
K. Sami  Introduction 

 

 

الـــشـــــــــــــــــــــــــــــــــــــــــعـــبـــيـــــةالجمــــهـــــوريـــــــــــــــــــة الجـــــــــــــــزائـــريـــــة الديمـــــــــــــــــــــــــــــقـــراطــيـــــة   

Republique Algerienne Democratique   Et Populaire 

ليـــــــــم العـــــــــــــــالي والبـــــــــــــــــحث العــــــــــــــــــــلــــــمــــــــــــيـــــــــــــعــــــوزارة التـــــــــــ  

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique 

ـــــــــــــــــــــــــــــة تـــــــبســــــــــــــــــــــــــــــــــــ –ـــــــــــي ــــــــامعة العربــــــــــــــــــــــــي التبســـــــــــــجـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  

Université Larbi tébessi  – Tébessa – 

Faculté des Sciences et de la Technologie 

Département de Génie Mécanique 

 
 

MEMOIRE 
 

Présenté pour l’obtention du diplôme de Master Académique 
 

En : Génie Mécanique 

  

Spécialité : Construction Mécanique 

 

Par : Kebaili Sami 

 

Sujet  
 

 

Etude analytique et numérique des contraintes d’un 

réservoir cylindrique de gasoil 

  

 

Présenté et soutenu publiquement, le 23 / 06 / 2021, devant les jurys composés de : 

 

 

 

BELGHALEM HADJ MCA Président 

HADJAB ABDELHAKIM MAA Rapporteur 

LAOUADI Bouzid MAA Examinateur 

 

 

Promotion : 2020/2021 



K. Sami  Introduction 

 

 

 

Acknowledgments 

 

First of all: 

All praise is due to Allah lord of the worlds,  

without his aid we can’t do this work 

And thanks to all my teacher how do real educate me thanks to them 

a lot. 

And thanks to the persons how helped me to do this work,  

Mr. H. ABDELHAKIM, Prof. at university of Tebessa, my director 

of this work his instructed me and guide me to make this. 

the member of the mechanical engineering department it helps us  

a lot during our study at the university 

 

we ask god to guide all of them to what he loves and satisfies.  

 

 

 

 

 

 



 

 

Table of Contents 
 

1.2. Advantages of Using Fuel Storage Tanks ............................................................ 3 

1.3 Single Skin & Double Skin Tanks .................................................................................... 4 

1.4 Vertical cylindrical tank .............................................................................................. 4 

2 Damage of Storage tanks ................................................................................................ 6 

2.1 Type of damage ........................................................................................................... 6 

2.1.1 damage of the tank bottom ................................................................................... 6 

2.1.2 Damage of tank Shell ........................................................................................... 6 

2.1.3 damage of the tank roof ........................................................................................ 6 

2.1.4 Corrosion .............................................................................................................. 7 

2.1.5 Oxygen concentration cell .................................................................................... 8 

3 Equilibrium equations ................................................................................................... 10 

3.1 Body and Surface Forces ........................................................................................... 10 

3.2 Equilibrium equations in Coordinates System .......................................................... 12 

3.2.1 Equilibrium equations in Cylindrical coordinate .............................................. 12 

3.2.2 Equilibrium equations in Polar Coordinates ..................................................... 14 

3.2.3 Spherical coordinate system ............................................................................... 16 

3.3 The application of coordinate systems in stress calculation in the tank .................... 17 

1.4.2 Cylindrical face .................................................................................................. 17 

3.3.1 Flat Bottom ......................................................................................................... 22 

3.3.2 Hemisphere Bottom ............................................................................................ 28 

3.4 Numerical application for the Tank ........................................................................... 32 

3.4.1 Assumptions ........................................................................................................ 32 

3.4.2 Cylindrical wall .................................................................................................. 33 

3.4.3 Hemispherical bottom: ....................................................................................... 35 

4 Simulation with SolidWorks .......................................................................................... 37 

4.1 CAD Model ............................................................................................................... 37 

4.1.1 Cylindrical wall .................................................................................................. 37 

Material Properties .................................................................................................................. 41 

