and plane strains in the elastic and isotropic case.

The analysis of the plane stresses and the plane strains by the finite element method gives a system of algebraic equations as functions of the displacements of the nodes.

This system is solved by the factorization method (LU), known as the CROUT method. Thech element is a triangle with three nodes,

Analysis of the results found by applying the ABAQUS software and a FORTRAN program gives the possibility to know the constraints at the concentration point

Remerciements

•

Après le nom de Dieu le Miséricordieux et remercier **Dieu** pour la réconciliation d'accomplir ce travail.

Un merci spécial au Monsieur. M. BELGHALEM. ELHADJ

qui a suivi et a encadré ce travail avec intérêt et disponibilité. Pour les efforts considérables qu'il a déployés pour accomplir ce travail.

Je remercie **les professeurs** distingués d'être l'un des juges du jury.

Nous remercions également remercier toutes les personnes qui ont aidé a' compléter.

SOMMAIRE

Dédica	ces	
Remer	ciement	
Nomen	nclature	page
Introdu	uction	1
Chapi	tre 1 : Généralité sur Les contraintes et les Déformations planes	4
1.1 Co	ntrainte	4
1.1.1	Notion de contrainte	4
1.1.2	Equations équilibre	5
1.2	Les déformations	8
1.2.1	Notion de déformation	8
1.2.2	Relations entre déformations et contraintes	9
1.2.3	Relations entre contraintes et déformations	10
1.3 E	Etat plan de contrainte et de déformation	11
1.3.1	Déformation plane	11
1.3.2	Contrainte plane	12
1.4 Er	nergie de déformation élastique	13
1.5Con	trainte plane en élasticité	15
Chap	itre 2 : Méthode des éléments finis appliquée à l'élasticité	20
Introd	uction	
2.1 I 2.2	a méthode des éléments finis Description et application :	20 21
2.2.	1 Description :	
2.2	.1.1 Eléments et fonctions d'interpolation :	21
2 2.2.1.2	.2.1.1.1 Le choix des éléments de base 21 Fonction d'interpolation polynomiale :	22
a - Cas	d'une seule variable indépendante (cas unidimensionnel)	22
b - Ca	s de deux variables indépendantes (cas bidimensionnel)	:23
2.2.1.3	Construction et assemblage des matrices élémentaires	23
3.2.1.4	Expansion $[K]^{e}$:	24
3.2.1.5	Expansion du vecteur élémentaire $\{f\}^e$:	25

2.2.1.6 Introduction les conditions aux limites :	25
2.2.1.7 Résolution numérique :	26
2.3 Application :	
2.3.1 Le choix d'élément et fonction d'interpolation :	28
• Le choix d'élément	28
2.3.2 Formulation Mécanique 2.3.2.1 Fonction du déplacement	29 29
a) Elasticité plane	29
b) Fonction déplacement un coordonnées cartésiennes	30
2.3.2.2 Déformation plane – contrainte plane	34
• Pour la déformation plane	34
Pour contrainte plane	35
2.3.2.3 Détermination de la matrice de rigidité [K]	36
2.3.2.4 Les éléments de la matrice de rigidité	40
Chapitre 3 : Résultats et discussions	
	12
3.1 Discrétisation du domaine	43
3.1 Discrétisation du domainea) Partie 1 : Programme Fortran	43
 3.1 Discrétisation du domaine a) Partie 1 : Programme Fortran 3.2 La structure à un code de calcul utilisé 4 	43 44 4
 3.1 Discrétisation du domaine a) Partie 1 : Programme Fortran 3.2 La structure à un code de calcul utilisé 4 3.3 Organigramme de calcul du champ de Contrainte 	43 44 4 45
 3.1 Discrétisation du domaine a) Partie 1 : Programme Fortran 3.2 La structure à un code de calcul utilisé 4 3.3 Organigramme de calcul du champ de Contrainte 3.4 Fichier cde données 	43 44 4 45 48
 3.1 Discrétisation du domaine a) Partie 1 : Programme Fortran 3.2 La structure à un code de calcul utilisé 4 3.3 Organigramme de calcul du champ de Contrainte 3.4 Fichier cde données b) Partie 2 : Application du logiciel Abaqus 	43 44 4 45 45 48 51
 3.1 Discrétisation du domaine a) Partie 1 : Programme Fortran 3.2 La structure à un code de calcul utilisé 4 3.3 Organigramme de calcul du champ de Contrainte 3.4 Fichier cde données b) Partie 2 : Application du logiciel Abaqus 3.5 Réalisation de la mise en données de notre problème 	43 44 4 45 48 51 52
 3.1 Discrétisation du domaine a) Partie 1 : Programme Fortran 3.2 La structure à un code de calcul utilisé 4 3.3 Organigramme de calcul du champ de Contrainte 3.4 Fichier cde données b) Partie 2 : Application du logiciel Abaqus 3.5 Réalisation de la mise en données de notre problème a) Les contraintes 	43 44 4 45 48 51 52 63
 3.1 Discrétisation du domaine a) Partie 1 : Programme Fortran 3.2 La structure à un code de calcul utilisé 4 3.3 Organigramme de calcul du champ de Contrainte 3.4 Fichier cde données b) Partie 2 : Application du logiciel Abaqus 3.5 Réalisation de la mise en données de notre problème a) Les contraintes b) Déformations 	43 44 4 45 48 51 52 63 67
 3.1 Discrétisation du domaine a) Partie 1 : Programme Fortran 3.2 La structure à un code de calcul utilisé 4 3.3 Organigramme de calcul du champ de Contrainte 3.4 Fichier cde données b) Partie 2 : Application du logiciel Abaqus 3.5 Réalisation de la mise en données de notre problème a) Les contraintes b) Déformations c) Déplacements 	43 44 4 45 48 51 52 63 67 70
 3.1 Discrétisation du domaine a) Partie 1 : Programme Fortran 3.2 La structure à un code de calcul utilisé 4 3.3 Organigramme de calcul du champ de Contrainte 3.4 Fichier cde données b) Partie 2 : Application du logiciel Abaqus 3.5 Réalisation de la mise en données de notre problème a) Les contraintes b) Déformations c) Déplacements Conclusion 	43 44 4 45 48 51 52 63 67 70 72
 3.1 Discrétisation du domaine a) Partie 1 : Programme Fortran 3.2 La structure à un code de calcul utilisé 4 3.3 Organigramme de calcul du champ de Contrainte 3.4 Fichier cde données b) Partie 2 : Application du logiciel Abaqus 3.5 Réalisation de la mise en données de notre problème a) Les contraintes b) Déformations c) Déplacements Conclusion Annexes A 	43 44 4 45 48 51 52 63 67 70 72 74
 3.1 Discrétisation du domaine a) Partie 1 : Programme Fortran 3.2 La structure à un code de calcul utilisé 4 3.3 Organigramme de calcul du champ de Contrainte 3.4 Fichier cde données b) Partie 2 : Application du logiciel Abaqus 3.5 Réalisation de la mise en données de notre problème a) Les contraintes b) Déformations c) Déplacements Conclusion Annexes A Annexes B 	43 44 4 45 48 51 52 63 67 70 72 74 91

INTRODUCTION

Chaque modification de discontinuité dans un élément de structure, entraine un nouveau type de distribution de contraintes parmi ces modifications rencontrées dans la structure on cite par exemple les épaulements, les trous, et générale toutes les discontinuités de forme sont susceptibles de créer une concentration de contraintes

La méthode des éléments finis était une généralisation de la méthode des déplacements pour les structures à barres à a mécanique des milieux continus. Depuis cette technique a largement débordé ce premier cadre pour aboutir à une méthode numérique permettant de résoudre les problèmes.La méthode de calcul par élément finis amenant dans la plupart des cas à la résolution d'un système de n équations à n inconnues de grande dimension.

Le but de notre travail est de déterminer le champ de différentes contraintes, ainsi le coefficient de contrainte au niveau du trou d'une plaque troué soumise à une charge de traction sur les deux côtés. Pour cette finalité, notre travail comprend trois chapitres :

Le premier chapitre comprend des généralités sur la théorie d'élasticité en écrivant les différentes relations donnant les contraintes planes, les déformations planes, la relation donnant de l'énergie ainsi l'équation de l'équilibre.

La détermination de différentes relations donnant les contraintes normales et tangentielles fait l'objet du deuxième chapitre en introduisant la méthode des éléments finis pour discrétiser le domaine physique ainsi que les équations donnant les différentes contraintes du modèle mathématique en appliquant les étapes suivis pour arriver au système d'équation algébrique, qui sera résidu par une méthode numérique choisi.

1

Le dernier chapitre est consacré à la discussion des résultats obtenus à l'application du programme en langage Fortran (Plaque. For), et l'utilisation du logiciel Abaqus pour un matériau isotrope, dont l'analyse des résultats permettra de déterminer le champ de contraintes sur la plaque étudiée.

Chapitre 1: ——

Généralité : les contraintes planes

et déformatons planes

RESUME

Dans le premier chapitre nous exposons une idée générale sur l'élasticité en rappelant les différentes relations donnant l'équation d'équilibre, les contraintes et l'énergie

1. Généralité sur Les contraintes et les Déformations planes [1][2]

1.1 Contrainte

(1)

1.1.1 Notion de contrainte

Soit un solide en équilibre comportant 2 parties 1 et 2 limitées par une section S,

Figure 1.1 :Equilibre d'un solide.

Son état d'équilibre permet d'établir que la somme vectorielle des forces issues de deux parties est nulle .

$$\vec{F}_{1\to 2} + \vec{F}_{2\to 1} = \vec{0} \,.$$

L'équilibre de chacune des parties est caractérisé par l'action des forces extérieures de volume et de surface qui lui sont appliquées sur la section S. On définit donc le vecteur contrainte f1 $\frac{d\vec{F}}{dS}$ comme étant la limite de

Lorsque la surface dS tend vers zéro. quand dS est considérée dans le plan yz, ce vecteur peut être décomposé en trois composantes

• Contrainte Normale
$$\sigma_{xx} = \sigma_x = \lim_{dS \to 0} \frac{dF_x}{dS}$$
 (2)

• Contraintes de Cisaillement
$$\tau_{xy} = \lim_{dS \to 0} \frac{dF_y}{dS}$$
 $\tau_{xz} = \lim_{dS \to 0} \frac{dF_z}{dS}$ (3)

ı

Figure 1.2 – Notion de contrainte

En répétant l'opération pour les deux autres plans, les vecteurs contraintes ont pour expressions :

$$\vec{f}_{1} = \begin{cases} \sigma_{xx} \\ \tau_{xy} \\ \tau_{xz} \end{cases}; \vec{f}_{2} = \begin{cases} \tau_{yx} \\ \sigma_{yy} \\ \tau_{yz} \end{cases}; \vec{f}_{3} = \begin{cases} \tau_{zx} \\ \tau_{zy} \\ \sigma_{zz} \end{cases}$$
(4)

1.1.2 Equations équilibre

L'équilibre d'un infiniment petit de cotés dx,dy,dz soumis à des forces internes de volume et en se basant sur l'équilibre des moments, on peut déduire pour : pour l'axe z

$$\begin{split} \sum M_{iOz} &= 0 \Leftrightarrow \\ \left[\left(\tau_{xy} + \frac{\partial \tau_{xy}}{\partial x} dx \right) \cdot dy dz \right] \cdot \frac{dx}{2} + \left(\tau_{xy} \cdot dy dz \right) \cdot \frac{dx}{2} \\ &- \left[\left(\tau_{yx} + \frac{\partial \tau_{yx}}{\partial y} dy \right) \cdot dx dz \right] \cdot \frac{dy}{2} - \left(\tau_{yx} \cdot dx dz \right) \cdot \frac{dy}{2} = 0 \\ &\Rightarrow \tau_{xy} - \tau_{yx} + \underbrace{\frac{\partial \tau_{xy}}{\partial x} \cdot \frac{dx}{2}}_{=0} - \underbrace{\frac{\partial \tau_{yx}}{\partial y} \cdot \frac{dy}{2}}_{=0} = 0 \end{split}$$

(5)

Figure1.3. L'équilibe de volume

Et les deux autres axes x et y

 $\tau_{yz} = \tau_{zy}$ et $\tau_{zx} = \tau_{xz}$

Le nombre de contraintes de cisaillement se réduit donc à trois. Les six valeurs caractérisant l'état de contrainte peuvent alors être regroupées au sein d'un vecteur de composantes :

$$\{\sigma\}^T = \{\sigma_{xx} \quad \sigma_{yy} \quad \sigma_{zz} \quad \tau_{xy} \quad \tau_{yz} \quad \tau_{xz}\}$$
(6)

Maintenant et en effectuant la somme des efforts suivant x, l'équation d'équilibre correspondante permet également de montrer que :

$$\sum F_{l_x} = 0 \Leftrightarrow \left(\sigma_{xx} + \frac{\partial \sigma_{xx}}{\partial x} dx\right) \cdot dy dz + \left(\tau_{yx} + \frac{\partial \tau_{yx}}{\partial y} dy\right) \cdot dx dz + \left(\tau_{zx} + \frac{\partial \tau_{zx}}{\partial z} dz\right) \cdot dx dy - \sigma_{xx} \cdot dy dz - \tau_{yx} \cdot dx dz - \tau_{zx} \cdot dx dy + f_x^v \cdot dx dy dz = 0$$

$$\Rightarrow \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + f_x^v = 0$$
(7)

Pour les deux autres axes :

(8)

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + f_x^{\nu} = 0$$

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + f_y^{\nu} = 0 \Leftrightarrow div(\sigma) + f = 0$$

$$\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} + f_z^{\nu} = 0$$

Pour le cas plan l'équation d'équilibre s'écrit :

$$\frac{\partial \sigma_{xx}}{\partial_{x}} + \frac{\partial \tau_{yx}}{\partial_{y}} + f_{x} = 0$$

$$\frac{\partial \tau_{xy}}{\partial_{x}} + \frac{\partial \sigma_{yy}}{\partial_{y}} + f_{y} = 0$$
(9)

Ces trois équations sont généralement appelées équations d'équilibre de volume

Figure 1.4 – Equilibre de surface.

Soit un tétraèdre OABC infiniment petit dont l'aire ABC, notée ds, constitue la surface du milieu solide.

Une charge répartie
$$f^s$$
 de composantes $\begin{cases} f^s_x \\ f^s_y \\ f^s_z \end{cases}$

Est appliquée sur cette surface et que les cosinus directeurs de la normale au plan ABC sont notés l, m et n, l'équilibre du tétraèdre se résume à un système de trois équations :

(10)

$$f_{x}^{s} \cdot ds = l \cdot ds \cdot \sigma_{xx} + m \cdot ds \cdot \tau_{yx} + n \cdot ds \cdot \tau_{zx}$$

$$f_{y}^{s} \cdot ds = l \cdot ds \cdot \tau_{xy} + m \cdot ds \cdot \sigma_{yy} + n \cdot ds \cdot \tau_{zy}$$

$$f_{z}^{s} \cdot ds = l \cdot ds \cdot \tau_{xz} + m \cdot ds \cdot \tau_{yz} + n \cdot ds \cdot \sigma_{zz}$$

Soit après simplification :

$$\begin{aligned} f_x^s &= l \cdot \sigma_{xx} + m \cdot \tau_{yx} + n \cdot \tau_{zx} \\ f_y^s &= l \cdot \tau_{xy} + m \cdot \sigma_{yy} + n \cdot \tau_{zy} \Leftrightarrow \begin{cases} f_x^s \\ f_y^s \\ f_z^s \end{cases} = \begin{bmatrix} \sigma_{xx} & \tau_{yx} & \tau_{zx} \\ \tau_{xy} & \sigma_{yy} & \tau_{zy} \\ \tau_{xz} & \tau_{yz} & \sigma_{zz} \end{cases} \begin{bmatrix} l \\ m \\ n \end{bmatrix} = \begin{bmatrix} \sigma \end{bmatrix} \cdot \begin{bmatrix} l \\ m \\ n \end{bmatrix} \end{aligned}$$

(11)

Pour le cas plan (xy)

(12)
$$f_x^s = l \cdot \sigma_{xx} + m \cdot \tau_{yx}$$
$$f_y^s = l \cdot \tau_{xy} + m \cdot \sigma_{yy}$$

Ces équations d'équilibre de surface correspondent en fait aux conditions aux limites du système

1..2 Les déformations

1.2.1 Notion de déformation

L'action de forces extérieures sur un solide déformable entraîne pour chacun des points de sa géométrie un mouvement pouvant être décomposé en trois phase distinctes : une translation d'ensemble (mouvement de corps rigide en translation), une rotation d'ensemble (mouvement de corps rigide en translation) et enfin une déformation pure.

Considérant le cas le plus courant, seules les hypothèses de petites déformations et petits déplacements.

La déformation dans les trois plans est donnée par :

$$\varepsilon_{xx} = \frac{\partial u}{\partial x} \quad \gamma_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}$$

$$\varepsilon_{yy} = \frac{\partial v}{\partial y} \quad \gamma_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}$$

$$\varepsilon_{zz} = \frac{\partial w}{\partial z} \quad \gamma_{zx} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}$$
(13)

L'expression générale des composantes du vecteur des déformation :

$$\{\varepsilon\}^{T} = \left\{\varepsilon_{xx} \quad \varepsilon_{yy} \quad \varepsilon_{zz} \quad \gamma_{xy} \quad \gamma_{yz} \quad \gamma_{xz}\right\}$$
(14)

Par ailleurs, (13) pourra également être exprimée sous la forme matricielle suivante

(15)
$$\{\varepsilon\} = \begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{xz} \end{cases} = \begin{bmatrix} \frac{\partial}{\partial x} & 0 & 0 \\ 0 & \frac{\partial}{\partial y} & 0 \\ 0 & 0 & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 \\ 0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial y} \\ 0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x} \end{bmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{v} \\ \boldsymbol{w} \\ \boldsymbol{w} \\ \boldsymbol{w} \end{pmatrix}$$

Figure 1.5 : Déformation plane

1.2.2 Relations entre déformations et contraintes

La relation tridimensionnelle entre déformations et contraintes normales peut être obtenue par superposition des trois états d'équilibre suivant x, y et z soit :

$$\varepsilon_{xx} = \frac{1}{E} \left[\sigma_{xx} - v \cdot \left(\sigma_{yy} + \sigma_{zz} \right) \right]$$
$$\varepsilon_{yy} = \frac{1}{E} \left[\sigma_{yy} - v \cdot \left(\sigma_{xx} + \sigma_{zz} \right) \right]$$
$$\varepsilon_{zz} = \frac{1}{E} \left[\sigma_{zz} - v \cdot \left(\sigma_{xx} + \sigma_{yy} \right) \right]$$

(16)

De plus, il est également possible via un essai de cisaillement pur de montrer qu'il existe des relations linéaires entre contraintes et déformations de cisaillement telles que :

$$\gamma_{xy} = \frac{\tau_{xy}}{G}; \gamma_{yz} = \frac{\tau_{yz}}{G}; \gamma_{xz} = \frac{\tau_{xz}}{G} \text{ avec } G = \frac{E}{2(1+\nu)}$$
(17)

D'où la relation finale entre déformations et contraintes :

$$\left\{\varepsilon\right\} = \begin{bmatrix}D] \cdot \{\sigma\} \text{ avec } \begin{bmatrix}D\end{bmatrix} = \begin{bmatrix}\frac{1}{E} & -\frac{v}{E} & -\frac{v}{E} & 0 & 0 & 0\\ -\frac{v}{E} & \frac{1}{E} & -\frac{v}{E} & 0 & 0 & 0\\ -\frac{v}{E} & -\frac{v}{E} & \frac{1}{E} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1}{G} & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{1}{G} & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G}\end{bmatrix}$$

(18)

1.2.3 Relations entre contraintes et déformations

L'inversion des expressions (16) et 17) permet de déduire les contraintes à partir des)déformations, soit :

$$\sigma_{xx} = \frac{E}{(1+v)\cdot(1-2v)} \Big[\varepsilon_{xx} \cdot (1-v) + v \cdot \Big(\varepsilon_{yy} + \varepsilon_{zz} \Big) \Big]$$

$$\sigma_{yy} = \frac{E}{(1+v)\cdot(1-2v)} \Big[\varepsilon_{yy} \cdot (1-v) + v \cdot \big(\varepsilon_{xx} + \varepsilon_{zz} \big) \Big]$$

$$\sigma_{zz} = \frac{E}{(1+v)\cdot(1-2v)} \Big[\varepsilon_{zz} \cdot (1-v) + v \cdot \big(\varepsilon_{xx} + \varepsilon_{yy} \big) \Big]$$

$$\tau_{xy} = G \cdot \gamma_{xy}$$

$$\tau_{yz} = G \cdot \gamma_{yz}$$

$$\tau_{yz} = G \cdot \gamma_{yz}$$

Soit sous la forme

$$\{\sigma\} = [H] \cdot \{\varepsilon\}$$

(20)

(19)

Avec

$$[H] = \frac{E}{(1+\nu)\cdot(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0 \\ \nu & 1-\nu & \nu & 0 & 0 & 0 \\ \nu & \nu & 1-\nu & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix} = [D]^{-1}$$

(21)

1.3 Etat plan de contrainte et de déformation

1.3.1 Déformation plane

Considérant un solide de section transversale constante, ce solide est décomposé plusieurs tranches, le calcul se limitant à l'étude d'une seule de ces tranches. En conséquence, toutes les déformations associées à l'axe transversal, z en l'occurrence, seront prises égales à zéro.

Figure 1.6 : Etats plan

de déformation

On a donc :

$$\varepsilon_{zz} = \gamma_{xz} = \gamma_{yz} = 0 \quad \text{et} \quad \tau_{xz} = \tau_{yz} = 0$$

$$\begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \end{cases} = \frac{E}{(1+\nu)\cdot(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & 0 \\ \nu & 1-\nu & 0 \\ 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{bmatrix}$$

$$\sigma_{zz} = \nu \cdot \left(\sigma_{xx} + \sigma_{yy}\right)$$
(23)

1.3.2 Contrainte plane

L'inverse de l'état de déformation plane, l'hypothèse de contrainte plane suppose que toutes les contraintes associées à l'axe transversal, z en l'occurrence, sont nulles.