3.5 Conclusion ................................................................................................................. 43 

 



 

 

List of figures 
 

Figure 1.3.1Industrial vertical cylindrical tank ..................................................................... 1 

Figure 1.3.2 underground Storage tanks ................................................................................ 2 

Figure 1.1 Bottom damage of a tank ....................................................................................... 6 

Figure 1.2 Example of damages in elements of the tank ....................................................... 7 

Figure 1.3  Loss of thickness (%) in carbon steel plates of the bottom of a diesel storage 

tank by the non-destructive inspection (method Magnetic Flux Leakage). ........................ 7 

Figure 2.1 equilibrium of the rigid body .............................................................................. 10 

Figure 2.2  equilibrium of the rigid body .............................. Error! Bookmark not defined. 

Figure 2.3 Cantilever Beam Under Self-Weight Loading ................................................... 10 

Figure 2.4 Sectioned Axially Loaded Beam ......................................................................... 10 

Figure 2.5 Body and surface forces acting on an arbitrary portion of a continuum. ...... 11 

Figure 2.6 Cylindrical coordinat ........................................................................................... 12 

Figure 2.7 axi-symmetry shapes ............................................................................................ 12 

Figure 2.8 axisymmetric plane .............................................................................................. 13 

Figure 2.9 stress components in cylindrical coordinates .................................................... 13 

Figure 2.10 Polar Coordinats ................................................................................................ 14 

Figure 2.11 Stress components in polar coordinates ........................................................... 15 

Figure 2.12 Stress components in spherical coordinates .................................................... 16 

Figure 2.13 Tank model in SolidWorks ................................................................................ 17 

Figure 2.14 Axi-symmetric plane .......................................................................................... 18 

Figure 2.15 Plot of radial stress and tangential stress......................................................... 22 

Figure 2.16  uniform  load on circular plate ........................................................................ 22 

Figure 2.17 A plate under lateral load .................................................................................. 22 

Figure 2.18   in-plane normal forces and bending moments .............................................. 23 

Figure 2.19  in-plane shear force and twisting moment ...................................................... 24 

Figure 2.20  circular plate subjected to a uniform lateral load .......................................... 25 

Figure 2.21 Hemispheric bottom of the tank ....................................................................... 29 

Figure 2.22dimension of the liquid in the tank .................................................................... 32 

Figure 2.23 cylindrical wall under hydrostatic pressure .................................................... 33 

Figure 4.1 Sketch of the tank model ..................................................................................... 37 

Figure 4.2 fixed fixture ........................................................................................................... 37 

file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069705
file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069709
file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069709
file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069710
file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069711
file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069712
file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069713
file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069715
file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069717
file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069718
file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069719
file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069722
file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069724
file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069726
file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069728
file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069732
file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069734


 

 

Figure 4.3 Type of simulation menu ..................................................................................... 37 

Figure 4.4 Simulation menu .................................................................................................. 38 

Figure 4.5 Ceating a reference point in the model .............................................................. 38 

Figure 4.6 Non-uniform distribution option ........................................................................ 39 

Figure 4.7 Applying distributed load and fixture ................................................................ 39 

Figure 4.8 the results of simulation ....................................................................................... 40 

Figure 4.9 CAD model for the bottom of the tank .............................................................. 40 

 

  

file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069735
file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069736
file:///C:/Users/Sami/Desktop/Mastre%20memory/Industrial%20Storage%20tank.docx%23_Toc75069738


 

 

Abstract 
To study the distribution of stresses in a complex shape such as flat bottom tank or hemispheric 

bottom require an advanced method to find the solution of the equations that describe such 

distribution. And that’s what we did in this thesis by a brief introduction to tanks and their types 

follow that by the development of the equilibrium equations in three coordinate systems and 

applying the solution of this equations to study the stresses in the tanks wall and bottom and 

finely by comparing the results by a numerical result in SolidWorks. 

 

 ملخص

لدراسة توزيع الإجهادات في أشكال معقدة مثل خزان بقعر مسطح أو نصف كروي،  نحتاج إلى طرق متقدمة لإيجاد حلول 

حول الخزانات و  ة، وذلك بمقدمة مختصرة للمعادلات التي تصف توزيع هذه الإجهادات, وهذا ما قمنا به في هذه المذكر

التوازن في ثلاثة أنطمة إحداثية، وتطبيق يجاد معادلات إالمقدمة ب أنواعها، وشرح حالات وكيفية تضررها، وأتبعنا هذه

حلول هذه العادلات لدراسة الإجهادت في سطح الخزان الجانبي و كذا قعر الخزان المسطح والنصف كروي، ثم قارنا 

 النظرية مع النتائج المتحصل عليها من محاكاة الخزان على برنامج سوليدوركس.النتائج 

Résumés  

Pour étudies la distribution des contraints en un géométrie complexe come un réservoir à fond 

plat ou hémisphérique ce l’exige des méthodes avancer pour trouver la solution des équations 

qui exprimé comme ces distributions. Et ça ce que nous faire dans ce mémoire, par une petite 

introduction à les réservoirs et ces types et ces modes d’endommagement, après ça nous 

développer les équations d’équilibre en trois system de coordonner et appliquer la solution du 

ces équations a la paroi et le fond plat même hémisphérique de ce réservoir pour obtenu des 

résultats numériques et comparer ces résultats par des autre résultat obtenu par un simulation 

en SolidWorks.  
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1.1. Introduction 

1.1.1. History of Storage Tank Systems 

In august 1859, the first oil well was constructed in Titusville, PA. The visionaries who 

financed and developed the primitive derrick and drill believed that “rock oil” would provide 

an excellent source of energy for illuminating buildings. And for a few years, it did—until 

Thomas Edison found a way during the early 1880s to harness electricity. …other world-

changing inventors in Europe and the United States had already begun the first steps toward 

redefining transportation—through development of a four-stroke engine and adaptation of the 

motor to power a buggy. The seeds of an automotive industry had been shown. And, from that 

point on, a need for storing petroleum products grew. 

The first service stations required minimal tank storage capacity. In fact, it was common for 

product to be stored within the dispenser itself. As the need for hydrocarbons grew, the ability 

to store the product safely became an important growth factor for the petroleum and automotive 

industries. The storage tank industry traces its start to these events that have altered society. [1] 

 

1.1.2. Definition 

Industrial storage tanks are containers used for storage of gas, oil, water, and petrochemical 

products, employed for industrial uses. It come in different sizes and shapes, they can be 

underground, horizontal, and vertical, and be 

made from concrete, stone, fiberglass, steel or 

plastic. The term can be used 

for reservoirs (artificial lakes and ponds), and 

for manufactured containers. The usage of the 

word tank for reservoirs is uncommon 

in American English but is moderately 

common in British English. In other countries, 

the term tends to refer only to artificial 

containers. [2] 

1.2 Types of storage tanks 

Industrial storage tanks can be categorized into 

several types based on the substance they hold 

and some other factors. 

Industrial fuel storage tanks, known as 
Figure 1.3.1Industriel vertical cylindrical tank 

https://en.wikipedia.org/wiki/Storage_tank#cite_note-1
https://en.wikipedia.org/wiki/Reservoir
https://en.wikipedia.org/wiki/American_English
https://en.wikipedia.org/wiki/British_English
https://en.wikipedia.org/wiki/Storage_tank#cite_note-1
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petroleum tanks also, can store various fluids. In general, they are used for storing non-organic 

and organic liquids. They can also hold vapor as well as different flammable fluids. Fuel storage 

tanks are manufactured in various designs and sizes. They are designed to store a variety of 

fuels, vapor, and industrial liquids. There are two main types of fuel storage tanks – 

Aboveground tanks and Underground tanks.   

1.1.3. Aboveground Fuel Tanks 

Aboveground fuel tanks (AST) are quite popular because of their lower long-term 

maintenance and upfront costs. These tanks are more cost-effective to install compared to 

underground tanks since you don’t need to spend for backfilling, deep excavation, and 

pavement of more involved piping. 