On a donc :

$$\sigma_{zz} = \tau_{xz} = \tau_{yz} = 0 \text{ et } \gamma_{xz} = \gamma_{yz} = 0$$

Figure 1.7 : Etat plan de contrainte

L'équation (14) permet d'établir que :

$$\varepsilon_{zz} = -\frac{v}{E} \cdot \left(\sigma_{xx} + \sigma_{yy}\right)$$

(24)

Mais également que

(25)
$$\begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \end{cases} = \frac{E}{1-v^2} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1-v}{2} \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{bmatrix}$$

1.4 Energie de déformation élastique

Soit un infiniment petit de dimensions **dx**, **dy**, **dz**, l'énergie emmagasinée par le volume dV soumis à une charge F constante dans la direction x sera égale à :

Figure 1.8 : Energie de déformation uni axiale.

$$dW = \frac{1}{2}F \cdot du$$
$$du = \varepsilon_{xx} \cdot dx \text{ et } F = \sigma_{xx} \cdot dydz$$

(26)

avec

(27)

dW, Peut également s'exprimer sous la forme

$$dW = \frac{1}{2}\sigma_{xx} \cdot \varepsilon_{xx} \cdot dx dy dz$$

Pour un volume, l'expression de l'énergie de déformation devient :

(28)
$$W = \frac{1}{2} \int_{V} \sigma_{xx} \cdot \varepsilon_{xx} \cdot dx dy dz = \frac{1}{2} \int_{V} \sigma_{xx} \cdot \varepsilon_{xx} \cdot dV$$

Même raisonnement pour les cisaillements, on a également (figure1.9) :

Figure 1.9 : Energie de déformation de cisaillement.

$$dW = \frac{1}{2} \left(\tau_{xy} \cdot dy dz \right) \cdot \gamma_{xy} \cdot dx = \frac{1}{2} \tau_{xy} \cdot \gamma_{xy} \cdot dx dy dz$$
$$dW = \frac{1}{2} \left(\tau_{xy} \cdot dy dz \right) \cdot \gamma_{xy} \cdot dx = \frac{1}{2} \tau_{xy} \cdot \gamma_{xy} \cdot dx dy dz$$

Finalement l'énergie de déformation élastique est

$$W = \frac{1}{2} \int_{V} (\sigma_{xx} \cdot \varepsilon_{xx} + \sigma_{yy} \cdot \varepsilon_{yy} + \sigma_{zz} \cdot \varepsilon_{zz} + \tau_{xy} \cdot \gamma_{xy} + \tau_{yz} \cdot \gamma_{yz} + \tau_{xz} \cdot \gamma_{xz}) \cdot dV$$

(29)

Sous forme matricielle s'écrit :

(30)
$$W = \frac{1}{2} \int_{V} \{\varepsilon\}^{T} \cdot \{\sigma\} \cdot dV$$

Comme on peut exprimer W uniquement en fonction des contraintes comme suit :

$$W = \frac{1}{2 \cdot E} \int_{V} \left(\sigma_{xx}^{2} + \sigma_{yy}^{2} + \sigma_{zz}^{2} \right) \cdot dV$$

$$- \frac{v}{E} \int_{V} \left(\sigma_{xx} \cdot \sigma_{yy} + \sigma_{yy} \cdot \sigma_{zz} + \sigma_{xx} \cdot \sigma_{zz} \right) \cdot dV + \frac{1}{2 \cdot G} \int_{V} \left(\tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{xz}^{2} \right) \cdot dV$$
(31)

1.5 Contrainte plane en élasticité

Pour les contraintes planes, en négligeant les force de volumes ou bien sont constantes. La solution de tel problème exige l'utilisation de la fonction d'AIRY.

Le problème est de déterminer des fonctions de contrainte qui satisfont les équitations d'équilibre et de compatibilités.

$$\begin{cases} \frac{\partial \sigma_{XX}}{\partial_X} + \frac{\partial \tau_{YX}}{\partial_y} = 0\\ \frac{\partial \tau_{XY}}{\partial_X} + \frac{\partial \sigma_{YY}}{\partial_y} = 0 \end{cases}$$
(32)

$$\frac{\partial^2 \varepsilon_x}{\partial \gamma^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{\partial^2 \gamma_{xy}}{\partial x \partial y}$$
(33)

Après substitution de l'équation (16) dans le cas plan et l'équation (17) dans l'équation (33), l'équation devient

$$\frac{\partial^2}{\partial y^2} \left(\sigma_x - v \sigma_y \right) + \frac{\partial^2}{\partial x^2} \left(\sigma_y - v \sigma_x \right) = 2(1+v) \frac{\partial^2 \tau_{xy}}{\partial x \partial y}$$
(34)

L'équation (32) peut écrire sous a forme

$$\frac{\partial^2 \sigma_x}{\partial x^2} + \frac{\partial^2 \sigma_y}{\partial y^2} = -2 \frac{\partial^2 \tau_{xy}}{\partial x \partial y}$$
(35)

Après la substitution de l'équation (35) dans l'équation (34) on trouve

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left(\sigma_x + \sigma_y\right) = 0 \tag{36}$$

Pour la solution de l'équation (36), AIRY à proposer une fonction de contrainte

$$\sigma_x = \frac{\partial^2 \varphi}{\partial x^2}$$
 , $\sigma_y = \frac{\partial^2 \varphi}{\partial y^2}$, $\tau_{xy} = \frac{\partial^2 \varphi}{\partial x \partial y}$

En substitution ces grandeurs dans l'équation (36) on trouve l'équation bi harmonique en coordonnée cartésienne.

$$\frac{\partial^4 \emptyset}{\partial x^4} + 2 \frac{\partial^4 \emptyset}{\partial x^2 \partial y^2} + \frac{\partial^4 \emptyset}{\partial y^4} = 0$$
(37)

Cherchons la solution en coordonnées polaire dont les composantes

$$\sigma_{r} = \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r} + \frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial r^{2}}$$

$$\sigma_{\theta} = \frac{\partial^{2} \phi}{\partial r^{2}}$$

$$\sigma_{r\theta} = \frac{1}{r^{2}} \frac{\partial \phi}{\partial \theta} - \frac{1}{r} \frac{\partial^{2} \phi}{\partial \theta \partial r} = -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \phi}{\partial r}\right)$$
(38)

Pour bien déterminer les contraintes autour d'un trou, il faut réécrivant l'équation bi harmonique (37) en fonction des coordonnées polaire

$$x = r \cos\theta, \frac{\partial r}{\partial x} = \frac{x}{r} = \cos\theta$$
, et $y = r \sin\theta, \frac{\partial r}{\partial y} = \frac{y}{r}$

En substitution les différentes dérivées partielles simple et double, finalement on trouve

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}\right) \left(\frac{\partial^2 \emptyset}{\partial r^2} + \frac{1}{r}\frac{\partial \emptyset}{\partial r} + \frac{1}{r} + \frac{1}{r^2}\frac{\partial^2 \emptyset}{\partial \theta^2}\right) = 0$$
(39)

La solution de l'équation biharmonigue (39) sont les solutions à deux dimensions Les valeurs des contrainte à une distance 'b' du trou sont données par

$$(\sigma_r)_{r=b} = q\cos^2\theta = \frac{1}{2}q(1+\cos 2\theta)$$

$$(\sigma_r)_{r=b} = -\frac{1}{2}q\sin 2\theta$$

(40)

Pour calcules les contrainte if faut introduire une fonction

(41)

 $\emptyset = f(r) \cos(2\theta)$

Substitution l'équation (41) dans l'équation (39) pour trouver les fonction f(r)

$$\left(\frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr} - \frac{4}{r^2}\right)\left(\frac{d^2f}{dr^2} + \frac{1}{r}\frac{\partial f}{\partial r} - \frac{4f}{r^2}\right) = \mathbf{0}$$

$$\tag{42}$$

Après intégration, la fonction f(r)s'écrit :

$$f(r) = Ar^2 - Br^4 + c\frac{1}{r^2} + D$$
(43)

D'où la fonction des contraintes $\emptyset(r, \theta)$ s'écrit :

$$\emptyset(r,\theta) = (Ar^2 - Br^4 + C\frac{1}{r^2} + D)\cos(2\theta)$$
(44)

Substitution dans les équations donnant les composantes des contraintes

$$\begin{cases} \sigma_r = \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} = -(2A + 6\frac{c}{r^4} + 4\frac{D}{r^2})\cos 2\theta \\ \sigma_\theta \frac{\partial^2}{\partial r^2} = (2A + 12r^2 + 6\frac{c}{r^4})\cos 2\theta \\ \tau_{r\theta} = \frac{1}{r^2} \frac{\partial \phi}{\partial \theta} - \frac{1}{r} \frac{\partial^2 \phi}{\partial r^2 \theta} = (2A + 6Br^2 - 6\frac{c}{r^4} - \frac{2D}{r^2})\cos 2\theta \end{cases}$$
(45)

Appliquant les conditions aux limites

$$r = b \rightarrow -(2A + 6\frac{C}{b^4} + 4\frac{D}{b^2})\cos 2\theta = \frac{1}{2}q + \frac{1}{2}q\cos 2\theta$$
$$\Rightarrow (2A + 6\frac{C}{b^4} + 4\frac{D}{b^2}) = -\frac{1}{2}q$$
$$r = a \rightarrow (2A + 6\frac{C}{a^2} + 4\frac{D}{a^2}) = 0$$

Pour $\tau_{r\theta}$

$$r = b \rightarrow (2A + 6Bb^2 - 6\frac{C}{b^4} + 2\frac{D}{b^2}) = -\frac{1}{2}q$$

$$r = a \rightarrow (2A + 6Ba^2 + B\frac{C}{a^4} + 2\frac{D}{a^2}) = 0$$

Donc on a un système d'équation

$$\begin{cases} 2A + 6\frac{C}{b^2} + 4\frac{D}{b^2} = -\frac{1}{2}q\\ 2A + 6\frac{C}{a^2} + 4\frac{D}{a^2} = 0\\ 2A + 6Bb^2 + 6\frac{C}{b^4} + 2\frac{D}{b^2} = -\frac{1}{2}q\\ 2A + 6Ba^2 + B\frac{C}{a^2} + 2\frac{D}{a^2} = 0 \end{cases}$$

	(4	ŀ6)
--	----	-----

Les inconnus sont A ,B,C,D

La solution de ce système donne :

$$A = -\frac{1}{4}q$$
 , $B = 0$, $C = -\frac{a^2}{4}q$, $D = \frac{a^2}{2}q$

La substitution de ces valeurs dans l'équation (f) les composantes des contrainte deviennent :

$$\sigma_{r} = \frac{q}{2} \left(1 - \frac{a^{2}}{r^{2}} \right) + \frac{q}{2} \left(1 + \frac{3a^{2}}{r^{4}} - \frac{4a^{2}}{r^{2}} \right) \cos 2\theta$$

$$\sigma_{\theta} = \frac{q}{2} \left(1 + \frac{a^{2}}{r^{2}} \right) - \frac{q}{2} \left(1 + \frac{3a^{4}}{r^{4}} \right) \cos 2\theta$$

$$\tau_{r\theta} = -\frac{q}{2} \left(1 + \frac{3a^{2}}{r^{4}} + \frac{3a^{4}}{r^{4}} \right) \sin 2\theta$$
(47)

Chapitre 2 :

Méthode des éléments finis appliquée à l'élasticité

RESUME

Dans le deuxième troisième chapitre, nous avons présenté les étapes principales de la méthode des éléments finis, est leurs applications, pour obtenir des valeurs numériques représentatives, du champ de contrainte après la discrétisation

d'équations modélisantes. Pour cela, nous avons considéré l'approche de déplacement dans le cas bidimensionnel pour la solution approximative de l'équation, nous avons subdivisé la structure en élément triangulaire et on a pris l'1/4 de la plaque vue la symétrie d'un maillage de 80 éléments et 54 nœuds. La solution du système d'équations algébriques, dont les inconnus sont les aux nœuds. Ce dernier est traité par la méthode numérique de CROUT.

Chapitre 2 : Méthode des éléments finis appliquée à l'élasticité

Introduction

La méthode des éléments finis consiste à utiliser une approximation simple des variables inconnues pour transformer les équations dérivées partielles en équation algébriques **[3]**. Elle fait appel aux trois domaines suivants :

- Sciences de l'ingénieurs pour construite les équations aux dérivées partielles.
- Méthodes numériques pour construire et résoudre les équations algébriques.
- Programmation et informatique pour exécuter efficacement les calculs sur l'ordinateur.
 Particulier en construction aéronautique, aérospatiale. Elle se développe en ce moment dans les applications de la mécanique des fluides et étude des phénomènes de pollution.

La méthode des éléments finis est maintenant très répandue dans les industries, en thermique ou chimique des interactions fluide structure.

Il existe plusieurs types de méthodes pour trouver des solutions approchées au problème définissant les différentes contraintes dans une plaque troué, parmi ces méthodes on a choisi la méthode des éléments finis qui est largement utilisée [4].

2.1 La méthode des éléments finis

La méthode des éléments finis est une technique particulière d'approximation des solutions par sous domaine, elle est couramment utilisée pour obtenir des valeurs numériques représentatives liées à l'équilibre d'un corps solide soumis à une charge de traction sur ces bords la méthode des déplacements a été utilisée [5]. Dans la démarche fondamentale de la méthode des éléments finis, il faut distinguer :

- La géométrie du type élément fini (géométrie et interpolation)
- La méthode des déplacements
- La construction et l'assemblage des matrices élémentaires
- La résolution du système obtenu.

- **2.2 Description et application :**
- 2.2.1 Description :
- 2.2.1.1 Eléments et fonctions d'interpolation :
 - 2.2.1.1.1 Le choix des éléments de base :

L'avantage primordiale pour la MEF est qu'elle permet la discrétisation d'un domaine ayant une géométrique arbitraire (quel que soit la complexité de sa géométrie), ce domaine peut être représenté par un assemblage d'élément simples **[5]**.

Le nombre des nœuds d'un certain élément dépend du type de variables des nœuds, dépend aussi du type de la fonction d'interpolation et du type de degré de continuité.

• Les éléments les plus simples unidimensionnels :

• Les éléments tridimensionnels :

Figure 2.1 : Types d'éléments

Types des nœuds :

Les nœuds sont classifiés comme extérieures et intérieures. Les nœuds extérieures sont localisés sur les limites de l'éléments et représentent des points de connections entre éléments adjacents. Les nœuds intérieures sont ceux qui ne font aucune connections entre éléments.

Hegrés de libertés :

Les variables spécifiées pour un éléments sont appelées degrés de liberté, c'est le nombre total des variables des nœuds des éléments (extérieures et intérieures).

2.2.1.2 Fonction d'interpolation polynomiale :

On appelle les fonctions représentant la variation des variables dépendantes dans un élément fonction d'interpolation. Plusieurs types peuvent servir comme fonction d'interpolation mais les polynômes sont plus utilisés.

a - Cas d'une seule variable indépendante (cas unidimensionnel)

$$p_{n}(x) = \sum_{i=0}^{b} a_{i}x^{i}$$
(2.1)
Avec : $b = \frac{(n+1)}{2}$ b : degré du polynôme
 $p_{1}(x) = a_{0} + a_{1}x$
 $p_{2} = a_{0} + a_{1}x + a_{2}x^{2}$
 $p_{3} = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3}$

b - Cas de deux variables indépendantes (cas bidimensionnel) :

$$p_{n}(x) = \mathop{a}\limits_{i, j=1}^{b} a_{k_{i}} x^{i} y^{j} \qquad i + j \pounds n$$

$$Avec : b = \frac{(n+1)(n+2)}{2} \qquad b : degré du polynôme$$
(2.2)

$$\sum_{i=1}^{i} p_{1}(x, y) = a_{0} + a_{1}x + a_{2}x \sum_{i=1}^{i} p_{2}(x, y) = a_{0} + a_{1}x + a_{2}y + a_{3}xy + a_{4}x^{2} + a_{5}y^{2}$$

c - cas de trois variables indépendantes (cas tridimensionnel) :

$$p_{n}(x) = \mathop{a}_{i,j,k=1}^{n} a_{i} y^{j} z^{k} \quad i+j+k \ \pounds \ n$$
(2.3)

Avec : $b = \frac{(n+1)(n+2)(n+3)}{6}$ b : degré du polynôme

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} p_1(x, y, z) = a_0 + a_1 x + a_2 y + a_3 z \\ \end{array} \\ \begin{array}{l} p_2(x, y, z) = a_0 + a_1 x + a_2 y + a_3 z + a_4 x y + a_5 x z + a_6 y z + a_7 x^2 + a_8 y^2 + a_9 z^2 \end{array}$$

2.2.1.3 Construction et assemblage des matrices élémentaires

La phase d'assemblage consiste à construire les matrices K et F de la structure complète à partir des matrices caractéristiques des différents éléments K^e, F^e préalablement calculés.

L'assemblage comporte deux étapes :

- construction de la matrice (K^e) et du vecteur (F^e) de chaque élément
- addition des matrices et vecteurs élémentaires

Avec :

 $[K]^e$ La matrice élémentaire, F^e le vecteur élémentaire, $\{d\}$ le vecteur de déplacement

Pour bien expliqué les deux étapes précédentes, prenons l'exemple d'un élément à deux nœuds (I, J) chacun ayant un degré de liberté.

2.2.1.3.1 Expansion $[K]^e$:

Pour que la matrice du système (2.5) reste inchangée si l'on remplace le vecteur élémentaire par un vecteur global [4], il faut remplacer [K] de dimension (2x2) par une matrice $[K^{*e}]$ de dimension (2 x N) dont la colonne I et la colonne J sont respectivement :

$$\mathbf{I} = \begin{bmatrix} \mathbf{i} & \mathbf{K}_{11} \ddot{\mathbf{y}} \\ \mathbf{j} & \mathbf{K}_{12} \mathbf{j} \end{bmatrix}, \quad \mathbf{J} = \begin{bmatrix} \mathbf{i} & \mathbf{K}_{21} \ddot{\mathbf{y}} \\ \mathbf{j} & \mathbf{K}_{22} \mathbf{j} \end{bmatrix}$$
(2.6)

et dont toutes les autres colonnes sont nulles

Il faut remplacer encore la matrice $[K^{e}]$ de $(2 \times N)$ par la matrice $[K^{e}]$ de $(N \times N)$ dont la ligne I est la première de $[K^{e}]$ et dont la ligne J est la seconde ligne de $[K^{e}]$ et dont les autres lignes sont nuls.

col I col J

3.2.1.3.2 Expansion du vecteur élémentaire $\{f\}^e$:

$$\left\{ \mathbf{f}^{e} \right\} = \hat{\mathbf{j}}_{i}^{i} \frac{\mathbf{f}_{i} \ddot{\mathbf{u}}}{\mathbf{f}_{j} \dot{\mathbf{p}}}$$
(2.9)

Pour que le vecteur $\{f^e\}$ reste inchangé, il faut remplacer $\{f^e\}$ de (2×1) par le vecteur $\{F^{e}\}$ de $(N \times 1)$ dont le terme I et le terme J et f_2 dont les autres sont nuls.

$$\left\{ F^{*e} \right\} = \begin{bmatrix} i & 0 & i & i \\ i & 0 & i$$

3.2.1.3.3 Introduction les conditions aux limites :

La méthode de suppression des équations consiste à restructurer la matrice[K] de manière à supprimer les équations correspondant aux degré de liberté imposés (b), elle à l'avantage de réduire le nombre d'inconnues du système [4], la restriction de [K] et $\{F\}$ correspondant à $p_1 = b$ conduit à supprimer les autres équations.

Soit le système suivant :

Le système devient :

. .

3.2.1.4 Résolution numérique :

Le système global modifié (supposé linéaire) est résolu par les méthodes de solution itératives par exemple la méthode de Gauss Seidel accélérée par sur relaxation successive lorsque' on a un grand nombre de nœud.

Si on a un nombre de nœud modéré, on utilise les méthodes de solution des système linéaires classiques : Gauss Jordan avec pivot, la méthode de décomposition LU avec substitution (CROUT, dite aussi méthode de DOOLITE).

L'utilisation de la méthode des éléments finis conduit à la résolution d'un système d'équations algébriques parfois très important. Pour l'analyse des problèmes linéaires, la méthode de résolution choisie est celle de CROUT, dont l'algorithme est [7] :

La résolution du système par la méthode de CROUI peut s'organiser en trois phases de calcul :

1. Factorisation de [K]

Il est possible de factoriser [K] sous la forme :

$$[K] = [L] [U] (2.14)$$

Où [L] est une matrice triangulaire inférieure (à éléments diagonaux égaux à l'unité) et U est une matrice triangulaire supérieure.

L'algorithme suivant donne les éléments de L et U :

$$L(i,i) = 1 \qquad I=1, N$$

$$U(i,j) = K(i,j) - \overset{i-1}{a} L(i,k) U(k,j) \qquad j=1, rxN \qquad i=1 \qquad (2.15)$$

$$L(i, j) = \frac{K(i, j) - \overset{j - 1}{a} L(i, k) U(k, j)}{U(j, j)} \qquad j=1...rxN \quad I=j+1, rxN \qquad (2.16)$$

Où

r: est le nombre de degrés de liberté par nœud et N le nombre total des nœuds.

Le système Craminien $[K]{\delta} = {F}$ devient :

$$[L][U]{T} = \{\delta\}$$
(2.17)

qui peut se décomposer- en :

2. Résolution du système triangulaire inférieur

$$[L]\{Y\} = \{F\}$$
(2.18)

3. Résolution du système triangulaire supérieur

$$[U]{d} = {Y}$$
 2.19)

Le système (2.18) est un système triangulaire inférieur dont la solution Y est donnée par :

$$Y(i) = F(i) - \mathop{a}_{k=1}^{i-1} L(i,k) Y(k) \quad i=1,...xN$$
(2.20)

Une fois Y déterminée, le système triangulaire supérieur 2.19) nous donne la solutionT(i), les composantes de celle-ci sont données par :

$$\begin{array}{c}
\overset{i}{l} & T(N) = \frac{Y(N)}{U(N,N)} \\
\overset{i}{l} & Y(i) - \overset{N}{a} U(i,k) Y(k) \\
\overset{i}{l} & U(i,k) U(i,k) & i = N-1, \dots 1
\end{array}$$
(2.21)

2.3 Application :

2.3.1 Le choix d'élément et fonction d'interpolation :

· Le choix d'élément

Cette étape consiste à subdiviser la structure (voir figure (2.2) en élément fini de forme simple de manière à approximer le mieux possible sa géométrie **[6]**. Il s'agit d'éléments plans de forme triangulaire, c'est à dire un triangle de trois nœuds figure. (3.5 b), chaque élément à 3DDL (trois températures)

a) domaine d'étude D.

b) élément et ces dimensions.