Aboveground fuel tanks offer greater ease of maintenance compared to the below ground tanks. 

You can check them easily for leaks and access for repairs. This is the reason aboveground fuel 

storage tanks are preferred for storing fuels and chemicals. 

 

Figure 1.3.2 underground Storage tanks 

1.1.4. Underground Storage Tanks 

In Underground storage tank (UST), at least 10% of the tank’s stored volume is buried 

underground. Such tanks that are used for storing hazardous materials or fuels are regulated, 

and must have registration with the EPA. 

These tanks are suitable for people wanting to maximize the space and/or value of their 

property. Underground storage tanks can be put beneath lawns and driveways, where they are 

not visible. Arguably, these types of tanks are safer as the chance of explosion is very little. 

However, the chance of leaks as well as that of generating pollution is increased in case of these 

tanks as they cannot be inspected often. 
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1.2.  Advantages of Using Fuel Storage Tanks 

If your business requires safe storage of fuel and other inflammable liquids, then it’s 

important to use an industrial fuel storage tank. tanks are standards certified containers which 

provide safe storage of chemicals, solvents, oil, petrol, diesel, and other hazardous and 

flammable liquids. Fuel storage tanks restrict evaporative emissions as well as prevent any 

leakage of the substance contained in it. 

These storage tanks are manufactured and designed for meeting industry standards, which 

makes them an efficient and reliable option for addressing your storage needs of hazardous 

substances. Using industrial fuel storage tanks offers several advantages, which are listed 

below: 

1.2.1. Cost Efficient 

Using fuel storage tank is cost efficient since your staff need not leave the business 

facility for getting equipment or vehicles refueled. This saves both money and time that’s 

otherwise spent to refuel off your business premises. These tanks have a storage capacity lying 

between 1,000 and 110,000 liters, allowing you to store petrol and fuel according to the amount 

required on a weekly or daily basis. 

 

1.2.2. Variety 

There are various types of fuel storage tanks you can choose from. The chief types are – above 

ground fuel storage tanks and underground fuel storage tanks. These types have already been 

discussed above. 

Another type of industrial fuel storage tank is – self bunded tank. This type of tank is employed 

widely because of its durability. Having double steel walls, the self-bunded storage tank 

prevents spillage of the substance contained in it. The capacity of storage of the self-bunded 

tanks and above ground tanks usually lay between 1,000 and 150,000 liters. 

If your storage requirements are small, you may choose the minor storage wrap tank. This type 

of fuel storage tank has a storage capacity between 1,000 and 1,450 liters. Similar to self-bunded 

tank, minor storage wrap tank has no need for any complex bunding requirements as well as 

provides maximum versatility and effectiveness. 

1.2.3. Versatility 

An industrial fuel storage tank has the ability to hold a variety of inflammable liquids. If your 

storage needs are very specific, inform your manufacturer about them since they may customize 
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or adjust tank specifications and models so as to fulfill your special requirements. Moreover, 

industrial fuel storage tanks are installed easily. Some of the models are portable too to allow 

easy relocation when necessary. 

1.3  Single Skin & Double Skin Tanks 

Single skin tank has one layer and double skin tank has two layers of plastic or steel. Double 

skin tanks are also known as twin-walled tanks.  

1.4   Vertical cylindrical tank 

The Storage Tanks are superiorly utilized in divergent industries for containing various 

liquefied and viscous materials and solutions.  [2] 

1.4.1 advantage of vertical cylindrical tank 

The Vertical Storage Tanks are high-handedly suitable for stocking up a large volume of liquids, 

chemicals and solvents for various industrial processing. These vertical shaped tanks are 

designated to handle pressure distribution. The cylindrical shape of vertical storage tanks makes 

a fewer stress points, creating a more even distribution of pressure. This allows vertical tanks 

to store greater volumes of liquid without compromising safety. 

Vertical tanks usually take up less space, making them a good choice for smaller areas. The 

exception is spaces with low roofs or ceilings, where a horizontal tank will be a better fit. [3] 

  

https://en.wikipedia.org/wiki/Storage_tank#cite_note-1
https://en.wikipedia.org/wiki/Storage_tank#cite_note-1
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1  Damage of Storage tanks 

The safe and long service life of structures could be assured only when adequate design and 

construction are combined with a proper and regular maintenance. And this is also true for the 

storage tanks because it is a very important static equipment for the oil and gas in industry. 

Even though various codes and standards stipulate its design to avoid failure of storage tanks, 

still there are many incidents of storage tank failures. So, storage tank failure is not at all a new 

phenomenon. In the following section, we will explore the types of such tank damages and 

solution to prevent this. 

1.1 Type of damage 

1.1.1 damage of the tank bottom 

The floors of aboveground storage tanks remain a most difficult part of the vessel to inspect 

for corrosion damage. 

 

Figure 1.1 Bottom damage of a tank 

1.1.2 Damage of tank Shell 

• paint coating deterioration and initiation of intensive corrosion processes 

• local deformation of the tank shell 

1.1.3 damage of the tank roof 

• paint degradation and intense corrosion on the roof plates and attached nozzles for 

equipment 

• poorly implemented attempts to repair the roof plates [4] 
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Figure 1.2 Example of damages in elements of the tank 

 

1.1.4 Corrosion 

Corrosion is defined as the degradation of a material or its properties due to a reaction with its 

environment. This includes not only “steel,” but also metals and plastics that are incompatible 

with certain chemical compounds. However, for the purposes of this research, we will limit the 

discussion to corrosion in metals. 

Corrosion in metals is an electrochemical 

reaction, which means a chemical reaction takes 

place that creates direct electric current flow. 

Electrochemical corrosion is the corrosion 

caused by the reaction of metals in an electrolyte 

solution to form a cell. The contact of impure 

metals with the electrolyte causes an 

electrochemical reaction to take place, in which 

the more active metals are oxidized. The 

corrosion process of a storage tank made of 

carbon steel will generally take place as follows: 

the anode, which acts as an electrochemical 

reaction, loses electrons and becomes divalent 

iron ions, while the cathode gains electrons as 

hydrogen ions and produces hydrogen gas. [5] 

Figure 1.3  Loss of thickness (%) in carbon steel 

plates of the bottom of a diesel storage tank by 

the non-destructive inspection (method Magnetic 

Flux Leakage). 
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1.1.5 Oxygen concentration cell 

This macroscopic corrosion cell occurs mainly on the underside of the tank floor, in the tank 

wall panels. It is formed by contact between the tank's constituent material, carbon steel, and a 

solution with a different oxygen content and is also known as an uneven-filling cell. Immersion 

of the carbon steel in a neutral solution containing oxygen results in the formation of an oxygen 

electrode, and the following reactions take place:   

 

figure (1.3) shows the results of the loss of thickness of the bottom plate of a 40-m diameter 

diesel storage tank supported on compacted soil by non-destructive inspection, the so-called 

MFL (Magnetic Flux Leakage). [6] 

 

 



K. Sami  Chapter 1 

 

9 

 

 



K. Sami  Chapter 2 

 

10 

 

2 Equilibrium equations   

In engineering world sometimes, the engineers dealing with 

bodies in equilibrium, which mean that the summation of 

forces and moments is zero. because the body is in equilibrium, 

the applied loadings satisfy the equations second law of 

Newton which is static equilibrium. If the entire body is in 

equilibrium, then all parts must also be in equilibrium. Thus, 

we can partition any solid into an appropriate subdomain and 

apply the equilibrium principle to the region. 

 
0

0O

F

M

=

=

 
(3.1) 

 

2.1 Body and Surface Forces 

 Body forces: are proportional to the body’s mass 

and are reacted with an agent outside of the body. 

Example of these include gravitational-weight 

forces, magnetic forces, and inertial forces. 

Body force density (force per unit volume) F(x) 

can be defined such that the total resultant body 

force of an entire solid can be written as a volume 

integral over the body 

 ( )
R V

F F x dV=   (3.2) 

Surface forces: always act on a surface and result from 

physical contact with another body. 