Figure (2.2): géométrie de l'élément

2.3.2 Formulation Mécanique

2.3.2.1 Fonction du déplacement

a) Elasticité plane

Nous allons appliquer la théorie générale et la formulation mécanique modèle déplacement aux

Etats plans de contraintes.

 $(\sigma_x, \sigma_y, \sigma_{xy}) \neq 0$ et $(s_x, s_y, \gamma_{xy}) \neq 0$ et independant de Z $(\gamma_{xy} = 2s_{xy})$ la plaque est mince suivant z.

• Etats plans de déformation

 $(\varepsilon_{x'}\varepsilon_{y'}\gamma_{xy}) \neq 0$ et $(\sigma_{x'}\sigma_{y'}\sigma_{xy}) \neq 0$

Donc :

$$\{\sigma\} = \begin{cases} \sigma_x \\ \sigma_y \\ \sigma_{xy} \end{cases} et \qquad \{s\} = \begin{cases} s_x \\ s_y \\ \gamma_{xy} \end{cases}$$

b) Fonction déplacement un coordonnées cartésiennes

Il faut se donner une fonction représentant la variation des déplacements du chaque points de l'élément. Pour un élément triangulaire a trois nœuds comme dans notre cas.

Figure 2.3 : Triangle à trois nœuds

Le vecteur de déplacement pour élément triangulaire s'écrit sous la forme suivante

$$\{\delta^{e}\} = \begin{cases} \delta_{1} \\ \delta_{y} \\ \delta_{3} \end{cases} = = \begin{cases} U_{1} \\ V_{1} \\ U_{2} \\ V_{2} \\ U_{3} \\ V_{3} \end{cases}$$
(2..22)
L'élément bidimensionnel le plus simple est le triangle a' trais nœuds. pour ce genre d' élément l'interpolation linéaire est suffisante pour d'écrire le champ variable l'approximation est donné par l'équation

$$U(x, y) = \alpha_1 + \alpha_2 x + \alpha_3 y$$
$$V(x, y) = \beta_1 + \beta_2 x + \beta_3 y$$
$$(2..23)$$

On pose

$$\begin{cases} U(x,y) \\ V(x,y) \end{cases} = \begin{bmatrix} 1 & x & y & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x & y \end{bmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$$
(2..24)

Les α_i et β_i sont les coordonnées généralisées de U(x, y) et V(x, y) dans la base [1 x y]

Pour éliminer les coordonnées éliminer les coordonnées les $(\alpha_i \text{ et } \beta_i)$ et les remplacer par les déplacements nodaux U_i et V_i , il faut que le nombre de composantes de la base [1 x y] soit égal au nombre de points nodaux de l'élément. Donc,

$$\{\delta^{\mathfrak{s}}\} = \begin{pmatrix} \mathsf{U}_{1} \\ \mathsf{V}_{1} \\ \mathsf{U}_{2} \\ \mathsf{V}_{2} \\ \mathsf{U}_{3} \\ \mathsf{V}_{3} \end{pmatrix} = \begin{pmatrix} \mathsf{U}_{1}(x,y) \\ \mathsf{V}_{1}(x,y) \\ \mathsf{U}_{2}(x,y) \\ \mathsf{U}_{2}(x,y) \\ \mathsf{U}_{3}(x,y) \\ \mathsf{U}_{3}(x,y) \\ \mathsf{V}_{3}(x,y) \end{pmatrix} = \begin{vmatrix} 1 & x_{1} & y_{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x_{2} & y_{2} \\ 1 & x_{3} & y_{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x_{3} & y_{3} \end{vmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \\ \beta_{1} \\ \beta_{2} \\ \beta_{3} \end{pmatrix}$$
(2..25)

Les coordonnées (α_i et β_i) des nœuds de l'élément étant connus on obtient alors d'une manière générale la relation d'interpolation.

Les (α_i et β_i) sont déterminées à partie de l'équation (2. comme suit :

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = [A^{-1}]\{\delta^g\}$$
(2..26)

avec
$$[A] = \begin{bmatrix} 1 & x_1 & y_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x_1 & y_1 \\ 1 & x_2 & y_2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x_2 & y_2 \\ 1 & x_3 & y_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x_3 & y_3 \end{bmatrix}$$

La solution du système (2.25) donne :

$$\begin{cases} \alpha_{1} = \frac{1}{2A} \left(a_{1} u_{1} + a_{2} u_{2} + a_{3} u_{3} \right) \\ \alpha_{2} = \frac{1}{2A} \left(b_{1} u_{1} + b_{2} u_{2} + b_{3} u_{3} \right) \\ \alpha_{3} = \frac{1}{2A} \left(c_{1} u_{1} + c_{2} u_{2} + c_{3} u_{3} \right) \\ \beta_{1} = \frac{1}{2A} \left(a_{1} v_{1} + a_{2} v_{2} + a_{3} v_{3} \right) \\ \beta_{2} = \frac{1}{2A} \left(b_{1} v_{1} + b_{2} v_{2} + b_{3} v_{3} \right) \\ \beta_{3} = \frac{1}{2A} \left(c_{1} v_{1} + c_{2} v_{2} + c_{3} v_{3} \right) \end{cases}$$

$$(2.27)$$

A est l'aire du triangle

$$A = \begin{bmatrix} 1 & 1 & 1 \\ x_1 & x_2 & y_2 \\ y_1 & x_3 & y_3 \end{bmatrix} = \frac{1}{2}(x_2y_3 - x_3y_2) - x_1y_3 + y_1y_2 + x_1x_3 - y_1x_2$$

Avec

$$\begin{array}{c|c} a_{i} = x_{j} y_{k} - x_{k} y_{i} \\ b_{i} = y_{i} - y_{k} \\ c_{i} = x_{k} - x_{j} \end{array} \begin{vmatrix} a_{j} = x_{k} y_{i} - x_{i} y_{k} \\ b_{j} = y_{k} - y_{i} \\ c_{i} = x_{i} - x_{k} \end{vmatrix} \begin{vmatrix} a_{k} = x_{i} y_{i} - x_{j} y_{i} \\ b_{k} = y_{i} - y_{j} \\ c_{k} = x_{j} - x_{i} \end{vmatrix}$$
(2.28)

(i, j, k) correspond à (1, 2, 3)

Ou sous forme matricielle

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \begin{vmatrix} c_1 & 0 & c_2 & 0 & c_3 & 0 \\ b_1 & 0 & b_2 & 1 & b_3 & 0 \\ a_1 & 0 & a_2 & 0 & a_3 & 0 \\ 0 & 0 & 0 & 1 & x_2 & y_2 \\ 0 & b_1 & 0 & b_2 & 0 & b_3 \\ 0 & a_1 & 0 & a_2 & 0 & a_3 \end{vmatrix} \begin{pmatrix} U_1 \\ V_1 \\ U_2 \\ V_2 \\ U_3 \\ V_3 \end{pmatrix}$$

Les déplacements U_i sont relies aux déformations ε_i dans le cas de petits déplacements par la relation

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_j} \right) \tag{2.29}$$

Dans le cas particulier de l'élasticité plane il reste

$$\varepsilon_x = \frac{\partial u}{\partial x}$$
, $\varepsilon_y = \frac{\partial v}{\partial y}$, $\gamma_{yx} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}$ (2.30)

En substituant l'équation (2.23) dans l'équation (2.30)

On obtient

$$\varepsilon_{x} = \frac{\partial}{\partial x} (\alpha_{1} + \alpha_{2}x + \alpha_{3}y) = \alpha_{2}$$
$$\varepsilon_{y} = \frac{\partial}{\partial y} (\beta_{1} + \beta_{2}x + \beta_{3}y) = \beta_{3}$$
$$\gamma_{yx} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} = \alpha_{3} + \beta_{2}$$

Ou bien

$$\varepsilon(x, y) = \begin{cases} \varepsilon_x \\ \varepsilon_y \\ \delta_{xy} \end{cases} = \begin{cases} \alpha_2 \\ \beta_3 \\ \alpha_3 + \beta_2 \end{cases}$$
(2.31)

Sous forme matricielle

$$\{\varepsilon(x,y)\} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = [\mathcal{C}] \begin{pmatrix} \alpha_i \\ \beta_{2i} \end{pmatrix}$$
(2.32)

Remplaçant les valeurs de l'équation (2.26) on obtient

$$\{\varepsilon(x,y)\} = [\mathcal{C}][\mathcal{A}^{-1}]\{\delta^e\}$$
(2.33)

On peut écrire (2.33) sous la forme

$$\{\varepsilon(x, y)\} = [B]\{\delta^e\}$$
(2.34)

avec
$$[B] = [C][A^{-1}]$$

$$[B] == \frac{1}{2} \begin{vmatrix} b_1 & 0 & b_2 & 0 & b_3 & 0 \\ 0 & a_1 & 0 & a_2 & 0 & a_3 \\ a_1 & b_1 & a_2 & b_2 & a_3 & b_3 \end{vmatrix}$$

2.3.2.2 Déformation plane – contrainte plane

Pour un matériau isotrope et dans le cas plan, les contraintes planes sont données par la loi de HOOKE

Pour la déformation plane

$$\begin{cases} \sigma_{\mathbf{x}\mathbf{x}} \\ \sigma_{\mathbf{y}\mathbf{y}} \\ \tau_{\mathbf{x}\mathbf{y}} \end{cases} = \frac{\mathbf{E}}{(\mathbf{1}+\mathbf{v})(\mathbf{1}-2\mathbf{v})} \begin{bmatrix} \mathbf{1}-\mathbf{v} & \mathbf{v} & \mathbf{0} \\ \mathbf{v} & \mathbf{1}-\mathbf{v} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \frac{\mathbf{1}-2\mathbf{v}}{2} \end{bmatrix} \begin{pmatrix} \boldsymbol{\epsilon}_{\mathbf{x}\mathbf{x}} \\ \boldsymbol{\epsilon}_{\mathbf{y}\mathbf{y}} \\ \gamma_{\mathbf{x}\mathbf{y}} \end{pmatrix} = [\mathbf{D}] \{ \boldsymbol{\epsilon}(\mathbf{x},\mathbf{y}) \}$$
(2.35)

$$[D] = \frac{E}{(1+v)(1-2v)} \begin{bmatrix} 1-v & v & 0\\ v & 1-v & 0\\ 0 & 0 & \frac{1-2v}{2} \end{bmatrix}$$

D'une manière générale on la relation $[\sigma] = [D]{\varepsilon}$

La matrice d'élasticité pour déformation plane

$$[D] = \begin{bmatrix} d_{11} & d_{12} & 0\\ d_{21} & d_{22} & 0\\ 0 & 0 & d_{33} \end{bmatrix} \text{ avec } \begin{cases} d_{11} = \frac{E(1-v)}{(1+v)(1-2v)} = d_{12}\\ d_{12} = \frac{VE}{(1+v)(1-2v)} = d_{21}\\ d_{33} = \frac{(1-2v)E}{(1+v)(1-2v)} \end{cases}$$

Pour contrainte plane •

$$\begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \end{cases} = \frac{E}{1-v^2} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1-2v}{2} \end{bmatrix} \begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{cases} = = [D] \{ \varepsilon(x, y) \}$$

6)((2.36)

(2.36)(

$$[D] = \frac{E}{1 - v^2} \begin{bmatrix} 1 & v & 0\\ v & 1 & 0\\ 0 & 0 & \frac{1 - v}{2} \end{bmatrix}$$

$$[D] = \begin{bmatrix} d_{11} & d_{12} & 0 \\ d_{21} & d_{22} & 0 \\ 0 & 0 & d_{33} \end{bmatrix} \text{ avec } \begin{cases} d_{11} = \frac{E}{1 - \nu^2} = d_{22} \\ d_{12} = \frac{VE}{1 - \nu^2} \\ d_{33} = \frac{(1 - \nu)E}{1 - \nu^2} \end{cases}$$

La substitution de l'équation (2.34) dans l'équation (2.36) on obtient

$$\{\sigma\} = [D]\{\varepsilon\} = [D][B]\{\delta^e\}$$
(2.37)

dLa

Donc,

$$\{\sigma\} = \begin{bmatrix} d_{11} & d_{12} & 0 \\ d_{21} & d_{22} & 0 \\ 0 & 0 & d_{33} \end{bmatrix} \begin{vmatrix} b_1 & 0 & b_2 & 0 & b_3 & 0 \\ 0 & a_1 & 0 & a_2 & 0 & a_3 \\ a_1 & b_1 & a_2 & b_2 & a_3 & b_3 \end{vmatrix} \begin{vmatrix} v_1 \\ V_2 \\ V_2 \\ U_3 \\ V_3 \end{vmatrix}$$

Enfin les contraintes sont données en fonction des déplacements nodaux

$$\{\sigma\} = \begin{cases} \frac{1}{2A} (d_{11}b_1u_1 + d_{11}b_2u_2 + d_{11}b_3u_3 + d_{12}a_1v_1 + d_{12}a_2v_2 + d_{13}a_3v_3) \\ \frac{1}{2A} (d_{12}b_1u_1 + d_{12}b_2u_2 + d_{13}b_3u_3 + d_{11}a_1v_1 + d_{11}a_2v_2 + d_{11}a_3v_3) (2.38) \\ \frac{1}{2A} (d_{33}b_1u_1 + d_{33}b_2u_2 + d_{33}b_3u_3 + d_{33}a_1v_1 + d_{33}a_2v_2 + d_{33}a_3v_3) \end{cases}$$

2.3.2.3 Détermination de la matrice de rigidité [K]

Finalement on obtient les force s nodales correspondant aux contraintes (2.37) et aux déplacements nodaux pour déterminer les coefficients de la rigidité. Les forces de surfaces extérieures de composantes X et Y agissant sur une partie S_{σ} de la frontière (S) de l'élément (coté de l'élément) sont équivalentes à un vecteur force concentrées agissant aux nœuds de la frontière S_{σ} de l'élément.

Dans ce cas le maillage doit être choisi de tels sorte que les forces doivent concentrés aux nœuds . pour les charge réparties on doit calculer les charges nodales équivalents on utilisant le principe des travaux virtuel puis on égalant les travaux les travaux due aux force nodales équivalent pour l'état de contraintes planes et avec des forces concentrées sur les limites . L'équation du travail virtuel s'écrit :

$$\iiint \left(\sigma_x \varepsilon_x + \sigma_y \varepsilon_y + \tau_{xy} \gamma_{xy}\right) dv - X_1 U_1 - X_2 U_2 - X_3 U_3 - y_1 V_1 - y_2 V_2 - y_3 V_3 = 0$$

(2.39)

Ou bien

$$\iiint (\varepsilon)^T \{\sigma\} dx dy dz - \{\delta^e\}^T \{P\} = 0$$

Avec
$$\{P\} = \begin{cases} Y_1 \\ Y_2 \\ Y_2 \\ Y_3 \\ Y_3 \end{cases}$$

Et

$$\{\varepsilon\} = [B]\{\delta^e\}$$

La propriété du travail virtuel réside que, pour un problème particulier l'équilibre correspondant à une sollicitation donnée peut être multiplier par une déformation et le résultat est nul. Ce qui nous donne la possibilité de déterminer les coefficients de rigidité

Pour X1, l'équilibre est écrit pour

$$\sigma_x$$
 , σ_{yy} , τ_{xy} avec X₁, Y₁, X₂, Y₂, X₃, Y₃

Et les conditions de déformation

$$\vec{u}_1 \neq 0, \ \vec{v}_1 = \vec{u}_2 = \vec{v}_2 = \vec{u}_3 = \vec{v}_3 = 0$$

En substituant l'équation (2.34) dans l'équation (2.39) on obtient :

$$\iiint \left(\sigma_x \frac{1}{2A} (y_2 - y_3) \dot{u}_1 + \tau_{xy} \frac{1}{2A} (x_3 - x_2) \dot{u}_1 \right) dv - X_1 \dot{u}_1 = 0$$

Ou bien

$$X_{1} = \frac{1}{2A} \iiint \left(\sigma_{x} (y_{2} - y_{3}) + \tau_{xy} (x_{3} - x_{2}) \right) dv$$

Puisque σ_x et τ_{xy} sont constante le long de l'élément alors

 $\iiint dv = V$

D'où

$$X_{1} = \frac{V}{2A} \left(\sigma_{x} (y_{2} - y_{3}) + \tau_{xy} (x_{3} - x_{2}) \right)$$

$$X_{1} = \frac{t}{2} \left(\sigma_{x} (y_{2} - y_{3}) + \tau_{xy} (x_{3} - x_{2}) \right)$$

Substitution de l'équation (2.38) Dans X1

$$X_{1} = \frac{t}{2} \begin{bmatrix} (d_{11}(y_{2} - y_{3})^{2} + d_{33}(x_{3} - x_{2})^{2})U_{1} + \\ (d_{12}(x_{3} - x_{2})(y_{3} - y_{2}) + d_{33}(y_{3} - y_{2})(x_{2} - x_{3}))V_{1} + \\ (d_{11}(y_{2} - y_{3})(y_{3} - y_{1}) + d_{33}(x_{1} - x_{3})(x_{1} - x_{3}))U_{2} + \\ ((d_{12}(x_{1} - x_{3})(y_{2} - y_{3}) + d_{33}(x_{3} - x_{2})(y_{3} - y_{1}))V_{2} + \\ (d_{11}(y_{2} - y_{3})(y_{1} - y_{2}) + d_{33}(x_{2} - x_{1})(x_{3} - x_{2})U_{3} + \\ (d_{12}(y_{1} - y_{3})(x_{2} - x_{1}) + d_{33}(y_{1} - y_{2})(x_{3} - x_{2}))V_{3} \end{bmatrix}$$

Enfin la force X_1 est exprimé en fonction des déplacements nodaux ce qui donne la possibilité de déterminer les éléments de la matrice de rigidité.

Le même principe sera appliqué pour les autres forces pour déterminer les autres éléments

Pour Y1 on considère l'équilibre avec les conditions suivants

 $\dot{v}_2 \neq 0$, $\dot{u}_1 = \dot{u}_2 = \dot{v}_1 = \dot{u}_3 = v_3 = 0$ Ce qui donne

$$\begin{cases} \varepsilon_{X} = 0 \\ \dot{\varepsilon}_{y} = \frac{1}{2A} (x_{1} - x_{2}) \dot{V}_{2} \\ \dot{\gamma}_{xy} = \frac{1}{2A} (y_{3} - Y_{1}) \dot{V}_{1} \end{cases}$$

Cette procédure ders généralisée pour trouver les autres éléments de la matrice Enfin la matrice s'écrit :

$$\{P\} = \begin{cases} X_{1} \\ Y_{1} \\ X_{2} \\ Y_{2} \\ X_{3} \\ Y_{3} \end{cases} = \begin{bmatrix} K_{11} & K_{12} & K_{13} & K_{14} & K_{15} & K_{16} \\ K_{21} & K_{22} & K_{23} & K_{24} & K_{25} & K_{26} \\ K_{31} & K_{32} & K_{33} & K_{34} & K_{35} & K_{36} \\ K_{41} & K_{42} & K_{43} & K_{44} & K_{45} & K_{46} \\ K_{51} & K_{52} & K_{53} & K_{54} & K_{45} & K_{56} \\ K_{61} & K_{62} & K_{63} & K_{64} & K_{65} & K_{66} \end{bmatrix} \begin{cases} U_{1} \\ U_{2} \\ V_{2} \\ U_{3} \\ V_{3} \end{cases} = [K]\{\delta^{e}\}$$
(2.40)

Dans le cas d'un matériau isotrope (élasticité linéaire) et considérant l'état de contrainte planes. Les éléments de la matrice sont donnés en dessous.