 ( )n
S S

F T x dS=   (3.3) 

Figure (3.4) illustrates surface forces existing in a beam 

section that has been created by sectioning the body 

into two pieces. 

Figure 2.1 equilibrium of the rigid body 

Figure 2.2 Cantilever Beam Under Self-Weight Loading 

Figure 2.3 Sectioned Axially Loaded Beam 
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We use an arbitrary finite subdomain, then we can partition the solid into a subdomain and 

apply the equilibrium principle to that region 

 

Figure 2.4 Body and surface forces acting on an arbitrary portion of a continuum. 

Tn :  traction forces 

S  :  surface within a body  

V :  volume of the body  

F :  body forces 

 

 0n
i iS V

T dS F dV+ =   (3.4) 

from the principles of elasticity, we can write the traction vector as following:  

 
n

i ji j
T n=  (3.5) 

Then the express of the equilibrium statement in terms of stress will be: 

 0ji j iS V
n dS F dV + =   (3.6) 

Applying the divergence theorem to the surface integral allows the conversion to a volume 

integral, and relation (3.6) can then be expressed as 

 ( ) 0ji iV
F dV + =  (3.7) 

Because the region V is arbitrary (any part of the medium can be chosen) and the integrand in 

(3.7) is continuous, then by the zero-value theorem, the integrand must vanish: [5] 

 ,
0

ji j i
F + =  (3.8) 
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2.2 Equilibrium equations in Coordinates System 

In order to solve many elasticity problems, formulation must be done in curvilinear 

coordinates typically using cylindrical or spherical or plan systems, we now wish to develop 

expressions for the equilibrium equations in this coordinate systems.  

2.2.1 Equilibrium equations in Cylindrical coordinate 

Cylindrical coordinates are useful in connection with objects and 

phenomena that have some rotational symmetry about the longitudinal 

axis, such as water flow in a straight pipe with round cross-section, heat 

distribution in a metal cylinder, electromagnetic fields produced by 

an electric current in a long, straight wire, accretion disks in astronomy, 

and so on. [6]  

Many problems are such that it is advantageous to use cylindrical 

coordinates (r, θ, z) instead of Cartesian (x, y, z) coordinates   

2.2.1.1 Geometrical Axi-symmetry 

A large number of practical engineering problems involve geometrical features which have a 

natural axis of symmetry, such as the solid cylinder, show, in figure (3.7). The axis of symmetry 

is an axis of revolution; the feature which possesses axi-symmetry (axial symmetry) can be 

generated by revolving a surface (or line) About this axis 

 

Figure 2.6 axi-symmetry shapes 

 

Figure 2.5 Cylindrical coordinat 

https://en.wikipedia.org/wiki/Symmetry
https://en.wikipedia.org/wiki/Cylinder_(geometry)
https://en.wikipedia.org/wiki/Electromagnetic_fields
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Accretion_disk
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Some features are not only axisymmetric – they can be represented by a plane, which is similar 

to other planes right through the axis of symmetry.  

In our case we shall begin to developpe the equilibrium 

equation in cylindrical system, and we start by choosing a 

small element from the cylindrical shape, and represent the 

state of stresses in cylindrical coordinates, figure (3.9)  

and then applying Newton secand law. [7] 

 

 

 

 

 

 

 

  

 

( )

0

-

cos - cos
2 2

-
2 2

- sin - sin
2 2

F
r

rr dr r dr d dz r d dz
rr rrr

d dr d dr dz dr dz
r r

dr drr d r dr d r dr d
rz

d dr d dr dz dr dz F
r r


   

    
 


   


    
 

=

 
= + + 
 
 

     
+ +           

     
+ + + +           

 
+ + 

 
 

0=  

(3.10) 

Figure 2.7 axisymmetric plane 

Figure 2.8 stress components in cylindrical coordinates 
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To simplify the equation, we do the followings: 