Pour l'état de déformation plane la matrice est identique en substituant l'équation (2.35)

Sous forme matricielle

$$\iiint (\varepsilon)^T \{\sigma\} dv = \{\delta\}^T \{P\}$$

(2.41)

En introduisant les termes de l'équation (2.34) et (2.37) on obtient

$$\iiint (\delta)^T [B]^T [D] [B] \{\delta\} dv = \{\delta\}^T \{P\}$$
(2.42)

Les contraintes et les déformations sont constantes sur l'élément, donc l'équation

 $[B]^T[D][B]\{\delta\}V=\{P\}$

Donc la matrice de rigidité

$$[K] = t.A . [B]^T [D] [B]$$

(2.43)

$$\frac{1}{2A}[K]\begin{pmatrix} U_{1}\\ V_{1}\\ U_{2}\\ V_{2}\\ U_{3}\\ V_{3} \end{pmatrix} = \begin{pmatrix} X_{1}\\ Y_{1}\\ X_{2}\\ Y_{2}\\ Y_{2}\\ X_{3}\\ Y_{3} \end{pmatrix}$$

(2.44)

Donc, il suffit de résoudre le système algébrique pour trouver tous les déplacements

2.3.2.4 Les éléments de la matrice de rigidité :

$$K_{11} = d_{11}(y_2 - y_3)^2 + d_{33}(x_3 - x_2)^2$$

$$K_{12} = d_{12}(x_3 - x_2)(y_3 - y_2) + d_{33}(y_3 - y_2)(x_2 - x_3)$$

$$K_{13} = d_{11}(y_2 - y_3)(y_3 - y_1) + d_{33}(x_1 - x_3)(x_1 - x_3)$$

$$K_{14} = d_{12}(x_1 - x_3)(y_2 - y_3) + d_{33}(y_3 - y_1)(x_3 - x_2)$$

$$K_{15} = d_{11}(y_1 - y_2)(y_2 - y_3) + d_{33}(x_2 - x_1)(x_3 - x_2)$$

$$K_{16} = d_{12}(x_2 - x_1)(y_2 - y_3) + d_{33}(y_1 - y_2)(x_3 - x_2)$$

$$K_{22} = d_{11}(x_3 - x_2)^2 + d_{33}(y_1 - y_3)^2$$

$$K_{23} = d_{12}(x_3 - x_2)(y_2 - y_3) + d_{33}(y_3 - y_1)(x_1 - x_3)$$

$$K_{24} = d_{12}(x_1 - x_3)(x_3 - x_2) + d_{33}(y_3 - y_1)(y_2 - y_3)$$

$$K_{25} = d_{12}(x_3 - x_2)(y_1 - y_2) + d_{33}(y_1 - y_2)(x_2 - x_3)$$

$$K_{26} = d_{12}(x_2 - x_1)(x_3 - x_2) + d_{33}(y_1 - y_2)(y_2 - y_3)$$

$$K_{33} = d_{11}(x_1 - x_3)^2 + d_{33}(y_3 - y_1)^2$$

$$K_{34} = d_{12}(x_1 - x_3)(y_3 - y_1) + d_{33}(y_3 - y_1)(x_1 - x_3)$$

$$K_{35} = d_{11}(y_1 - y_2)(y_3 - y_1) + d_{33}(x_2 - x_1)(x_1 - x_3)$$

$$K_{36} = d_{12}(x_2 - x_1)(y_3 - y_1) + d_{33}(y_1 - y_2)(x_1 - x_3)$$

$$K_{44} = d_{11}(x_1 - x_3)^2 + d_{33}(y_3 - y_1)^2$$

$$K_{45} = d_{12}(y_1 - y_2)(x_1 - x_3) + d_{33}(y_3 - y_1)(x_2 - x_1)$$

$$K_{46} = d_{11}(x_2 - x_1)(x_1 - x_3) + d_{33}(y_1 - y_2)(y_3 - x_1)$$

$$K_{55} = d_{11}(y_1 - y_2)^2 + d_{33}(x_2 - x_1)^2$$

$$K_{56} = d_{12}(x_2 - x_1)(y_1 - y_2) + d_{33}(y_1 - y_2)(x_2 - x_1)$$
$$K_{66} = d_{11}(x_2 - x_1)^2 + d_{33}(y_1 - y_2)^2$$

Chapitre 3 :

Résultats et discussions

RESUME

Ce chapitre est consacré à la discussion des résultats obtenus par l'application du programme en fortran plaque ..for et le logiciel Abaqus dont le but de faire une comparaison entre les deux résultats Comme on a essayé de raffiner le maillage pour voir l'influence de ceci en appliquant une charge mécanique constante les deux cotés est appliquée. Les résultats seront traités par le logiciel Tecplot

3.1Discrétisation du domaine :

Le domaine physique de notre étude est un solide bidimensionnel de forme carrée ayant 480x480 mm de cote. Les éléments choisis sont des triangles, le domaine est divisé en 320 éléments et 204 nœuds, avec des charges de traction suivant l'axe X comme des conditions aux limites Mais vu la symétrie on a pris uniquement l'1/4 de la plaque de dimension 240x240 mm dans ce cas les conditions aux limites seront :

- Une charge de traction selon l'axe X et l'autre côté est fixe du côté opposé .

Figure (3.1) : Les conditions aux limites imposées

Ce chapitre contient deux parties l'une traite le problème en utilisant le programme en Fortran et la deuxième 'utilise le logiciel Abaqus. Malheureusement, la programmation en fortran n'a pas donné le fruit demandé, le programme, n'est pas encore maitrisé, malgré les résultats donnés comme la matrice de rigidité de tous les éléments. Les résultats (t le fichier. Dat est exposé dans l'annexe B.

c) Partie 1 : Programme Fortran

3.2 La structure à un code de calcul utilisé

On a réalisé ce travail grâce un code de calcul en Fortran et l'utilisation du logiciel Abaqus. Dans le but de chercher le profil des contraintes normales et tangentielles en cordonnes polaires dans une plaque trouée au centre. Ce code est constitué d'un programme principal et six sous programmes chacun à une fonction bien définie voir annexe A.

Voilà l'organigramme expliquant le programme utilisé avec ces six sous-programmes

TRAMAT : Transformation générale de l'élément de la matrice aux limites de pente

MATMUL : Calcul de la matrice transposée de trois matrices

DECOMP : La décomposition de la matrice selon l'algorithme de CROUT

SOLVE : La solution de la nouvelle décomposition pour trouver les inconnus demandés.

DISCAL : Transformation des déplacements aux nœuds de frontière

RESULT : L'enregistrement des résultats dans des fichiers.

3.3 Organigramme de calcul du champ de Contrainte :

3.4 Fichier cde données

80 54 12 1 1 1 10 11 1000E+08 .1000E+01 .000E+00 .300E+00 2 11 3 .1000E+08 .1000E+01 .000E+00 .300E+00 3 12 13 .1000E+08 .1000E+01 .000E+00 .300E+00 6 3 12 13 .1000E+08 .1000E+01 .000E+00 .300E+00 7 4 13 5 .1000E+08 .1000E+01 .000E+00 .300E+00 8 5 13 14 .100E+08 .100E+01 .000E+00 .300E+00 10 5 15 6 .100E+08 .100E+01 .000E+00 .300E+00 11 6 15 7 .100E+08 .100E+01 .000E+00 .300E+00 12 7 15 16 .100E+08 .100E+01 .000E+00 .300E+00 13 7 16 17 .100E+08 .1000E+01 .000E+00	PLAQ	UE EN	TRACTI	ON AV	EC UN TROU AU CENTRE
1 10 11 .1000E+08 .1000E+01 .0000E+00 .3000E+00 2 11 3 .1000E+08 .1000E+01 .0000E+00 .3000E+00 4 3 11 12 .1000E+08 .1000E+01 .0000E+00 .3000E+00 5 12 13 .1000E+08 .1000E+01 .0000E+00 .3000E+00 6 3 13 4 .1000E+08 .1000E+01 .0000E+00 .3000E+00 7 4 13 5 .1000E+08 .1000E+01 .0000E+00 .3000E+00 9 5 14.15 .1000E+08 .1000E+01 .0000E+00 .300E+00 10 5 15 6 .1000E+08 .1000E+01 .0000E+00 .300E+00 13 7 16 17 .1000E+08 .1000E+01 .0000E+00 .3000E+00 14 7 17 8 .1000E+08 .1000E+01 .0000E+00 .3000E+00 15 8 17	80	54	12	1	1
1 11 2 .1000E+08 .1000E+01 .0000E+00 .3000E+00 3 11 12 .1000E+08 .1000E+01 .0000E+00 .3000E+00 5 12 13 .1000E+08 .1000E+01 .0000E+00 .3000E+00 6 3 13 4 .1000E+08 .1000E+01 .0000E+00 .3000E+00 7 4 13 5 .1000E+08 .1000E+01 .0000E+00 .3000E+00 8 5 13 14 .1000E+08 .1000E+01 .0000E+00 .3000E+00 10 5 15 6 .1000E+08 .1000E+01 .0000E+00 .3000E+00 11 6 17 .1000E+08 .1000E+01 .0000E+00 .3000E+00 12 7 15 16 .1000E+08 .1000E+01 .0000E+00 .3000E+00 14 7 17 8 .1000E+08 .1000E+01 .0000E+00 .3000E+00 15 17 18	1	1	10	11	.1000E+08 .1000E+01 .0000E+00 .3000E+00
3 2 11 3 .1000E+08 .1000E+01 .0000E+00 .3000E+00 4 3 12 .1000E+08 .1000E+01 .0000E+00 .3000E+00 7 4 13 5 .1000E+08 .1000E+01 .0000E+00 .3000E+00 8 5 13 14 .1000E+08 .1000E+01 .0000E+00 .3000E+00 9 5 14.15 .1000E+08 .1000E+01 .0000E+00 .3000E+00 10 5 15 6 .1000E+08 .1000E+01 .0000E+00 .3000E+00 11 6 15 7 .1000E+08 .1000E+01 .0000E+00 .3000E+00 13 7 16 .1000E+08 .1000E+01 .0000E+00 .3000E+00 14 7 17 8 .1000E+08 .1000E+01 .0000E+00 .3000E+00 15 8 17 9 .1000E+08 .1000E+01 .0000E+00 .3000E+00 16 19	2	1	11	2	.1000E+08 .1000E+01 .0000E+00 .3000E+00
4 3 11 12 .1000E+08 .1000E+01 .0000E+00 .3000E+00 5 3 12 13 .1000E+08 .1000E+01 .0000E+00 .3000E+00 7 4 13 5 .1000E+08 .1000E+01 .0000E+00 .3000E+00 8 5 13 14 .1000E+08 .1000E+01 .0000E+00 .3000E+00 10 5 15 6 .1000E+08 .1000E+01 .0000E+00 .3000E+00 11 6 15 7 .1000E+08 .1000E+01 .0000E+00 .3000E+00 12 7 15 16 .1000E+08 .1000E+01 .0000E+00 .3000E+00 13 7 16 17 .1000E+08 .1000E+01 .0000E+00 .3000E+00 14 7 17 8 .1000E+08 .1000E+01 .0000E+00 .3000E+00 15 8 17 9 .1000E+08 .1000E+01 .0000E+00 .3000E+00	3	2	11	3	.1000E+08 .1000E+01 .0000E+00 .3000E+00
5 3 12 13 .1000E+08 .1000E+01 .0000E+00 .3000E+00 6 13 4 .1000E+08 .1000E+01 .0000E+00 .3000E+00 7 4 13 5 .1000E+08 .1000E+01 .0000E+00 .3000E+00 8 5 13 14 .1000E+08 .1000E+01 .0000E+00 .3000E+00 9 5 1415 .1000E+08 .1000E+01 .0000E+00 .3000E+00 10 5 16 .1000E+08 .1000E+01 .0000E+00 .3000E+00 12 7 15 16 .1000E+08 .1000E+01 .0000E+00 .3000E+00 13 7 16 17 .1000E+08 .1000E+01 .0000E+00 .3000E+00 14 19 11 .1000E+08 .1000E+01 .0000E+00 .3000E+00 14 19 11 20 .1000E+08 .1000E+01 .0000E+00 .3000E+00 15 11 19 <td>4</td> <td>3</td> <td>11</td> <td>12</td> <td>.1000E+08 .1000E+01 .0000E+00 .3000E+00</td>	4	3	11	12	.1000E+08 .1000E+01 .0000E+00 .3000E+00
6 3 13 4 .1000E+08 .1000E+01 .0000E+00 .3000E+00 7 4 13 5 .1000E+08 .1000E+01 .0000E+00 .3000E+00 9 5 14 1 .1000E+08 .1000E+01 .0000E+00 .3000E+00 10 5 15 6 .1000E+08 .1000E+01 .0000E+00 .3000E+00 11 6 15 7 .1000E+08 .1000E+01 .0000E+00 .3000E+00 12 7 15 16 .1000E+08 .1000E+01 .0000E+00 .3000E+00 13 7 16 17 1000E+08 .1000E+01 .0000E+00 .3000E+00 14 7 17 8 .1000E+08 .1000E+01 .0000E+00 .3000E+00 15 8 17 9 .1000E+08 .1000E+01 .0000E+00 .3000E+00 16 9 17 18 .1000E+08 .1000E+01 .0000E+00 .3000E+00 <	5	3	12	13	.1000E+08 .1000E+01 .0000E+00 .3000E+00
7 4 13 5 .1000E+08 .1000E+01 .0000E+00 .3000E+00 8 5 13 14 .1000E+08 .1000E+01 .0000E+00 .3000E+00 9 5 1415 .1000E+08 .1000E+01 .0000E+00 .300E+00 10 5 15 6 .1000E+08 .1000E+01 .0000E+00 .300E+00 11 6 15 7 .1000E+08 .1000E+01 .0000E+00 .300E+00 13 7 16 17 .1000E+08 .1000E+01 .0000E+00 .300E+00 14 7 17 8 .1000E+08 .1000E+01 .0000E+00 .300E+00 16 9 17 18 .1000E+08 .1000E+01 .0000E+00 .300E+00 17 10 19 11 .1000E+08 .1000E+01 .0000E+00 .3000E+00 18 11 12 .1000E+08 .1000E+01 .0000E+00 .3000E+00 21 13 21 .1000E+08 .1000E+01 .0000E+00 .3000E+00	6	3	13	4	.1000E+08 .1000E+01 .0000E+00 .3000E+00
8 5 13 14 .1000E+08 .1000E+01 .0000E+00 .3000E+00 9 5 14 15 .1000E+08 .1000E+01 .0000E+00 .3000E+00 10 5 15 6 .1000E+08 .1000E+01 .0000E+00 .3000E+00 11 6 15 7 .1000E+08 .1000E+01 .0000E+00 .3000E+00 12 7 15 16 .1000E+08 .1000E+01 .0000E+00 .3000E+00 14 7 16 17 .1000E+08 .1000E+01 .0000E+00 .3000E+00 15 8 17 9 .1000E+08 .1000E+01 .0000E+00 .3000E+00 16 9 17 18 .1000E+08 .1000E+01 .0000E+00 .3000E+00 11 19 20 .1000E+08 .1000E+01 .0000E+00 .3000E+00 12 12 13 .1000E+08 .1000E+01 .0000E+00 .3000E+00 13 21<	7	4	13	5	1000E+08 $1000E+01$ $0000E+00$ $3000E+00$
9 5 1415 .1000E+08 .1000E+01 .0000E+01 .3000E+00 10 5 15 6 .1000E+08 .1000E+01 .3000E+00 11 6 15 7 .1000E+08 .1000E+01 .0000E+00 .3000E+00 12 7 15 16 .1000E+08 .1000E+01 .0000E+00 .3000E+00 13 7 16 17 .1000E+08 .1000E+01 .0000E+00 .3000E+00 15 8 17 9 .1000E+08 .1000E+01 .0000E+00 .3000E+00 16 9 17 18 .1000E+08 .1000E+01 .0000E+00 .3000E+00 18 11 19 20 .1000E+08 .1000E+01 .0000E+00 .3000E+00 21 21 13 .1000E+08 .1000E+01 .0000E+00 .3000E+00 22 13 12 .1000E+08 .1000E+01 .0000E+00 .3000E+00 24 13 23	, 8	5	13	3 14	1000E+08 1000E+01 0000E+00 3000E+00
10 5 11 1000E+08 1000E+01 .0000E+00 .3000E+00 11 6 15 7 .1000E+08 .1000E+01 .0000E+00 .3000E+00 12 7 15 16 .1000E+08 .1000E+01 .0000E+00 .3000E+00 13 7 16 17 .1000E+08 .1000E+01 .0000E+00 .3000E+00 14 7 17 8 .1000E+08 .1000E+01 .0000E+00 .3000E+00 16 9 17 18 .1000E+08 .1000E+01 .0000E+00 .3000E+00 18 11 19 20 .1000E+08 .1000E+01 .0000E+00 .3000E+00 20 11 21 12 .1000E+08 .1000E+01 .0000E+00 .3000E+00 10 19 11 .1000E+08 .1000E+01 .0000E+00 .3000E+00 21 12 21 13 .1000E+08 .1000E+01 .0000E+00 .3000E+00 22<	9	5	14	, <u> </u>	1000E+08 $1000E+01$ $0000E+00$ $3000E+00$
1 6 15 7 1000E+08 1000E+01 .0000E+00 .3000E+00 12 7 15 16 .1000E+08 .1000E+01 .0000E+00 .3000E+00 13 7 16 17 .1000E+08 .1000E+01 .0000E+00 .3000E+00 14 7 17 8 .1000E+08 .1000E+01 .0000E+00 .3000E+00 15 8 17 9 .1000E+08 .1000E+01 .0000E+00 .3000E+00 16 9 17 18 .1000E+08 .1000E+01 .0000E+00 .3000E+00 18 11 19 20 .1000E+08 .1000E+01 .0000E+00 .3000E+00 20 11 21 .1000E+08 .1000E+01 .0000E+00 .3000E+00 21 12 13 .1000E+08 .1000E+01 .0000E+00 .3000E+00 22 13 21 2 .1000E+08 .1000E+01 .0000E+00 .3000E+00 23 <td>10</td> <td>5</td> <td>15</td> <td>5 6</td> <td>1000E+08 $1000E+01$ $0000E+00$ $3000E+00$</td>	10	5	15	5 6	1000E+08 $1000E+01$ $0000E+00$ $3000E+00$
11 0 13 7 1600E+08 1000E+01 .0000E+00 .300E+00 13 7 16 17 .1000E+08 .1000E+01 .0000E+00 .3000E+00 14 7 17 8 .1000E+08 .1000E+01 .0000E+00 .3000E+00 15 8 17 9 .1000E+08 .1000E+01 .0000E+00 .3000E+00 16 9 17 18 .1000E+08 .1000E+01 .0000E+00 .3000E+00 18 11 19 20 .1000E+08 .1000E+01 .0000E+00 .3000E+00 20 11 21 1 .1000E+08 .1000E+01 .0000E+00 .3000E+00 21 12 21 .1000E+08 .1000E+01 .0000E+00 .3000E+00 22 13 22 23 .1000E+08 .1000E+01 .0000E+00 .3000E+00 23 14 23 14 .1000E+08 .1000E+01 .0000E+00 .3000E+00 <t< td=""><td>11</td><td>5</td><td>15</td><td>, 0 . 7</td><td>1000 ± 00 1000 ± 01 0000 ± 00 3000 ± 00</td></t<>	11	5	15	, 0 . 7	1000 ± 00 1000 ± 01 0000 ± 00 3000 ± 00
12 7 15 10 1000E+08 1000E+01 0000E+00 3000E+00 14 7 17 8 .1000E+08 .1000E+01 .0000E+00 .3000E+00 15 8 17 9 .1000E+08 .1000E+01 .0000E+00 .3000E+00 16 9 17 18 .1000E+08 .1000E+01 .0000E+00 .3000E+00 18 11 19 20 .1000E+08 .1000E+01 .0000E+00 .3000E+00 20 11 21 1 .1000E+08 .1000E+01 .0000E+00 .3000E+00 21 12 21 13 .1000E+08 .1000E+01 .0000E+00 .3000E+00 23 13 22 23 .1000E+08 .1000E+01 .0000E+00 .3000E+00 24 13 21 .1000E+08 .1000E+01 .0000E+00 .3000E+00 25 14 23 15 .1000E+08 .1000E+01 .0000E+00 .3000E+00 <	10	0	15	, , 16	1000E+00 $1000E+01$ $0000E+00$ $3000E+00$
13 7 16 17 1100E+08 1000E+08 1000E+01 0000E+00 3000E+00 15 8 17 9 1000E+08 1000E+01 0000E+00 3000E+00 16 9 17 18 1000E+08 1000E+01 0000E+00 3000E+00 17 10 19 11 1000E+08 1000E+01 0000E+00 3000E+00 18 11 19 20 .1000E+08 .1000E+01 .0000E+00 .3000E+00 20 11 21 12 .1000E+08 .1000E+01 .0000E+00 .3000E+00 21 12 13 .1000E+08 .1000E+01 .0000E+00 .3000E+00 23 13 22 23 .1000E+08 .1000E+01 .0000E+00 .3000E+00 24 13 23 14 .1000E+08 .1000E+01 .0000E+00 .3000E+00 25 14 23 15 .1000E+08 .1000E+01 .0000E+00 .3000E+00 <td>⊥∠ 1 2</td> <td>י ר</td> <td>10</td> <td>) 10 17</td> <td>1000E+08 $1000E+01$ $0000E+00$ $3000E+00$</td>	⊥∠ 1 2	י ר	10) 10 17	1000E+08 $1000E+01$ $0000E+00$ $3000E+00$
14 7 17 8 .1000E+08 .1000E+01 .0000E+00 .3000E+00 15 8 17 9 .1000E+08 .1000E+01 .0000E+00 .3000E+00 16 9 17 18 .1000E+08 .1000E+01 .0000E+00 .3000E+00 18 11 19 20 .1000E+08 .1000E+01 .0000E+00 .3000E+00 20 11 21 12 .1000E+08 .1000E+01 .0000E+00 .3000E+00 21 12 21 13 .1000E+08 .1000E+01 .0000E+00 .3000E+00 22 13 21 22 .1000E+08 .1000E+01 .0000E+00 .3000E+00 23 13 22 23 .1000E+08 .1000E+01 .0000E+00 .3000E+00 24 13 23 14 .1000E+08 .1000E+01 .0000E+00 .3000E+00 26 15 23 24 .1000E+08 .1000E+01 .0000E+00 .3000E+00 27 15 24 25 .1000E+08 .1000E+01 <	14	7	10) I/	.1000E+08 .1000E+01 .0000E+00 .3000E+00
15 8 17 9 1.1000E+08 1.000E+01 0.000E+00 3.000E+00 16 9 17 18 1.000E+08 1.000E+01 0.000E+00 3.000E+00 18 11 19 20 1.000E+08 1.000E+01 0.000E+00 3.000E+00 20 11 21 12 1.000E+08 1.000E+01 0.000E+00 3.000E+00 21 12 21 13 1.000E+08 1.000E+01 0.000E+00 3.000E+00 21 12 21 13 1.000E+08 1.000E+01 0.000E+00 3.000E+00 23 13 22 23 1.000E+08 1.000E+01 0.000E+00 3.000E+00 24 13 23 14 1.000E+08 1.000E+01 0.000E+00 .3000E+00 25 14 23 15 1000E+08 1.000E+01 .0000E+00 .3000E+00 26 15 23 24 1000E+08 .1000E+01 .0000E+00 .3000E+00 27 15 24 25 16 .1000E+08	⊥4 1 ⊑	/	1 7		.1000E+08 .1000E+01 .0000E+00 .3000E+00
16 9 17 18 .1000E+08 .1000E+01 .0000E+00 .3000E+00 17 10 19 11 .1000E+08 .1000E+01 .0000E+00 .3000E+00 18 11 19 20 .1000E+08 .1000E+01 .0000E+00 .3000E+00 20 11 21 12 .1000E+08 .1000E+01 .0000E+00 .3000E+00 21 12 21 13 .1000E+08 .1000E+01 .0000E+00 .3000E+00 23 13 22 23 .1000E+08 .1000E+01 .0000E+00 .3000E+00 24 13 23 14 .1000E+08 .1000E+01 .0000E+00 .3000E+00 25 14 23 15 .1000E+08 .1000E+01 .0000E+00 .3000E+00 26 15 23 24 .1000E+08 .1000E+01 .0000E+00 .3000E+00 27 15 24 25 .1000E+08 .1000E+01 .0000E+00 .3000E+00 28 15 25 16 .1000E+08 .1000E+01	15	8	1	9	.1000E+08 .1000E+01 .0000E+00 .3000E+00
17 10 19 11 .1000E+08 .1000E+01 .0000E+00 .3000E+00 18 11 19 20 .1000E+08 .1000E+01 .0000E+00 .3000E+00 20 11 21 12 .1000E+08 .1000E+01 .0000E+00 .3000E+00 21 12 21 13 .1000E+08 .1000E+01 .0000E+00 .3000E+00 23 13 22 23 .1000E+08 .1000E+01 .0000E+00 .3000E+00 24 13 23 14 .1000E+08 .1000E+01 .0000E+00 .3000E+00 25 14 23 15 .1000E+08 .1000E+01 .0000E+00 .3000E+00 26 15 23 24 .1000E+08 .1000E+01 .0000E+00 .3000E+00 27 15 24 25 .1000E+08 .1000E+01 .0000E+00 .3000E+00 28 15 25 16 .1000E+08 .1000E+01 .0000E+00 .3000E+00 30 17 26 27 .1000E+08 .1000E+0	16	9	17	18	.1000E+08 .1000E+01 .0000E+00 .3000E+00
18 11 19 20 .1000E+08 .1000E+01 .0000E+00 .3000E+00 20 11 21 12 .1000E+08 .1000E+01 .0000E+00 .3000E+00 21 12 21 13 .1000E+08 .1000E+01 .0000E+00 .3000E+00 23 13 21 22 .1000E+08 .1000E+01 .0000E+00 .3000E+00 24 13 23 14 .1000E+08 .1000E+01 .0000E+00 .3000E+00 25 14 23 15 .1000E+08 .1000E+01 .0000E+00 .3000E+00 26 15 23 24 .1000E+08 .1000E+01 .0000E+00 .3000E+00 27 15 24 25 .1000E+08 .1000E+01 .0000E+00 .3000E+00 28 15 25 16 .1000E+08 .1000E+01 .0000E+00 .3000E+00 30 17 26 27 .1000E+08 .1000E+01 .0000E+00 .3000E+00 31 17 26 27 .1000E+08 .1000E+0	Τ./	10	19		.1000E+08 .1000E+01 .0000E+00 .3000E+00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	11	19	20	.1000E+08 .1000E+01 .0000E+00 .3000E+00
19 11 20 21 .1000E+08 .1000E+01 .0000E+00 .3000E+00 20 11 21 12 .1000E+08 .1000E+01 .0000E+00 .3000E+00 21 12 21 13 .1000E+08 .1000E+01 .0000E+00 .3000E+00 22 13 22 23 .1000E+08 .1000E+01 .0000E+00 .3000E+00 24 13 23 14 .1000E+08 .1000E+01 .0000E+00 .3000E+00 25 14 23 15 .1000E+08 .1000E+01 .0000E+00 .3000E+00 26 15 23 24 .1000E+08 .1000E+01 .0000E+00 .3000E+00 27 15 24 25 .1000E+08 .1000E+01 .0000E+00 .3000E+00 28 15 25 16 .1000E+08 .1000E+01 .0000E+00 .3000E+00 30 17 25 26 .1000E+08 .1000E+01 .0000E+00 .3000E+00 31 17 26 27 .1000E+08 .1000E+0					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	11	20	21	.1000E+08 .1000E+01 .0000E+00 .3000E+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	11	21	12	.1000E+08 .1000E+01 .0000E+00 .3000E+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	12	21	13	.1000E+08 .1000E+01 .0000E+00 .3000E+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	13	21	22	.1000E+08 .1000E+01 .0000E+00 .3000E+00
24 13 23 14 .1000E+08 .1000E+01 .0000E+00 .3000E+00 25 14 23 15 .1000E+08 .1000E+01 .0000E+00 .3000E+00 26 15 23 24 .1000E+08 .1000E+01 .0000E+00 .3000E+00 27 15 24 25 .1000E+08 .1000E+01 .0000E+00 .3000E+00 28 15 25 16 .1000E+08 .1000E+01 .0000E+00 .3000E+00 29 16 25 17 .1000E+08 .1000E+01 .0000E+00 .3000E+00 30 17 25 26 .1000E+08 .1000E+01 .0000E+00 .3000E+00 31 17 26 27 .1000E+08 .1000E+01 .0000E+00 .3000E+00 32 17 27 18 .1000E+08 .1000E+01 .0000E+00 .3000E+00 33 19 28 29 .1000E+08 .1000E+01 .0000E+00 .3000E+00 34 19 29 20 .1000E+08 .1000E+0	23	13	22	23	.1000E+08 .1000E+01 .0000E+00 .3000E+00
25 14 23 15 .1000E+08 .1000E+01 .0000E+00 .3000E+00 26 15 23 24 .1000E+08 .1000E+01 .0000E+00 .3000E+00 27 15 24 25 .1000E+08 .1000E+01 .0000E+00 .3000E+00 28 15 25 16 .1000E+08 .1000E+01 .0000E+00 .3000E+00 29 16 25 17 .1000E+08 .1000E+01 .0000E+00 .3000E+00 30 17 25 26 .1000E+08 .1000E+01 .0000E+00 .3000E+00 31 17 26 27 .1000E+08 .1000E+01 .0000E+00 .3000E+00 32 17 27 18 .1000E+08 .1000E+01 .0000E+00 .3000E+00 34 19 29 20 .1000E+08 .1000E+01 .0000E+00 .3000E+00 35 20 29 21 .1000E+08 .1000E+01 .0000E+00 .3000E+00 36 21 30 31 .1000E+08 .1000E+0	24	13	23	14	.1000E+08 .1000E+01 .0000E+00 .3000E+00
26 15 23 24 .1000E+08 .1000E+01 .0000E+00 .3000E+00 27 15 24 25 .1000E+08 .1000E+01 .0000E+00 .3000E+00 28 15 25 16 .1000E+08 .1000E+01 .0000E+00 .3000E+00 29 16 25 17 .1000E+08 .1000E+01 .0000E+00 .3000E+00 30 17 25 26 .1000E+08 .1000E+01 .0000E+00 .3000E+00 31 17 26 27 .1000E+08 .1000E+01 .0000E+00 .3000E+00 32 17 27 18 .1000E+08 .1000E+01 .0000E+00 .3000E+00 34 19 29 20 .1000E+08 .1000E+01 .0000E+00 .3000E+00 35 20 29 21 .1000E+08 .1000E+01 .0000E+00 .3000E+00 36 21 29 30 .1000E+08 .1000E+01 .0000E+00 .3000E+00 37 21 30 31 .1000E+08 .1000E+0	25	14	23	15	.1000E+08 .1000E+01 .0000E+00 .3000E+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	15	23	24	.1000E+08 .1000E+01 .0000E+00 .3000E+00
28 15 25 16 .1000E+08 .1000E+01 .0000E+00 .3000E+00 29 16 25 17 .1000E+08 .1000E+01 .0000E+00 .3000E+00 30 17 25 26 .1000E+08 .1000E+01 .0000E+00 .3000E+00 31 17 26 27 .1000E+08 .1000E+01 .0000E+00 .3000E+00 32 17 27 18 .1000E+08 .1000E+01 .0000E+00 .3000E+00 34 19 29 20 .1000E+08 .1000E+01 .0000E+00 .3000E+00 35 20 29 21 .1000E+08 .1000E+01 .0000E+00 .3000E+00 36 21 29 30 .1000E+08 .1000E+01 .0000E+00 .3000E+00 38 21 31 22 .1000E+08 .1000E+01 .0000E+00 .3000E+00 40 23 31 32 .1000E+08 .1000E+01 .0000E+00 .3000E+00 41 23 32 33 .1000E+08 .1000E+0	27	15	24	25	.1000E+08 .1000E+01 .0000E+00 .3000E+00
29162517 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 30172526 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 31172627 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 32172718 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 33192829 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 34192920 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 35202921 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 36212930 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 37213031 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 38213122 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 40233132 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 41233233 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 42233324 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 43243325 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 44253334 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 4625352	28	15	25	16	.1000E+08 .1000E+01 .0000E+00 .3000E+00
30 17 25 26 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 31 17 26 27 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 32 17 27 18 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 33 19 28 29 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 34 19 29 20 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 35 20 29 21 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 36 21 29 30 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 37 21 30 31 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 38 21 31 22 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 40 23 31 32 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 41 23 32 33 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 42 23 33 24 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 44 25 33 34 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 45 25 34 35 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 46 25 35 26 $.1$	29	16	25	17	.1000E+08 .1000E+01 .0000E+00 .3000E+00
31 17 26 27 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 32 17 27 18 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 33 19 28 29 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 34 19 29 20 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 35 20 29 21 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 36 21 29 30 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 37 21 30 31 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 38 21 31 22 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 39 22 31 23 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 40 23 31 32 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 41 23 32 33 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 42 23 33 24 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 44 25 33 34 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 45 25 34 35 $.1000E+08$ $.1000E+01$ $.0000E+00$ $.3000E+00$ 46 25 35 26 $.1$	30	17	25	26	.1000E+08 .1000E+01 .0000E+00 .3000E+00
32 17 27 18 .1000E+08 .1000E+01 .0000E+00 .3000E+00 33 19 28 29 .1000E+08 .1000E+01 .0000E+00 .3000E+00 34 19 29 20 .1000E+08 .1000E+01 .0000E+00 .3000E+00 35 20 29 21 .1000E+08 .1000E+01 .0000E+00 .3000E+00 36 21 29 30 .1000E+08 .1000E+01 .0000E+00 .3000E+00 37 21 30 31 .1000E+08 .1000E+01 .0000E+00 .3000E+00 38 21 31 22 .1000E+08 .1000E+01 .0000E+00 .3000E+00 40 23 31 32 .1000E+08 .1000E+01 .0000E+00 .3000E+00 41 23 32 33 .1000E+08 .1000E+01 .0000E+00 .3000E+00 42 23 33 24 .1000E+08 .1000E+01 .0000E+00 .3000E+00 43 24 33 25 .1000E+08 .1000E+0	31	17	26	27	.1000E+08 .1000E+01 .0000E+00 .3000E+00
33 19 28 29 .1000E+08 .1000E+01 .0000E+00 .3000E+00 34 19 29 20 .1000E+08 .1000E+01 .0000E+00 .3000E+00 35 20 29 21 .1000E+08 .1000E+01 .0000E+00 .3000E+00 36 21 29 30 .1000E+08 .1000E+01 .0000E+00 .3000E+00 37 21 30 31 .1000E+08 .1000E+01 .0000E+00 .3000E+00 38 21 31 22 .1000E+08 .1000E+01 .0000E+00 .3000E+00 39 22 31 23 .1000E+08 .1000E+01 .0000E+00 .3000E+00 40 23 31 32 .1000E+08 .1000E+01 .0000E+00 .3000E+00 41 23 32 33 .1000E+08 .1000E+01 .0000E+00 .3000E+00 42 23 33 24 .1000E+08 .1000E+01 .0000E+00 .3000E+00 43 24 33 25 .1000E+08 .1000E+0	32	17	27	18	.1000E+08 .1000E+01 .0000E+00 .3000E+00
34 19 29 20 .1000E+08 .1000E+01 .0000E+00 .3000E+00 35 20 29 21 .1000E+08 .1000E+01 .0000E+00 .3000E+00 36 21 29 30 .1000E+08 .1000E+01 .0000E+00 .3000E+00 37 21 30 31 .1000E+08 .1000E+01 .0000E+00 .3000E+00 38 21 31 22 .1000E+08 .1000E+01 .0000E+00 .3000E+00 39 22 31 23 .1000E+08 .1000E+01 .0000E+00 .3000E+00 40 23 31 32 .1000E+08 .1000E+01 .0000E+00 .3000E+00 41 23 32 33 .1000E+08 .1000E+01 .0000E+00 .3000E+00 42 23 33 24 .1000E+08 .1000E+01 .0000E+00 .3000E+00 43 24 33 25 .1000E+08 .1000E+01 .0000E+00 .3000E+00 44 25 33 34 .1000E+08 .1000E+0	33	19	28	29	.1000E+08 .1000E+01 .0000E+00 .3000E+00
35 20 29 21 .1000E+08 .1000E+01 .0000E+00 .3000E+00 36 21 29 30 .1000E+08 .1000E+01 .0000E+00 .3000E+00 37 21 30 31 .1000E+08 .1000E+01 .0000E+00 .3000E+00 38 21 31 22 .1000E+08 .1000E+01 .0000E+00 .3000E+00 39 22 31 23 .1000E+08 .1000E+01 .0000E+00 .3000E+00 40 23 31 32 .1000E+08 .1000E+01 .0000E+00 .3000E+00 41 23 32 33 .1000E+08 .1000E+01 .0000E+00 .3000E+00 42 23 33 24 .1000E+08 .1000E+01 .0000E+00 .3000E+00 43 24 33 25 .1000E+08 .1000E+01 .0000E+00 .3000E+00 44 25 33 34 .1000E+08 .1000E+01 .0000E+00 .3000E+00 45 25 34 35 .1000E+08 .1000E+0	34	19	29	20	.1000E+08 .1000E+01 .0000E+00 .3000E+00
36 21 29 30 .1000E+08 .1000E+01 .0000E+00 .3000E+00 37 21 30 31 .1000E+08 .1000E+01 .0000E+00 .3000E+00 38 21 31 22 .1000E+08 .1000E+01 .0000E+00 .3000E+00 39 22 31 23 .1000E+08 .1000E+01 .0000E+00 .3000E+00 40 23 31 32 .1000E+08 .1000E+01 .0000E+00 .3000E+00 41 23 32 33 .1000E+08 .1000E+01 .0000E+00 .3000E+00 42 23 33 24 .1000E+08 .1000E+01 .0000E+00 .3000E+00 43 24 33 25 .1000E+08 .1000E+01 .0000E+00 .3000E+00 44 25 33 34 .1000E+08 .1000E+01 .0000E+00 .3000E+00 45 25 34 35 .1000E+08 .1000E+01 .0000E+00 .3000E+00 46 25 35 26 .1000E+08 .1000E+0	35	20	29	21	.1000E+08 .1000E+01 .0000E+00 .3000E+00
37 21 30 31 .1000E+08 .1000E+01 .0000E+00 .3000E+00 38 21 31 22 .1000E+08 .1000E+01 .0000E+00 .3000E+00 39 22 31 23 .1000E+08 .1000E+01 .0000E+00 .3000E+00 40 23 31 32 .1000E+08 .1000E+01 .0000E+00 .3000E+00 41 23 32 33 .1000E+08 .1000E+01 .0000E+00 .3000E+00 42 23 33 24 .1000E+08 .1000E+01 .0000E+00 .3000E+00 43 24 33 25 .1000E+08 .1000E+01 .0000E+00 .3000E+00 43 24 33 25 .1000E+08 .1000E+01 .0000E+00 .3000E+00 44 25 33 34 .1000E+08 .1000E+01 .0000E+00 .3000E+00 45 25 34 35 .1000E+08 .1000E+01 .0000E+00 .3000E+00 46 25 35 26 .1000E+08 .1000E+0	36	21	29	30	.1000E+08 .1000E+01 .0000E+00 .3000E+00
38 21 31 22 .1000E+08 .1000E+01 .0000E+00 .3000E+00 39 22 31 23 .1000E+08 .1000E+01 .0000E+00 .3000E+00 40 23 31 32 .1000E+08 .1000E+01 .0000E+00 .3000E+00 41 23 32 33 .1000E+08 .1000E+01 .0000E+00 .3000E+00 42 23 33 24 .1000E+08 .1000E+01 .0000E+00 .3000E+00 43 24 33 25 .1000E+08 .1000E+01 .0000E+00 .3000E+00 44 25 33 34 .1000E+08 .1000E+01 .0000E+00 .3000E+00 45 25 34 35 .1000E+08 .1000E+01 .0000E+00 .3000E+00 46 25 35 26 .1000E+08 .1000E+01 .0000E+00 .3000E+00 47 26 35 27 .1000E+08 .1000E+01 .0000E+00 .3000E+00 48 27 35 36 .1000E+08 .1000E+0	37	21	30	31	.1000E+08 .1000E+01 .0000E+00 .3000E+00
39 22 31 23 .1000E+08 .1000E+01 .0000E+00 .3000E+00 40 23 31 32 .1000E+08 .1000E+01 .0000E+00 .3000E+00 41 23 32 33 .1000E+08 .1000E+01 .0000E+00 .3000E+00 42 23 33 24 .1000E+08 .1000E+01 .0000E+00 .3000E+00 43 24 33 25 .1000E+08 .1000E+01 .0000E+00 .3000E+00 44 25 33 34 .1000E+08 .1000E+01 .0000E+00 .3000E+00 45 25 34 35 .1000E+08 .1000E+01 .0000E+00 .3000E+00 46 25 35 26 .1000E+08 .1000E+01 .0000E+00 .3000E+00 47 26 35 27 .1000E+08 .1000E+01 .0000E+00 .3000E+00 48 27 35 36 .1000E+08 .1000E+01 .0000E+00 .3000E+00 49 28 37 29 .1000E+08 .1000E+0	38	21	31	22	.1000E+08 .1000E+01 .0000E+00 .3000E+00
40 23 31 32 .1000E+08 .1000E+01 .0000E+00 .3000E+00 41 23 32 33 .1000E+08 .1000E+01 .0000E+00 .3000E+00 42 23 33 24 .1000E+08 .1000E+01 .0000E+00 .3000E+00 43 24 33 25 .1000E+08 .1000E+01 .0000E+00 .3000E+00 44 25 33 34 .1000E+08 .1000E+01 .0000E+00 .3000E+00 45 25 34 35 .1000E+08 .1000E+01 .0000E+00 .3000E+00 46 25 35 26 .1000E+08 .1000E+01 .0000E+00 .3000E+00 47 26 35 27 .1000E+08 .1000E+01 .0000E+00 .3000E+00 48 27 35 36 .1000E+08 .1000E+01 .0000E+00 .3000E+00 49 28 37 29 .1000E+08 .1000E+01 .0000E+00 .3000E+00	39	2.2	31	23	.1000E+08 .1000E+01 .0000E+00 .3000E+00
41 23 32 33 .1000E+08 .1000E+01 .0000E+00 .3000E+00 42 23 33 24 .1000E+08 .1000E+01 .0000E+00 .3000E+00 43 24 33 25 .1000E+08 .1000E+01 .0000E+00 .3000E+00 44 25 33 34 .1000E+08 .1000E+01 .0000E+00 .3000E+00 45 25 34 35 .1000E+08 .1000E+01 .0000E+00 .3000E+00 46 25 35 26 .1000E+08 .1000E+01 .0000E+00 .3000E+00 47 26 35 27 .1000E+08 .1000E+01 .0000E+00 .3000E+00 48 27 35 36 .1000E+08 .1000E+01 .0000E+00 .3000E+00 49 28 37 29 .1000E+08 .1000E+01 .0000E+00 .3000E+00	40	23	31	32	1000E+08 1000E+01 0000E+00 3000E+00
42 23 33 24 .1000E+08 .1000E+01 .0000E+00 .3000E+00 43 24 33 25 .1000E+08 .1000E+01 .0000E+00 .3000E+00 44 25 33 34 .1000E+08 .1000E+01 .0000E+00 .3000E+00 45 25 34 35 .1000E+08 .1000E+01 .0000E+00 .3000E+00 46 25 35 26 .1000E+08 .1000E+01 .0000E+00 .3000E+00 47 26 35 27 .1000E+08 .1000E+01 .0000E+00 .3000E+00 48 27 35 36 .1000E+08 .1000E+01 .0000E+00 .3000E+00 49 28 37 29 .1000E+08 .1000E+01 .0000E+00 .3000E+00	41	23	32	33	1000E+08 $1000E+01$ $0000E+00$ $3000E+00$
43 24 33 25 .1000E+08 .1000E+01 .0000E+00 .3000E+00 44 25 33 34 .1000E+08 .1000E+01 .0000E+00 .3000E+00 45 25 34 35 .1000E+08 .1000E+01 .0000E+00 .3000E+00 46 25 35 26 .1000E+08 .1000E+01 .0000E+00 .3000E+00 47 26 35 27 .1000E+08 .1000E+01 .0000E+00 .3000E+00 48 27 35 36 .1000E+08 .1000E+01 .0000E+00 .3000E+00 49 28 37 29 .1000E+08 1000E+01 .0000E+00 .3000E+00	42	23	22	24	1000E+08 1000E+01 0000E+00 3000E+00
44 25 33 34 .1000E+08 .1000E+01 .0000E+00 .3000E+00 45 25 34 35 .1000E+08 .1000E+01 .0000E+00 .3000E+00 46 25 35 26 .1000E+08 .1000E+01 .0000E+00 .3000E+00 47 26 35 27 .1000E+08 .1000E+01 .0000E+00 .3000E+00 48 27 35 36 .1000E+08 .1000E+01 .0000E+00 .3000E+00 49 28 37 29 .1000E+08 1000E+01 .0000E+00 .3000E+00	43	23	22	25	1000F+08 1000F+01 0000F+00 3000F+00
41 25 35 34 .1000E+08 .1000E+01 .0000E+00 .3000E+00 45 25 34 35 .1000E+08 .1000E+01 .0000E+00 .3000E+00 46 25 35 26 .1000E+08 .1000E+01 .0000E+00 .3000E+00 47 26 35 27 .1000E+08 .1000E+01 .0000E+00 .3000E+00 48 27 35 36 .1000E+08 .1000E+01 .0000E+00 .3000E+00 49 28 37 29 .1000E+08 1000E+01 .0000E+00 .3000E+00	4 J 4 A	24	33	34	1000F+08 1000F+01 0000F+00 3000F+00
46 25 35 26 .1000E+08 .1000E+01 .0000E+00 .3000E+00 47 26 35 27 .1000E+08 .1000E+01 .0000E+00 .3000E+00 48 27 35 36 .1000E+08 .1000E+01 .0000E+00 .3000E+00 49 28 37 29 .1000E+08 .1000E+01 .0000E+00 .3000E+00	45	25	34	35	1000 ± 08 1000 ± 01 0000 ± 00 3000 ± 00
47 26 35 27 .1000E+08 .1000E+01 .0000E+00 .3000E+00 48 27 35 36 .1000E+08 .1000E+01 .0000E+00 .3000E+00 49 28 37 29 .1000E+08 1000E+01 .0000E+00 .3000E+00	46	20 20	25	25 25	1000F+08 1000F+01 0000F+00 2000F+00
48 27 35 27 .1000E+08 .1000E+01 .0000E+00 .3000E+00 49 28 37 29 .1000E+08 1000E+01 .0000E+00 .3000E+00	10 47	20 06	32	20 27	1000E+08 1000E+01 0000E+00 .3000E+00
49 28 37 29 1000E+08 1000E+01 0000E+00 3000E+00	т, ДО	20 07	25	26	$1000 \pm 100 = 1000 \pm 01 = 0000 \pm 00 = 0000 \pm 00$
	49	27 28	27	29	1000E+08 1000E+01 0000E+00 3000E+00

50	29	37	38	.1000E+08	.1000E+01	.0000E+00	.3000E+00
51	29	38	39	.1000E+08	.1000E+01	.0000E+00	.3000E+00
52	29	39	30	.1000E+08	.1000E+01	.0000E+00	.3000E+00
53	30	39	31	.1000E+08	.1000E+01	.0000E+00	.3000E+00
54	31	39	40	.1000E+08	.1000E+01	.0000E+00	.3000E+00
55	31	40	41	.1000E+08	.1000E+01	.0000E+00	.3000E+00
56	31	41	32	.1000E+08	.1000E+01	.0000E+00	.3000E+00
57	32	41	33	.1000E+08	.1000E+01	.0000E+00	.3000E+00
58	33	41	42	.1000E+08	.1000E+01	.0000E+00	.3000E+00
59	33	42	43	1000E+08	1000E+01	0000E+00	3000E+00
60	22	43	34	1000E+08	1000E+01	0000E+00	3000E+00
61	34	43	35	1000E+08	1000E+01	00005+00	30005+00
62	35	43	44	1000E+08	1000E+01	00001000	3000E+00
63	35	44	45	1000E+08	1000E+01	0000100	30005+00
64	35	45	36	10000-00	10005+01	00005+00	30005+00
65	27	16	20	1000E+08	1000E+01	.0000E+00	3000E+00
65	27	40	20 17	1000E+08	1000E+01	.0000E+00	2000E+00
67	20	40	47	.1000E+00	.1000E+01	.0000E+00	.3000E+00
67	20	4/	39	.1000E+00	1000E+01	.0000E+00	.3000E+00
68	39	4/	48	.1000E+08	.1000E+01	.0000E+00	.3000E+00
69	39	48	40	.1000E+08	.1000E+01	.0000E+00	.3000E+00
70	40	48	49	.1000E+08	.1000E+01	.0000E+00	.3000E+00
71	40	49	41	.1000E+08	.1000E+01	.0000E+00	.3000E+00
72	41	49	50	.1000E+08	.1000E+01	.0000E+00	.3000E+00
73	41	50	51	.1000E+08	.1000E+01	.0000E+00	.3000E+00
74	41	51	42	.1000E+08	.1000E+01	.0000E+00	.3000E+00
75	42	51	52	.1000E+08	.1000E+01	.0000E+00	.3000E+00
76	42	52	43	.1000E+08	.1000E+01	.0000E+00	.3000E+00
77	43	52	53	.1000E+08	.1000E+01	.0000E+00	.3000E+00
78	43	53	44	.1000E+08	.1000E+01	.0000E+00	.3000E+00
79	44	53	54	.1000E+08	.1000E+01	.0000E+00	.3000E+00
80	44	54	45	.1000E+08	.1000E+01	.0000E+00	.3000E+00
1	20005	⊥01	0000.	0.0			
1 2	.2000E	+01	2000ET	00			
2 2	.1902E	+01	- 3902ET	00			
3	.10405	+UI	·/055世+	00			
4 F	.1003E	+UI	· 1 / 1 / D	-01			
5	· 1414E	+UI	1CC2D	-01			
6		+01	.1003E+	01			
/	./653E	+00	.1848E+	·01			
8	.3902E	+00	.1962E+	-01			
9	.0000E	+00	.2000E+	-01			
10	.4000)E+01	. 0000	E+00			
11	.3923E	+01	.7803E+	-00			
12	.3696E	+01	.1531E+	-01			
13	.3326E	+01	.2222E+	-01			
14	.2828E	+01	.2828E+	-01			
15	.2222E	+01	.3326E+	-01			
16	.1531E	+01	.3696E+	-01			
17	.7805E	+00	.3923E+	-01			
18	.0000E	+00	.4000E+	01			
19	.6000E	+01	.0000E+	01			
20	.8585E	+01	.1171E+	01			
21	.5543E	+01	.2296E+	01			
22	.4989E	+01	.3333E+	01			
23	.4242E	+01	.4242E+	01			
24	.3333E	+01	.4989E+	01			

25	.2296E+01 .5543E+01
26	.1171E+01 .5885E+01
27	.0000E+00 .6000E+01
28	.1100E+02 .0000E+00
29	.1079E+01 .2146E+01
30	.1016E+01 .4210E+01
31	.9146E+01 .6111E+01
32	.7778E+01 .7778E+01
33	.6111E+01 .9146E+01
34	.4210E+01 .1016E+02
35	.2146E+01 .1079E+02
36	.0000E+00 .1100E+02
37	.1700E+02 .0000E+00
38	.1667E+02 .3316E+01
39	.1571E+02 .6506E+01
40	.1413E+02 .9445E+01
41	.1202E+02 .1202E+02
42	.9445E+01 .1413E+02
43	.6506E+01 .1571E+02
44	.3316E+01 .1667E+02
45	.0000E+00 .1700E+02
46	.2400E+02 .0000E+00 .1500E+05 .0000E+00
47	.2400E+02 .6000E+01 .3000E+05 .0000E+00
48	.2400E+02 .1200E+02 .3000E+05 .0000E+00
49	.2400E+02 .1800E+02 .3000E+05 .0000E+00
50	.2400E+02 .2400E+02 .1500E+05 .0000E+00
51	.1800E+02 .2400E+02
52	.1200E+02 .2400E+02
53	.6000E+01 .2400E+02
54	.0000E+00 .2400E+02
1	2
9	1
10	2
18	1
19	2
27	1
28	2
36	1
37	2
45	1
46	2
54	1

d) Partie 2 : Application du logiciel Abaqus

Dans cette partie de simulation, nous avons utilisé le code Abaqus pour une plaque trouée en aluminium de dimension 480x480 mm2 et d'une épaisseur 1 mm avec un troue dr rayon 20 mm dont le module de Young est $E = 10^7$ Mpa avec Coefficient de poisson v = 0.3. La plaque trouée est soumise à une traction uniforme sur les deux côtés d'une valeur de e **30000N**

Vu la symétrie, nous pouvons prendre l'1 /4 de la plaque trouée

Figure 3.2 : structure d'étude

3.5 Réalisation de la mise en données de notre problème

La réalisation complète d'une simulation de notre problème (concentration de contraintes dans une plaque trouée soumise à un champ de traction uniforme) s'effectue après un passage successif dans les modules intégré dans le code de calcul ABAQUS suivant :

- Part
- Property
- Assembly
- Step

- Load,
- Mesh,
- Job

3.5. Module Part

C'est dans ce module qu'est définie la géométrie des entités du modèle.

Création de la part « plaque trouée

- Cliquez sur l'icône **Create Part**
- Entrez dans le champ **Name : plaque 1**
- Cliquez sur 3D, puis Deformable, puis Shell, puis 2D Planar
- Entrez dans le champ Approximate size : 1000
- Cliquez sur Continue, le module de dessin (sketch) est maintenant actif, utilisez les outils **Create isoleted points** et **Create arc** pour tracer le quart de la plaque.
- Cliquer sur la commande **Done** pour terminer

3.6. Module Property

- Cliquez sur l'icône Create Material
- Entrez dans le champ Name : Alum
- Cliquez sur Mechanical ,sélectionnez Elasticity et Elastic
- Entrez 1e7 sur la ligne Young's modulus

- Entrez 0.3 sur la ligne **Possion's ratio**
- Cliquez sur **OK**

Models (Descri	ption:		
Model-1			Edit.
Ma Ma	terial Behaviors		
12 Se	DC		
E 🎎 Ar			
⊕o4ast Cparp,			
Hi Ge	neral Mechanica	Inermal Other	Delete
	stic		
	e: Isotropic		▼ Subootions
	Jse temperature-d	ependent data	
Tra			
NUT	ber of field variable	es: 0 🚔	
	ber of field variabl Iuli time scale (for v	es: 0 🚖 iscoelasticity): Long-term 💌	
	ber of field variabl Iuli time scale (for v Vo compression	es: 0 🛓 iscoelasticity): [Long-term 💌	
	ber of field variabl uli time scale (for v Vo compression Vo tension	es: 0 🚔 iscoelasticity): Long-term 💌	
	ber of field variabl uli time scale (for v No compression No tension ata	es: 0 🚔 iscoelasticity): [Long-term 🔄	
Num Num Num Num Num Num Num Num	ber of field variabl uli time scale (for v Vo compression Vo tension ata Young's Modulus	es: 0 🚽 iscoelasticity): [Long-term 💌 Poisson's Ratio	
	ber of field variabl uli time scale (for v Vo compression Vo tension ata Young's <u>Modulus</u> 210E9	es: 0 iscoelasticity): Long-term Poisson's Ratio 0.3	
Annotati Annotati Annotati	ber of field variabl uli time scale (for v No compression No tension ata Young's <u>Modulus</u> 210E9	es: 0 iscoelasticity): Long-term Poisson's Ratio 0.3	
C C Moc C C Moc C F Fi C C Moc C F Fi C C Moc C F Fi C C Fi C	ber of field variabl uli time scale (for v Vo compression No tension ata Young's Modulus 210E9	es: 0 iscoelasticity): [Long-term Poisson's Ratio 0.3	
Annotati Annotati Annotati Annotati Annotati Annotati Annotati Annotati Annotati Annotati Annotati Annotati Annotati Annotati Annotati Annotati	ber of field variabl uli time scale (for v Vo compression Vo tension ata Young's <u>Modulus</u> 210E9	es: 0 = iscoelasticity): [Long-term = Poisson's Ratio 0.4	
Arnotati Adap Dos Co-es	ber of field variabl uli time scale (for v Vo compression Vo tension ata Young's <u>Modulus</u> 210E9	es: 0 iscoelasticity): Long-term Poisson's Ratio 0.1	

3.6.1 Création de la section

- Cliquez sur l'icône Create section
- Entrez dans le champ Name : section-1
- Cliquez sur Shell, puis Homonegeneous, puis Continue
- Entrez 1 sur la ligne Shell thickness
- Cliquez sur **OK**

+ Abaqus/CAE 6.9-1 [V	iewport: 1]			c n	
	ort <u>v</u> iew → ♥ ♥		Profile	Composite	Assig
Model Results Mater	ial Library		Мо	dule: Proper	rty
Model Database	Create Se	ction	2		
Models (1)	lame: Section	n-1			
Image: Model-1 Image	Category Solid Solid Shell Beam C Other	Type Homogeneous Generalized plane Eulerian Composite	strain		
Field Outp History Ou History Ou History Ou History Ou ALE Adaptive Interactions Interactions Contact Con Contact Initia Constraints	Continue. e Mesh Constr roperties trols alizations	Can			

+ Abaqus/CAE 6.9-1 [Viewport: 1]	
Eile Model Viewport View Material Section Pro	file <u>C</u> omposite <u>A</u> ssign Sp
D 🚰 🖩 🖶 🕂 🕈 🍼 🤍 🔂 🎼 目目	
Model Results Material Library	Module: Property V
Edit Section	2 =
Name: Section-1 Type: Solid, Homogeneous	1 m
Material: Material-1 Create	21 🛅
Plane stress/strain thickness: 1	
OK Cancel	Nº201
반아 Steps (1) 한편 Field Output Requests	⊕ □

3.6.2 Application de la section à la plaque

- Sélectionnez dans la barre de menu à côté de Part, plaque 1
- Cliquez sur l'icône Assign Section
- Cliquez sur la fenêtre graphique un bord de la plaque, puis sur Done, puis sur OK

3.7 Module Assembly

Dans ce module, il s'agit de créer une (voire plusieurs) instance(s) à partir des entités que vous avez définies dans le module Part. Ces instances seront celles que vous manipulerez par la suite dans le modèle.

3.7.1 Création de l'instance

Sélectionnez plaque 1 dans la liste et cliquez sur OK

Abaque/CAE 6.9:1 [Wewport: 1]		
Ele Model Viewport View Instance Const	aint Feature Iools Plug-Ins Help M7	
i 🗅 🚰 🖼 🚔 i 🕂 🅐 🔍 🔂 🖬 t L i		
		7 48 -
	: COP Proventary series and	21 257 7
Model Results	Module: Accembly 💌 Model: Model-1 💌 Step: Initia	
Model Database	· · · · · · · · · · · · · · · · · · ·	
Create Instance		
Parts		
RADEL		
and the second s	In (D)	
	B Date	
	西·西·	
1		
Instance Type	-terms	
Dependent (mesh on part)		
 Independent (mesh on instance) 		
Note: To change a Dependent Instance's	om †	
mesh, you must edit its part's mesh.	+, ((), (),	
Auto-offset from other instances		
OK Apply Cancel		
- 14 instances		
- MR Position Constraints		
- B Features		
- An Sutares		
Connector Assignments		
Engineering Features		
E oliki Steps (1)		
Egr. History Culture Requests		
- Hy Time Points	(in the second se	
- Ba ALE Adapting Mash Constraints		

3.7.2 Création du pas de calcul Step

- Cliquez sur l'icône Create Step
- Entrez dans le champ Name : Step-1
- Sélectionnez dans la liste Static General
- Cliquez sur **Continue**

3.8. Module Load

3.8.1 Condition sur le bord gauche du quart de la plaque

- Cliquez sur l'icône Create Boundary Condition
- Entrez dans le champ Name : BC-1
- Vérifiez que pour la ligne **Step** l'item soit sur **initial** (**Step-1**)
- Sélectionnez dans la liste Category, Mechanical et dans la liste Types for selected step, Symmetry/Antisymmetry/Encastre
- Cliquez sur Continue
- Sélectionnez dans la fenêtre graphique le bord gauche de la plaque
- Cliquez sur **Done**
- Sélectionnez dans la liste XSYMM
- Cliquez sur OK

-Abaqus/CAE 6.9-1 [Viewport: 1]	
Ble Model Viewport View Load I □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
Model Results	
Model Database	
Profiles Assembly Build Instances (1)	
Create Boundary Condition	
Name: ICA	
Step: Step-1	
Procedure: Static, General	
Category Types for Selected S	
C Other Displacement/Rotation	
Velocity/Angular velocity	
Connector displacement	
Contractor Postory	
Continue Car	
Predefined Fields	

3.8.2 Condition sur le bord bas du quart de la plaque

- Cliquez sur l'icône Create Boundary Condition
- Entrez dans le champ Name : BC-2
- Vérifiez que pour la ligne **Step** l'item soit sur **initial** (**Step-1**)
- Sélectionnez dans la liste Category, Mechanical et dans la liste Types for selected step, Symmetry/Antisymmetry/Encastre
- Cliquez sur **Continue**
- Sélectionnez dans la fenêtre graphique le bord bas de la plaque
- Cliquez sur **Done**
- Sélectionnez dans la liste **YSYMM**
- Cliquez sur **OK**

3.8.3 Application de la charge sur le bord auche du quart de la géométrie

- Cliquez sur l'icône Create load
- Entrez dans le champ Name : load-1
- Vérifiez que pour la ligne **Step** l'item soit sur **initial** (**Step-1**)
- Sélectionnez dans la liste Category, Mechanical et dans la liste Types for selected step, Pressure
- Cliquez sur Continue
- Sélectionnez dans la fenêtre graphique le **le bord gauche du quart de la** géométrie Cliquez sur Done
- Entrez dans le champ Magnitude de la fenêtre graphique qui apparait : -30000
- Cliquez sur **OK**

3.9 Mesh

- Cliquez sur l'icône Mesh
- Cliquez sur l'icône Seed Part Instance
- Sélectionnez dans la fenêtre graphique la plaque, puis cliquez sur Done
- Entrez sur la ligne Global size element (approximate) : 10 et tapez Entrée au clavier

Abaqus/CAE 6.951 [Viewport: 1] Ele Model Viewport View Seed Mesh Adaptivity	Feature	Tools	Plu
Model Results	iodule: Me	sh	•
Se Model Database			
Global Seeds Sizing Controls Approximate global size: 10 ✓ Curvature control Maximum deviation factor (0.0 < h/L < 1.0):		Assign sh Contro	ols
OK Apply Defaults Cancel			

3.9.1 Type d'élément

- Cliquez sur l'icône Assign Mesh Controls
- Sélectionnez dans la fenêtre graphique la plaque
- Cliquez sur **Done**, puis sur **tri** dans la liste **Element shape**, puis sur **Free** dans la liste Technique, puis sur **OK**

3.9.2 Désignation du type d'élément

- Cliquez sur l'icône Assign Element Type
- Sélectionnez dans la fenêtre graphique la plaque
- Cliquez sur Done, puis sur Standard dans la liste Element library, puis sur Plane Stress la liste Family, puis sur OK Affectation du maillage
- Vérifier que l'élément choisis est bien CPS3
- Cliquez sur l'icône Mesh Part Instance
- Sélectionnez dans la fenêtre graphique la plaque
- Cliquez sur **OK**

Contrast spe		-
Cleanerst Library	ranty	
O Standard I Fuplint	Phane Strain	
Ground in Daler	Plane Stream	
C Linur @ Quedatto	The mail Electric	-
Qued [TH]		
Hement Controls		
F Reduced integration		
Vecceitys 9 t	we default C specify	
Henert telenori, Ø u	re-defailt Cires Cires	
New Termedatore (* 1		
the say strong to a	an person of sheers I	

3.10 Module Job

4.8.1 Création d'un « job » de travail

- Cliquez sur l'icône Create Job
- Entrez dans le champ Name : MASTER
- Cliquez sur Continue, puis sur **OK**

3.10.1 Lancement du calcul

- Cliquez sur l'icône Job Manager
- Cliquez sur Submit

La contrainte calculer par VON-MISES

Figure 3.3 : les contraintes de VON-MISES

Vu la charge appliquée au bord à la plaque 30000 N/mm2, les contraintes trouvées varient entre 2,06 E4 MPa et 6,324 10^4 MPa. La contrainte est maximale au point A là où il y a un rétrécissement de section (concentration de contrainte) et minimale au point B voir figure (3.2), la valeur de la contrainte sur la ligne AB est égale

$\sigma_{AB} = K. \sigma_A$

K : coefficient de concentration de contrainte

3.11 Module Visualisation

3.11.1 Contraintes

a) Les Contrainte Normale (xx)

Figure 3.4: Contrainte normale σ_{xx}

D'après la figure 3.4 la contrainte normale σ_{xx} est minimale (6.56 10⁴) les bords de la plaque est maximale au trou d'une valeur (1.67 10⁴ MPa)

b) Les Contrainte Normale (yy)

Figure 3.5 : Contrainte normale σ_{yy}

La figure 3.5 montre que la contrainte est toujours maximale au point A là où il y a un changement de section une restriction suivant oy là où valeur est $7,05 \ 10^3$ MPa et d' une élongation suivant (ox) d'une valeur minimale (-9,27 10^2 MPa)

c) Les Contrainte tangentielle (xy)

Figure 36: Contrainte tangentielle τ_{xy}

La fifure 3.6 montre que la contrainte tangentielle est minimale de valeur (-9.92 10^3 MPa) au bord de la plaque est maximale au trou d'une valeur de 1,97 10^3 MPa

3.12 Déformations

Figure 3.7 : déformation suivant l'axe ox

La figure 3.7 montre une déformations élastique maximale est constaté au niveau du trou et elle déminue toute en éloignant vers le bord

Figure 3.8 : déformation suivant l'axe oy

Figure 3.9 : déformation suivant l'axe xy

La contrainte tangentielle est toujours maximale au trou et minimale au bord

3.12 Déplacements

3.12.1 Déplacement suivant (ox)

Figure 4.10: déplacements suivant l'axe ox

3.12.2 Déplacement suivant (oy)

Figure 3.11 : déplacements suivant l'axe oy

La figure 3.11 montre la valeur est de 2,26 10^{-4} MPa sur le bord parallèle ox et nulle sur l'axe ox

CONCLUSION

Dans le but de chercher le profil de différentes contraintes dans une plaque soumise à une charge constante de traction sur ces bords Une étude est matérialisée en se basant sur les d'élasticités dans le cas des contraintes planes et déformation planes pour arriver à des relations donnant les contraintes normales ainsi la contrainte tangentielle, cela révélera utile pour introduire la méthode des éléments finis, qui est utilisé pour familiariser les relations trouvées Le système d'équation algébrique obtenue est résolu à l'aide d'une méthode numérique de Crout. Ce travail nous a donné un aperçu général sur le calcul de différentes contraintes.

En ce qui concerne la validation du programme développé en Fortran, franchement on n'a pu l'achevé à cause de plusieurs contraintes, mais quand même on est arrivé à déterminer toutes les matrices de rigidités. Malgré ça il reste beaucoup de choses à faire.

Notre problème a été traité par le logiciel Abaqus qui a donné des résultats concernant les contraintes et les déformations. Et surtout les points de concentration là ou la contrainte est maximale

Enfin, cette étude sera plus efficace, si on a terminé notre programme en Fortran. Et en changeant la forme du trou et aussi le raffinage du maillage en augmentant le nombre d'élément.

72

ANNEXE A

PROGAMME en FORTRAN

PROGRAM .

c ************************************
c * CONTRAINTES PLANES DEFORMATIONS PLANES
c * ANALYSE PAR ELEMENTS FINIS
c ************************************
c IMPLICIT DOUBLE PRECISION(a-h,o-z)
DIMENSION A(6,6),B(6,6),S(6,6),ITAB(6),TRAN(6,6),TEMP(6,6)
DIMENSION NPNUM(200),XORD(200),YORD(200),ICOR(200,2),DSX(200),
* DSY(200),XLOAD(200),YLOAD(200),SLOPE(200),NPB(200),NFIX(200)
DIMENSION NUME(200), NPI(200), NPJ(200), NPK(200), EVAL(200),
* THIK(200),ET(200),XU(200),RO(200),COED(200),DT(200),
* THERM(200),AJ(200),BJ(200),AK(200),BK(200),
* SIGXX(200),SIGYY(200),SIGXY(200)!,TITLE(10)
DIMENSION SYTF(100,100),SLOD(100,1),SDIS(100,1)
character*256 TITLE(10)
OPEN(5,FILE='PLAT1.DON')
OPEN(6,FILE='PLAT1.DAT')
c
c LECTURE ET ECRITURE DES DONNEES
WRITE (6,99)
READ (5,6)(TITLE (I), I=1, 10)
WRITE (6, 6) (TITLE (I), I=1, 10)
READ (5,*) NUMEL,NUMNP,NUMBC,IPR1,IPR2
WRITE(6,*) NUMEL
WRITE(6,*) NUMNP
WRITE(6,*) NUMBC
WRITE(6,*) IPR1
WRITE(6,*) IPR2

IF(IPR1.EQ.1) WRITE(6,104)

IF(IPR2.EQ.1) WRITE(6,105)

READ (5,*) (NUME(N),NPI(N),NPJ(N),NPK(N),EVAL(N),THIK(N),RO(N),

+ XU(N),COED(N),DT(N), N=1,NUMEL)

```
READ (5,3) (NPNUM(M),XORD(M),YORD(M),XLOAD(M),YLOAD(M),M=1,NUMNP)
WRITE(6,113)
```

WRITE(6,110)

WRITE(*,*)NUMEL

WRITE(6,*)(NUME(N),NPI(N),NPJ(N),NPK(N),EVAL(N),THIK(N),RO(N),

```
* XU(N),COED(N),DT(N), N=1,NUMEL)
```

WRITE(6,114)

WRITE(6,111)

WRITE(6,109) (NPNUM(M),XORD(M),YORD(M),XLOAD(M),YLOAD(M),

```
* M=1,NUMNP)
```

с

c MODIFICATION DES DIMENSIONS DES FORCES ET DES ELEMENTS

c

```
DO 180 N=1,NUMEL
```

```
ET(N)=EVAL(N)*THIK(N)
```

I=NPI(N)

J=NPJ(N)

K=NPK(N)

```
AJ(N)=XORD(J)-XORD(I)
```

```
AK(N)=XORD(K)-XORD(I)
```

```
BJ(N)=YORD(J)-YORD(I)
```

```
BK(N)=YORD(K)-YORD(I)
```

```
176 AREA=ABS((AJ(N)*BK(N)-BJ(N)*AK(N))/2.)
```

```
IF (AREA)701,701,177
```

```
177 THERM(N)=ET(N)*COED(N)*DT(N)/(1.0-XU(N))
```

```
DL=AREA*RO(N)/3.
```

XLOAD(I)=THERM(N)*(BK(N)-BJ(N))/2.+XLOAD(I) XLOAD(J)=-THERM(N)*BK(N)/2.+XLOAD(J) XLOAD(K)=THERM(N)*BJ(N)/2.+XLOAD(K)

```
YLOAD(I)=THERM(N)*(AJ(N)-AK(N))/2.+YLOAD(I)-DL
      YLOAD(J)=THERM(N)*AK(N)/2.+YLOAD(J)-DL
180
      YLOAD(K)=-THERM(N)*AJ(N)/2.+YLOAD(K)-DL
с
     LECTURE DES CONDITIONS AUX LIMITES
с
с
   WRITE (6, 112)
   READ (5,4) (NPB(L),NFIX(L),SLOPE(L),L=1,NUMBC)
   WRITE (6,7)(NPB(L),NFIX(L),SLOPE(L),L=1,NUMBC)
с
     GENERATION DES NOMBRES POUR L'ASSEMBLAGE DE LA (MAT-RIG)
с
GLOBALE
с
   ICON=0
   DO 60 I=1,NUMNP
      IB=0
   IX=0
   DO 10 J=1,NUMBC
      L=NPB(J)
      IF(L.EQ.I)IX=NFIX(J)
10
      IF(L.EQ.I) IB=L
   IF(IB.EQ.0) GOTO 55
      K=IX
   IF(K.NE.0)GOTO 30
20
      CONTINUE
   ICOR(I,1)=0
      ICOR(I,2)=0
      GOTO 60
30
    CONTINUE
   IF(K.NE.1) GOTO 40
      ICOR(I,1)=0
      ICON=ICON+1
      ICOR(I,2)=ICON
```

GOTO 60

40 CONTINUE

IF(K.NE.2) GOTO 50

ICON=ICON+1

ICOR(I,1)=ICON

ICOR(I,2)=0

GOTO 60

```
50 CONTINUE
```

IF(K.NE.J) GOTO 55

ICON=ICON+1

ICOR(I,1)=ICON

ICOR(I,2)=0

GOTO 60

55 CONTINUE

ICON=ICON+1

ICOR(I,1)=ICON

ICON=ICON+1

ICOR(I,2)=ICON

60 CONTINUE NDOF=ICON WRITE(6,61) NDOF

c CALCUL DE LA LARGEUR DE LA BANDE MAXIMALE

с

```
MAX=0
DO 80 I=1,NUMEL
J=NPI(I)-NPJ(I)
J=IABS(J)
IF(J.GT.MAX) MAX=J
J=NPJ(I)-NPK(I)
J=IABS(J)
IF(J.GT.MAX) MAX=J
J=NPK(I)-NPI(I)
J=IABS(J)
```

IF(J.GT.MAX) MAX=J

```
80 CONTINUE
```

```
NBND=2*MAX+2
```

```
IF(NBND.GT.NDOF)NBND=NDOF
```

WRITE(6,81)NBND

с

```
c INITIALISATION DE LA MATRICE DE RIGIDITE GLOBALE
```

```
c DES VECTEURS FORCE ET DEPLACEMENT
```

c

```
DO 70 I=1,NDOF
```

SLOD(I,1)=0.0

SDIS(I,1)=0.0

DO 70 J=1,NBND

```
70 SYTF(I,J)=0.0
```

```
с
```

c FORMATION DU SYSTEME DE RIGIDITE

```
c
```

```
IF(IPR1.EQ.1) WRITE(6,99)
DO 200 N=1,NUMEL
AREA=ABS((AJ(N)*BK(N)-AK(N)*BJ(N))*.5)
COMM=0.25*ET(N)/((1.-XU(N)**2)*AREA)
A(1,1)=BJ(N)-BK(N)
A(1,2)=0.0
A(1,3)=BK(N)
A(1,4)=0.0
A(1,5) = -BJ(N)
A(1,6)=0.0
A(2,1)=0.0
A(2,2)=AK(N)-AJ(N)
A(2,3)=0.0
A(2,4) = -AK(N)
A(2,5)=0.0
A(2,6)=AJ(N)
```

```
A(3,1)=AK(N)-AJ(N)
A(3,2)=BJ(N)-BK(N)
A(3,3) = -AK(N)
A(3,4)=BK(N)
A(3,5)=AJ(N)
A(3,6) = -BJ(N)
```

```
B(1,1)=COMM
```

B(1,2)=COMM*XU(N)

B(1,3)=0.0

```
B(2,1)=COMM*XU(N)
```

```
B(2,2)=COMM
```

B(2,3)=0.0

B(3,1)=0.0

B(3,2)=0.0

B(3,3)=COMM*(1.-XU(N))*.5

с

```
DO 182 J=1,6
DO 182 I = 1, 3
S(I,J)=0.0
DO 182 K=1,3
```

```
182
       S(I,J)=S(I,J)+B(I,K)*A(K,J)
```

DO 183 J=1,6

```
DO 183 I = 1,3
```

```
183 B(J,I)=S(I,J)
```

```
DO 184 J=1,6
```

```
DO 184 I = 1,6
```

```
S(I,J)=0.0
```

```
DO 184 K=1,3
```

```
184
       S(I,J)=S(I,J)+B(I,K)*A(K,J)
```

```
IF(IPR1.EQ.1) WRITE(6,207) N
```

```
IF (IPR1 .EQ. 1 ) WRITE (6,207) N
```

```
IF (IPR1 .EQ. 1 ) WRITE (6,208)((S (I ,J),J = 1 ,6),I = 1 ,6)
```

I=NPI(N)

J=NPJ(N)

```
K=NPK(N)
ITAB(1)=ICOR(I,1)
ITAB(2)=ICOR(I,2)
ITAB(3)=ICOR(J,1)
ITAB(4)=ICOR(J,2)
ITAB(5)=ICOR(K,1)
ITAB(6)=ICOR(K,2)
```

```
с
```

c MODIFICATIONS AU LIMITE DE LA PENTE

ICON=0

IDEX=0 DO 100 IB=1,NUMBC

L=NPB(IB)

M=NFIX(IB)

IF(M.NE.3) GOTO 100

IF(I.EQ.L)IDEX=1

IF(I.EQ.L) ICON=IB

IF(I.EQ.L)GOTO 225

IF(J.EQ.L)IDEX=2

IF(J.EQ.L) ICON=IB

IF(J.EQ.L)GOTO 225

IF(K.EQ.L)IDEX=3

IF(K.EQ.L) ICON=IB

IF(K.EQ.L)GOTO 225

100 CONTINUE

225 CONTINUE

IF(IDEX.EQ.0) GOTO 120

ANGL=SLOPE(ICON)

CALL TRAMAT(IDEX,ANGL,TRAN)

IF(IPR1.EQ.1) WRITE(6,232)N

232 FORMAT(/5X,42HTRASFORMATION MATRIX FOR SLOPING BOUNDARY,I5) IF(IPR1.EQ.1) WRITE(6,208)((TRAN(I,J),J=1,6),I=1,6)

```
CALL MATMUL1(TRAN,S,TEMP)

IF (IPR1.EQ.1) WRITE(6,208)((TEMP (I,J),J = 1,6), I = 1,6)

IF(IPR1.EQ.1) WRITE(6,233)N

233 FORMAT(/5X,39HTRANSFORMED STIFFNESS MATRIX OF ELEMENT,I5)

DO 115 I=1,6

DO 115 J=1,6

115 S(1, J)=TEMP (I,J)

120 CONTINUE
```

```
с
```

```
c ASSEMBLAGE DE LA MATRICE DE RIGIDITE GLOBALE
c DO 190 I = 1,6
DO 190 J=1,6
K=ITAB(I)
L=ITAB(J)
IF(K*L.EQ.0) GOTO 190
```

```
IF(K.GT.L) GOTO 190
M=1-K+L
IF(M.LE.0) GOTO 190
```

```
SYTF(K,M)=SYTF(K,M)+S(I,J)
```

```
190 CONTINUE
```

200 CONTINUE

```
IF(IPR2.NE.1) GOTO 216
WRITE(6,99)
WRITE(6,211)
DO 215 I=1,NDOF
WRITE(6,212)I
WRITE(6,213)(SYTF(I,J),J=1,NBND)
```

```
215 CONTINUE
```

216 CONTINUE

c ASSEMBLAGE DU VECTEUR FORCE GLOBAL

с

```
DO 220 I=1,NUMNP
```

K=ICOR(I,1)

L=ICOR(I,2)

IF(K.NE.0)SLOD(K,1)=XLOAD(I)

```
IF(L.NE.0)SLOD(L,1)=YLOAD(I)
```

220 CONTINUE

```
IF(IPR2.EQ.1) WRITE(6,221)
```

```
IF(IPR2.EQ.1) WRITE(6,222) (SLOD(I,1),I=1,NDOF)
```

с

- c SOLUTION DU SYSTEME D'EQUATION
- c

CALL DECOMP(NDOF,NBND,SYTF) CALL SOLVE(NDOF,NBND,1,SYTF,SLOD)

```
c COMPUTATION RES DEPLACEMENTS NODAUX
```

с

DO 230 I=1,NDOF

```
230 SDIS(I,1)=SLOD(I,1)
```

```
DO 250 I=1,NUMNP
```

ICON=0

IDEX=0

c

c MODIFICATION DES DEPLACEMENTS AUX NOEUDS DE FRONTIERE

с

```
DO 240 J=1,NUMBC
```

M1=NPB(J)

```
M2=NFIX(J)
   IF(M1.NE.I)GOTO 240
      IF(M2.EQ.3)ICON=J
240
     CONTINUE
   K=ICOR(I,1)
      L=ICOR(I,2)
      DSX(I)=0.0
      DSY(I)=0.0
   IF(K.NE.0) DSX(I)=SDIS(K,1)
   IF(L.NE.0) DSY(I)=SDIS(L,1)
   IF(ICON.EQ.0) GOTO 260
   DIS=DSX(I)
   ANGL=SLOPE(ICON)
   CALL DISCAL(DIS,ANGL,D1,D2)
      DSX(I)=D1
   DSY(I)=D2
260
      CONTINUE
250
      CONTINUE
     IMPRESSION DES DEPLACEMENTS ET DES DEFORMATIONS
сс
с
   WRITE(6,117)
      WRITE(6,121)
      WRITE (6,122)(NPNUM(M),DSX(M),DSY(M),M=1,NUMNP)
      WRITE(6,116)
*
     WRITE(6,*)
   WRITE(6,123)
   DO 420 N=1,NUMEL
      I=NPI(N)
      J=NPJ(N)
      K=NPK(N)
   EPX=(BJ(N)-BK(N))*DSX(I)+BK(N)*DSX(J)-BJ(N)*DSX(K)
```

```
EPY = (AK(N)-AJ(N))*DSY(I)-AK(N)*DSY(J)+AJ(N)*DSY(K)
```

```
GAM = (AK(N)-AJ(N))*DSX(I)-AK(N)*DSX(J)+AJ(N)*DSX(K)
* +(BJ(N)-BK(N))*DSY(I)+BK(N)*DSY(J)-BJ(N)*DSY(K)
```

```
COMM=ET(N)/((1.-XU(N)**2)*(AJ(N)*BK(N)-AK(N)*BJ(N)))
X=COMM*(EPX+XU(N)*EPY)+THERM(N)
Y=COMM*(EPY+XU(N)*EPX)+THERM(N)
XY=COMM*GAM*(1.0-XU(N))*0.5
SIGXX(N)=X
SIGYY(N)=Y
SIGXY(N)=XY
C=(X+Y)/2.0
R=SQRT((((Y-X)/2.0)**2+XY**2)
XMAX=C+R
XMIN=C-R
```

```
X=X/THIK(N)
Y=Y/THIK(N)
XY=XY/THIK(N)
XMAX=XMAX/THIK(N)
XMIN=XMIN/THIK(N)
PA=0.5*57.29578*ATAN(2.*XY/(Y-X))
```

IF(2.*X-XMAX-XMIN) 405,420,420

- 405 IF(PA) 410,420,415
- 410 PA=PA+90.0 GOTO 420
- 415 PA=PA-90.0
- 420 WRITE (6,124) NUME(N),X,Y,XY,XMAX,XMIN,PA

```
с
```

GOTO 999

с

c IMPRESSION DES ERREURS DANS LES DONNEES

701 WRITE (6,711) N

с

c INSTRUCTIONS FORMAT

с

- c1 FORMAT(3I4,2I2) !,2E10.4,1I4)
- c2 FORMAT(4I5,6E10.4)
- 3 FORMAT(115,4E10.4)
- 4 FORMAT(2I5,3X,1E10.4)
- c5 FORMAT (4I5,6E10.4) !(4I5,6E11.4)
- 6 FORMAT(10A11)
- 7 FORMAT(2I5,1E10.4)
- 61 FORMAT(32H ORDER OF STIFFNESS MATRIX IS = I5)
- 81 FORMAT(41H MAXIMUM BAND WIDTH OF STIFFNESS MATRIX = I5)
- 99 FORMAT(1H1)
- 101FORMAT(29H NUMBER OF ELEMENTS=1I4/)
- 102 FORMAT(29H NUMBER OF NODAL POINTS =1I4/)
- 103 FORMAT(29H NUMBER OF BOUNDARY POINTS = 1I4/)
- 104 FORMAT(40H ELEMENT STIFFNESS MATRICES ARE PRINTED)
- 105 FORMAT(52H GLOBAL STIFFNESS MATRIX AND LOAD VECTOR ARE PRINTED)
- 109 FORMAT(115,4E10.4) !(118,4F12.5)
- 110 FORMAT(3X,50H EL. I J K E THIKNESS DENSITY, *30H POISSON ALPHA DELTA T)
- 111 FORMAT(55H NP X-ORD Y-ORD X-LOAD Y-LOAD)
- 112 FORMAT (20H BOUNDARY CONDITIONS/20H NODE TYPE ANGLE)
- 113 FORMAT(/5X,12H ELEMENT_DATA)
- 114 FORMAT(/5X,10H NODAL_DATA)
- 116 FORMAT(/5X,16H ELEMENT STRESSES)
- 117 FORMAT(/5X,19H NODAL DISPLACEMENTS)
- 121 FORMAT(/41HNODAL POINT X-DISPLACEMENT Y-DISPLACEMENT)
- 122 FORMAT(1112,2E15.6)
- 123 FORMAT(119H ELEMENT X-STRESS Y-STRESS,
- *XY-STRSS MAX-STRESS MINSTRESS DIRECTION)
- 124 FORMAT(1110,3F20.4,5X,3F15.2)
- 207 FORMAT(30H STIFFNESS MATRIX OF ELEMENT I5)
- 208 FORMAT(6E15.6)

- 211 FORMAT(30H GLOBAL STIFFNESS MATRIX)
- 212 FORMAT(6H ROW 115)
- 213 FORMAT(10X,8E13.6)
- 221 FORMAT(30H GLOBAL LOAD VECTOR)
- 222 FORMAT(10X,8E13.6/)
- 231 FORMAT(50H*** STIFFNESS MATRIX IS NOT POSITIVE DEFINITE ***)
- 711 FORMAT(32HOZERO OR NEGATIVE AREA, EL. N0.=1I4)
- 999 STOP

END

- с
- c PROGRAMME POUR LA TRANSFORMATION GENEL DE LA MATRICE AU
- c LIMITE DE PENTE

SUBROUTINE TRAMAT(N,A,T)

IMPLICIT DOUBLE PRECISION(a-h,o-z)

```
DIMENSION T(6,6)
```

PI=4.0*ATAN(1.0)

```
S=90.0-A
```

S=(S*PI)/180.0

```
AL=COS(S)
```

```
AU=SIN(S)
```

```
DO 10 I=1,6
```

```
DO 10 J=1,6
```

```
10 T(I,J)=0.0
```

```
DO 20 I=1,6
```

```
20 T(I,I)=1.0
```

```
M=(N-1)*2+1
```

```
T(M,M)=AL
```

```
T(M+1,M+1)=AL
```

```
T(M,M+1)=AU
```

```
T(M+1,M)=-AU
```

```
RETURN
```

```
END
```

с

c PROGAMME QUI CALCUL (C)=TRANSPOSE(A)*(B)*(A)

с

```
SUBROUTINE MATMUL1 (A,B,C)
   IMPLICIT DOUBLE PRECISION(a-h,o-z)
   DIMENSION A(6,6),B(6,6),C(6,6),D(6,6)
      DO 100 I = 1,6
  DO 100 J=1,6
     D(I,J)=0.0
  DO 100 K=1,6
100 D(I,J)=D(I,J)+B(I,K)*A(K,J)
  DO 200 I=1,6
  DO 200 J=1,6
     C(I,J)=0.0
  DO 200 K=1,6
200
     C(I,J)=C(I,J)+A(K,I)*D(K,J)
  RETURN
  END
     PROGRAMME DE TRANSFORMATION DES DEPLACEMENTS AUX NOEUDS
DE FRONTIER
      SUBROUTINE DISCAL(D,A,D1,D2)
   IMPLICIT DOUBLE PRECISION(a-h,o-z)
   PI=4.0*ATAN(1.0)
      S=90.0-A
      S=(S*PI)/180.0
      D1=D*COS(S)
   D2=-D*SIN(S)
      RETURN
   END
       SUBROUTINE DECOMP
```

с

С

с

с

с

SUBROUTINE DECOMP(N,NB,A) IMPLICIT DOUBLE PRECISION(a-h,o-z)

```
DIMENSION A(100,100)
   A(1,1)=SQRT(A(1,1))
      DO 5 K=2,NB
5
  A(1,K)=A(1,K)/A(1,1)
   DO 25 K=2,N
   KP1=K+1
      KM1=K-1
   DO 10 JP=1,KM1
      ICOL=K+1-JP
      IF(ICOL.GT.NB)GOTO 10
      write(*,*) DIFF,A(JP,ICOL)*A(JP,ICOL)
   DIFF=DIFF-A(JP,ICOL)*A(JP,ICOL)
10 CONTINUE
   A(K,1)=DSQRT(DIFF)
      DO 20 J=2,NB
   IF(K+J-1.GT.N)GOTO 25
      DIFF=A(K,J)
   DO 15 JP=1,KM1
      ICOL=K+1-JP
      JCOL=K+J-JP
```

```
IF(JCOL.GT.NB) GOTO 15
```

```
IF(ICOL.GT.NB) GOTO 15
```

DIFF=DIFF-A(JP,ICOL)*A(JP,JCOL)

```
15 CONTINUE
```

- 20 A(K,J)=DIFF/A(K,1)
- 25 CONTINUE

RETURN

END

c SUBROUTINE SOLVE

```
SUBROUTINE SOLVE(N,NB,M,A,B)
```

IMPLICIT DOUBLE PRECISION(a-h,o-z)

DIMENSION A(100,100),B(100,1),diff(1)

DO 5 J= 1,M

5 B(1,J)=B(1,J)/A(1,1)

DO 30 I=2,N DO 10 J=1,M 10 DIFF(J)=B(I,J)DO 20 K=2,NB IROW=I+1-K IF(IROW.LT.1)GOTO 20 ICOL=I+1-IROW IF(ICOL.GT.NB)GOTO 20 DO 15 J=1,M 15 DIFF(J)=DIFF(J)-A(IROW,ICOL)*B(IROW,J) 20 CONTINUE DO 25 J=1,M 25 B(I,J)=DIFF(J)/A(I,1)30 CONTINUE DO 35 J=1,M 35 B(N,J)=B(N,J)/A(N,1)DO 60 II=2,N I=N+1-II DO 40 J=1,M 40 DIFF(J)=B(I,J)DO 50 K=2,NB

IK=I-1+K

IF(IK.GT.N)GOTO 50

DO 45 J=1,M

- 45 DIFF(J)=DIFF(J)-A(I,K)*B(IK,J)
- 50 CONTINUE

DO 55 J=1,M

- 55 B(I,J)=DIFF(J)/A(I,1)
- 60 CONTINUE

RETURN

END

Fichier des résultats

Ici on presenté quelques matrices de rigidités

1

PLAQUE EN TRACTION AVEC UN TROU AU CENTRE

80 54 12 1 1

ELEMENT STIFFNESS MATRICES ARE PRINTED GLOBAL STIFFNESS MATRIX AND LOAD VECTOR ARE PRINTED

ELEMENT_DAT

DAT							
EL. I	J	Κ	E	THIKNESS	5 DENSITY	POISSON	N ALPHA
DELTA	Т						
1 1	10	11	1.00000E+07	1 .000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000	E+00						
2 1	11	2	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000	E+00	_					
3 2	11	3	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000)E+00		1 000000 05	1 000000	0.00000 . 00	2 000000 E 01	0.000007
4 3		12	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000)E+00	10	1.00000000.07	1 000000	0.0000000000000000000000000000000000000	2 000000 01	0.0000000000000000000000000000000000000
5 5	12	13	1.000000E+07	1.000000	0.000000E+00	3.00000E-01	0.000000E+00
0.00000	12	4	1.0000005.07	1 000000	0.0000000000000000000000000000000000000	2 000000 01	0.0000000000000000000000000000000000000
0 000000	13	4	1.000000E+07	1.000000	0.000000E+00	3.00000E-01	0.000000E+00
0.000000	JE+00	5	1.0000000000007	1.000000		2 000000E 01	
/ 4	13	Э	1.000000E+07	1.000000	0.000000E+00	3.00000E-01	0.000000E+00
0.00000	12	14	1 00000E + 07	1 000000		2 000000E 01	
8 J		14	1.000000E+07	1.000000	0.000000E+00	5.000000E-01	0.000000E+00
0.00000	14	15	1 00000E + 07	1 000000		2 00000E 01	
9 5	14	15	1.000000E+07	1.000000	0.000000E+00	5.00000E-01	0.00000E+00
10 5	15	6	1.00000E+07	1.000000	0.00000E+00	3 00000E 01	0.00000E+00
0.000000	E^{10}	0	1.00000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
11 6	15	7	1 000000E+07	1.000000	0.000000F+00	3.000000E-01	0.000000F+00
0.000000	F+00	,	1.0000001107	1.000000	0.0000001100	5.00000L 01	0.0000001100
12 7	15	16	$1.000000E \pm 07$	1.000000	0.000000E+00	3 000000E-01	0.000000E+00
0,000000	E+00	10	1.0000001107	1.000000	0.0000001100	5.0000001 01	0.0000001100
13 7	16	17	1.000000E+07	1.000000	0.000000E+00	3.000000E-0	0.000000E+00
0.000000	E+00						
14 7	17	8	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000)E+00						
15 8	17	9	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000)E+00						
16 9	17	18	1.00000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000)E+00						
17 10	19	11	1.000000E+07	1.000000	0.000000E+00	3.00000E-01	0.000000E+00
0.000000)E+00						
18 11	19	20	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000)E+00						
19 11	20	21	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000	E+00						
20 11	21	12	1.000000E+07	1.000000	0.000000E+00	3.00000E-01	0.000000E+00
0.000000)E+00						
21 12	21	13	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000	0E+00						

22 13 21	22	1.000000E+07	1.000000	0.000000E+00	3.000000E-0 1	0.000000E+00
0.000000E+00 23 13 22	23	1 000000E±07	1.000000	0.00000F±00	3 000000E-01	0.00000E+00
0.000000E+00	23	1.000000L+07	1.000000	0.000000E+00	5.00000E-01	0.000000E+00
24 13 23	14	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00 25 14 23	15	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
26 15 23	24	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
$27 15 24 \\ 0 000000E \pm 00$	25	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
28 15 25 0 000000E+00	16	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
29 16 25 0.000000E+00	17	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
30 17 25 0.000000E+00	26	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
31 17 26 0.000000E+00	27	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
32 17 27 0.000000E+00	18	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
33 19 28 0 000000E + 00	9	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00 34 19 29 0.000000E+00	20	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
35 20 29 0.000000E+00	21	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
36 21 29 0.000000E+00	30	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
37 21 30 0.000000E+00	31	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
38 21 31 0.000000E+00	22	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
39 22 31 0 000000E+00	23	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
40 23 31 0.000000E+00	32	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
41 23 32 0.000000E+00	33	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
42 23 33 0.000000E+00	24	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
43 24 33 0 000000E + 00	25	1.000000E+07	1.000000	0.000000E+00	3.00000E-01	0.000000E+00
44 25 33 0 000000E+00	34	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
45 25 34 0.000000E+00	35	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
46 25 35 0.000000E+00	26	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
47 26 35 0.000000E+00	27	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
48 27 35 0 000000E+00	36	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
49 28 37 0.000000E+00	29	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
50 29 37 0.000000E+00	38	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
51 29 38 0.000000E+00	39	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00

52 29 39	30	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00	21	1.0000000000007	1 000000		2 000000E 01	
0.000000E+00	51	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
54 31 39	40	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
55 31 40	41	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00 56 31 41	32	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00 57 32 41	33	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00 58 33 41	42	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00 59 33 42	43	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00 60 33 43	34	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00						
61 34 43 0.000000E+00	35	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
62 35 43 0 000000E+00	44	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
63 35 44	45	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00 64 35 45	36	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00 65 37 46	38	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00 66 38 46	47	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00 67 38 47	39	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00 68 39 47	48	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00						
69 39 48 0.000000E+00	40	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
70 40 48 0.000000E+00	49	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
71 40 49 0 000000E+00	41	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
72 41 49	50	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
73 41 50	51	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00 74 41 51	42	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00 75 42 51	52	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00 76 42 52	43	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00 77 43 52	53	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00 78 43 53	44	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00 79 44 53	54	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00
0.000000E+00						
80 44 54 0.000000E+00	45	1.000000E+07	1.000000	0.000000E+00	3.000000E-01	0.000000E+00

NODAL_DAT

NP	X-ORD	Y-ORD	X-LOA	D Y-LOAD
	1.2000E+01	.0000E+00	.0000E+00	.0000E+00
	2.1962E+01	.3902E+00	.0000E+00	.0000E+00
	3.1848E+01	.7653E+00	.0000E+00	.0000E+00
	4.1663E+01	.1111E+01	.0000E+00	.0000E+00
	5.1414E+01	.1414E+01	.0000E+00	.0000E+00
	6.1111E+01	.1663E+01	.0000E+00	.0000E+00
	7.7653E+00	.1848E+01	.0000E+00	.0000E+00
	8.3902E+00	.1962E+01	.0000E+00	.0000E+00
	9.0000E+00	.2000E+01	.0000E+00	.0000E+00
	10.4000E+01	.0000E+00	.0000E+00	.0000E+00
	11.3923E+01	.7803E+00	.0000E+00	.0000E+00
	12.3696E+01	.1531E+01	.0000E+00	.0000E+00
	13.3326E+01	.2222E+01	.0000E+00	.0000E+00
	14.2828E+01	.2828E+01	.0000E+00	.0000E+00
	15.2222E+01	.3326E+01	.0000E+00	.0000E+00
	16.1531E+01	.3696E+01	.0000E+00	.0000E+00
	17.7805E+00	.3923E+01	.0000E+00	.0000E+00
	18 .0000E+00	.4000E+01	.0000E+00	.0000E+00
	19.6000E+01	.0000E+00	.0000E+00	.0000E+00
	20.8585E+01	.1171E+01	.0000E+00	.0000E+00
	21 .5543E+01	.2296E+01	.0000E+00	.0000E+00
	22.4989E+01	.3333E+01	.0000E+00	.0000E+00
	23 .4242E+01	.4242E+01	.0000E+00	.0000E+00
	24 .3333E+01	.4989E+01	.0000E+00	.0000E+00
	25 .2296E+01	.5543E+01	.0000E+00	.0000E+00
	26 .1171E+01	.5885E+01	.0000E+00	.0000E+00
	27 .0000E+00	.6000E+01	.0000E+00	.0000E+00
	28.1100E+02	.0000E+00	.0000E+00	.0000E+00
	29.1079E+01	.2146E+01	.0000E+00	.0000E+00
	30.1016E+01	.4210E+01	.0000E+00	.0000E+00
	31 .9146E+01	.6111E+01	.0000E+00	.0000E+00
	32.7778E+01	.7778E+01	.0000E+00	.0000E+00
	33.6111E+01	.9146E+01	.0000E+00	.0000E+00
	34 .4210E+01	.1016E+02	.0000E+00	.0000E+00
	35.2146E+01	.1079E+02	.0000E+00	.0000E+00
	36 .0000E+00	.1100E+02	.0000E+00	.0000E+00
	37 .1700E+02	.0000E+00	.0000E+00	.0000E+00
	38.1667E+02	.3316E+01	.0000E+00	.0000E+00
	39.1571E+02	.6506E+01	.0000E+00	.0000E+00
	40.1413E+02	.9445E+01	.0000E+00	.0000E+00
	41.1202E+02	.1202E+02	.0000E+00	.0000E+00
	42.9445E+01	.1413E+02	.0000E+00	.0000E+00
	43.6506E+01	.15/1E+02	.0000E+00	.0000E+00
	44.3316E+01	.1667E+02	.0000E+00	.0000E+00
	45 .0000E+00	.1700E+02	.0000E+00	.0000E+00

	46.2400	E+02.0000E+0	0.3000E+05.00	000E+00	
	47.2400	E+02.6000E+0	1.3000E+05.00	000E+00	
	48.2400	E+02.1200E+0	2.3000E+05.00	000E+00	
	49 2400	E+02 .1200E+0 E+02 .1800E+0	2.3000E+05.00	00E+00	
	50 2400	E+02 .1000E+0 E+02 .2400E+0	2.3000E+05.00	00E+00	
	51 1800	$E+02 \cdot 2+00E+0$ $E+02 \cdot 2400E+0$	2.0000E+00.00	00E+00	
	52 1200	$E+02 \cdot 2+00E+0$ $E+02 \cdot 2400E+0$	2.0000E+00.00	00E+00	
	53 6000	$E + 02 \cdot 2 + 00E + 0$ $E + 01 \cdot 2400E + 0$	2.0000E+00.00	000E+00	
	54 0000	E + 01 .2 + 00 E + 0	2.0000E+00.00	000E+00	
	54.0000	$\frac{1}{100} \frac{1}{2400} \frac{1}{100} 1$	2.0000E+00.00	00L+00	
	AN	IGLE NO	DF TYPE		
		1 2 0	0.00E + 0.00		
		9 1 0	000E+00		
		10 2 0	000E+00		
		10 2.0	000E+00		
		10 1.0	000E+00		
		17 2.0 27 1 0	000E+00		
		27 1.0 28 2 0	00000+00		
		20 2.0	000E+00		
		30 1.0	000E+00		
		37 2.0 45 1.0	000E+00		
		45 1.0	000E+00		
		40 2.0	000E+00		
	06 (UUUE+UU EENIESS MATD	IV IC _	
		JER OF STI	ΓΓΝΕΟΟ ΜΑΙΚ Ε ατισενίεας Ν	IA IS =	
	MAXIMUM BA	AND WIDTH O	F STIFFNESS N	AAIRIX = 40	
	OTICE	I NIESS MATDI	V OF ELEMEN	ጥ 1	
	STIFF	MESS MATRI	A OF ELEMEN V OF ELEMEN		
215000E+07	311FF 127500E±06	$\frac{106122E \pm 07}{106122E \pm 07}$	$A OF ELEWIEN 151085E \pm 07$	1 1 180760E+06	164835E±07
137500E+06	.137300E+00	190122E+07	.131065E+07	189709E+00	104833E+07
$106122E \pm 07$	178558E+07	670052E+07	228900E+00	192308E+07	J42197E+00
190122E+07	.178338E+07	.070032E+07	343393E+07	4/3930E+07	135400E+08
180760E+06	228900E+00	343393E+07	102208E+07	.192308E+07	133409E+08
169709E+00	192308E+07	4/3930E+07	135400E+07	.492907E+07	140821E+00
104633E+07		NESS MATDI	155409L+06	000000E+00	.1406312+06
	STIFF STIFF	INESS MATRI	A OF ELEMIEN X OF ELEMEN	1 <i>2</i> T 2	
105530E+08	350266E±07	888523E+06	185520E+07	1 2 11//(15E+08)	535786E+07
350266E±07	330200E+07	1580/8E+07	185520E+07	114413E+08 508314E+07	2731/1E+08
330200E+07	$158048E \pm 07$	$138048E\pm07$	149033E+00	$106460E \pm 07$	273141E+00
185520E+07	$130040E\pm07$	$.107008E\pm07$.078914E+03	190+00E+07 178721E+07	131239E+07 235021E+06
163320E+07 114415E+08	149033E+00	$106460E \pm 07$.383334E+00	.178731E+07	233921E+00
114413E+08	.306314E+07 272141E+08	190400E+07	.178731E+07 225021E+06	.134001E+08	08704JE+07
.333780E+07	2/3141E+06	NESS MATDI	255921E+00 V OE EL EMEN	06/043E+0/	.273300E+08
	STIFF	MESS MATRI	A OF ELEMEN V OF ELEMEN	1 3 T 3	
106165E+09	311FF 142506E+06	5/25/6E + 06	Λ OF ELEWIEN	1 3 100720E+09	205775E+07
$142506E \pm 06$	142300E+00	343340E+00	191323E+07	100729E+00 178202E+07	.203773E+07
142300E+00	.505200E+00	104032E+07	103233E+07	$.170564E \pm 06$	200704E+00
J4JJ40E+U0	104032E+0/	.102311E+U/	.173/03E+U0	4/9304E+00	.1444/4E+U/
191525E+U/	103233E+0/	.193/83E+06	.430410E+U0	.1/1940E+U/	.121394E+U/
100/29E+08	.1/83U3E+U/	4/9004E+00	.1/1940E+U/	.103323E+08	33U249E+U/
.2057/5E+07	286/64E+08	.1444/4E+0/	.121394E+07	350249E+07	.2/4625E+08

STIFFNESSMATRIX OF ELEMENT4STIFFNESSMATRIX OF ELEMENT4

		TILLON THEFT		- ·	
.204696E+07	.389854E+06	150635E+07	.125071E+07	540607E+06	164056E+07
.389854E+06	.875582E+06	.152543E+07	.768376E+06	191529E+07	164396E+07
150635E+07	.152543E+07	.627050E+07	323720E+07	476414E+07	.171177E+07
.125071E+07	.768376E+06	323720E+07	.127421E+08	.198649E+07	135105E+08
540607E+06	191529E+07	476414E+07	.198649E+07	.530475E+07	712065E+05
164056E+07	164396E+07	.171177E+07	135105E+08	712065E+05	.151544E+08
	STIFF	NESS MATRI	X OF ELEMEN	T 5	
	STIFF	NESS MATRI	X OF ELEMEN	T 5	
.185018E+07	.585221E+06	287065E+07	.414644E+06	.102047E+07	999865E+06
.585221E+06	.107060E+07	.689369E+06	.685133E+06	127459E+07	175573E+07
287065E+07	.689369E+06	.101649E+08	492816E+07	729430E+07	.423879E+07
.414644E+06	.685133E+06	492816E+07	.103080E+08	.451352E+07	109932E+08
.102047E+07	127459E+07	729430E+07	.451352E+07	.627383E+07	323893E+07
999865E+06	175573E+07	.423879E+07	109932E+08	323893E+07	.127489E+08
	STIFF	NESS MATRI	X OF ELEMEN	T 6	
	STIFF	NESS MATRI	X OF ELEMEN	T 6	
.155047E+08	845497E+07	.194590E+07	982506E+06	174506E+08	.943747E+07
845497E+07	.225120E+08	707781E+06	121959E+07	.916275E+07	212924E+08
.194590E+07	707781E+06	.925712E+06	.292669E+06	287161E+07	.415111E+06
982506E+06	121959E+07	.292669E+06	.535437E+06	.689837E+06	.684155E+06
174506E+08	.916275E+07	287161E+07	.689837E+06	.203222E+08	985259E+07
.943748E+07	212924E+08	.415111E+06	.684155E+06	985259E+07	.206082E+08
	STIFF	NESS MATRI	X OF ELEMEN	T 7	
	STIFF	NESS MATRI	X OF ELEMEN	T 7	
.136029E+08	706891E+07	.550439E+06	100249E+07	141533E+08	.807140E+07
706891E+07	.273430E+08	727767E+06	274821E+07	.779668E+07	245948E+08
.550439E+06	727767E+06	.799046E+06	.345220E+06	134949E+07	.382547E+06
100249E+07	274821E+07	.345220E+06	.662655E+06	.657272E+06	.208555E+07
141533E+08	.779668E+07	134949E+07	.657272E+06	.155028E+08	845395E+07
.807140E+07	245948E+08	.382547E+06	.208555E+07	845395E+07	.225093E+08
	STIFF	NESS MATRI	X OF ELEMEN	T 8	
	STIFF	NESS MATRI	X OF ELEMEN	T 8	
.159809E+07	.690439E+06	214853E+07	.373273E+05	.550439E+06	727767E+06
.690439E+06	.132531E+07	.312052E+06	.142290E+07	100249E+07	274821E+07
214853E+07	.312053E+06	.950042E+07	457428E+07	735189E+07	.426222E+07
.373273E+05	.142290E+07	457428E+07	.950042E+07	.453695E+07	109233E+08
.550439E+06	100249E+07	735189E+07	.453695E+07	.680145E+07	353446E+07
727767E+06	274821E+07	.426222E+07	109233E+08	353446E+07	.136715E+08
	STIFF	NESS MATRI	X OF ELEMEN	T 9	
1005015 05	STIFF	NESS MATRI	X OF ELEMEN	T 9	0100505
.132531E+07	.690439E+06	274821E+07	100249E+0/	.142290E+07	.312052E+06
.690439E+06	.159809E+07	727767E+06	.550439E+06	.3/32/3E+05	214853E+07
2/4821E+07	727767E+06	.136/15E+08	353446E+07	109233E+08	.426222E+07
100249E+07	.550439E+06	353446E+07	.680145E+07	.453695E+07	/35189E+0/
.142290E+07	.373273E+05	109233E+08	.453695E+07	.950042E+07	45/428E+07
.312053E+06	214853E+07	.426222E+07	/35189E+07	457428E+07	.950042E+07
	STIFF	NESS MATRE	X OF ELEMEN	T 10	
	STIFF	NESS MATRE	X OF ELEMEN	1 10	

.225093E+08	845395E+07	.208555E+07	.382547E+06	245948E+08	.807140E+07
845395E+07	.155028E+08	.657272E+06	134949E+07	.779668E+07	141533E+08
.208555E+07	.657272E+06	.662655E+06	.345220E+06	274821E+07	100249E+07
.382547E+06	134949E+07	.345220E+06	.799046E+06	727767E+06	.550439E+06
245948E+08	.779668E+07	274821E+07	727767E+06	.273430E+08	706891E+07
.807140E+07	141533E+08	100249E+07	.550439E+06	706891E+07	.136029E+08
	STIFF	NESS MATRI	X OF ELEMEN	T 11	
	STIFF	NESS MATRI	X OF ELEMEN	T 11	
.206082E+08	985259E+07	.684155E+06	.415111E+06	212924E+08	.943748E+07
985259E+07	.203222E+08	.689837E+06	287161E+07	.916275E+07	174506E+08
.684155E+06	.689837E+06	.535437E+06	.292669E+06	121959E+07	982506E+06
.415111E+06	287161E+07	.292669E+06	.925712E+06	707781E+06	.194590E+07
212924E+08	.916275E+07	121959E+07	707781E+06	.225120E+08	845497E+07
.943748E+07	174506E+08	982506E+06	.194590E+07	845497E+07	.155047E+08
	STIFF	NESS MATRI	X OF ELEMEN	T 12	
	STIFF	NESS MATRI	X OF ELEMEN	T 12	
.107060E+07	.585221E+06	175573E+07	127459E+07	.685133E+06	.689369E+06
.585221E+06	.185018E+07	999865E+06	.102047E+07	.414644E+06	287065E+07
175573E+07	999865E+06	.127489E+08	323893E+07	109932E+08	.423879E+07
127459E+07	.102047E+07	323893E+07	.627383E+07	.451352E+07	729430E+07
.685133E+06	.414644E+06	109932E+08	.451352E+07	.103080E+08	492816E+07
.689369E+06	287065E+07	.423879E+07	729430E+07	492816E+07	.101649E+08

BIBLIOGRAPHIE

[1] Mechel Cazenave « Méthode des éléments finis approche pratique en mécanique des structures » DUNUD 2010

- [2] Mémoire de fin d'étude ' Etude de s déformation plane et contrainte plane dans une plaque trouée' pour ingénieur chibani A / Elhakim1997
- [3] Gouri. Dhatt, Gilbert Touzot Une présentation de la méthode des éléments finis 2ème Edition 1984
- [4] JL Batoz –Gouri Dhatt
 Modélisation des structures par éléments finis volume 1 Solide élastique
 Edition Hermes 1995
- [4] M.boumahrat / A.Gourdin

Méthodes numériques appliquées

Edition 1983

Kennith H.huber-Earl. A .thoraton

The finite element method for engineers

Second Edition 1982

[6] O.C.Zeinkiewicz

La méthode des éléments finis

Edition 1979

[8] J. F.imbert

Analyse des structures par éléments finis

2éme Edition 1984