1- cancel the equal opposite forces 

2- we know for a very small value of  (dθ)  then:       𝐬𝐢𝐧 (
𝐝𝛉

𝟐
) =

𝐝𝛉

𝟐
  ;   𝐜𝐨𝐬 (

𝐝𝛉

𝟐
) = 𝟏 

3- dividing by the volume r dr dθ dz 

Similarly, we find for the (θ and z ) directions: 

we find that the equation will be like this: 

 

1
0 0

21
0 0

1
0 0

r rrrr zrF F
r rr r z r

r z rF F
r r z r

zrz zz rzF F
z zr r z r

   
 



   
   

 

  




 − 
= + + + + =

  

  
= + + + + =

  

 
= + + + + =

  

 

 

(3.11) 

2.2.2 Equilibrium equations in Polar Coordinates 

While discussing the problems with circular boundaries, it is more convenient to use the 

cylindrical co-ordinates such as (r, θ, z). In the case of plane stress or plane strain problems, we 

have 𝜏𝑟𝑧 = 𝜏𝜃𝑧 = 0 and the other stress components as functions of r and θ only. Hence, the 

cylindrical co-ordinates reduce to polar co-ordinates in this case. In general, polar co-ordinates 

are used advantageously where a degree of axial symmetry exists. Examples include a cylinder, 

a disc, a curved beam and a large thin plate containing a circular hole.[8] 

In two dimensions, the Cartesian coordinates (x, y) specify the 

location of a point P in the plane. Another two-dimensional 

coordinate system is polar coordinates. Instead of using the signed 

distances along the two coordinate axes, polar coordinates specify 

the location of a point P in the plane by its distance r from the 

origin and the angle θ made between the line segment from the 

origin to P and the positive x-axis [9] 

Figure 2.9 Polar Coordinats 

https://mathinsight.org/cartesian_coordinates
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We will begin by considering the state of stress on an infinitesimal element of unit thickness 

described by the polar coordinates as shown in figure (3.11).  Resolving the forces in the r-

direction, we have for equilibrium: 

 

Figure 2.10 Stress components in polar coordinates 

 

( )

( )

( )

0

sin sin
2 2

cos cos
2 2

0

rrF dr r dr d r d
rr rrr

d d
dx dr dr

d dr d dr dr
r r


   

  
 

   
 

 
= = + + −  

 
 

 
− + −   

 
+ + − 

 
 

=

 

(3.12) 

For small element,  𝐬𝐢𝐧 (
𝐝𝛉

𝟐
) =

𝐝𝛉

𝟐
  ;   𝐜𝐨𝐬 (

𝐝𝛉

𝟐
) = 𝟏  and so, dividing through by dr dθ 

we get 

 ( ) 0
2

d rrr r dr
rrr

     
  

  
+ + − − + = 

  
 

 
(3.13) 

In the limit as (dr, dθ) → 0, Then we do the same method for the tangential direction we get: 

 ( )
1 1

0rr
rrr

r r r



  



+ + − =

 

 (3.14) 

 
21

0r r

r r r

  
  



 
+ + =

 
 (3.15) 
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2.2.3 Spherical coordinate system 

Spherical coordinates can be a little challenging to understand at first. Spherical coordinates 

determine the position of a point in three-dimensional space based on the distance R from the 

origin and two angles θ and ϕ. If one is familiar with polar coordinates, then the angle ϕ isn't 

too difficult to understand as it is essentially the same as the angle θ from polar coordinates.[9] 

 

Figure 2.11 Stress components in spherical coordinates 

We now wish to repeat the development of equilibrium equations for the spherical coordinate 

system, the stress components in spherical coordinates are defined on the differential element 

illustrated in figure (3.12), and we do the same steps as before we start by equilibrium law of 

Newton and simplifying the equations like we did in the cylindrical system and we get the 

following equations : 

 

 

( )

( )

1 1 1
0 2 cot 0

sin

1 1 1
0 ( ) cot 3 0

sin

1 1 1
0 3 2 cot 0

sin

rrrrF
r rr r

r r r r

r
F

rr r r r

r
F

r
r r r r


     

    

 
 

   
     

  
  

  
    


= + + + − − + =

  

 

 = + + + − + =
  

  

= + + + + =
  

 
 

 (3.16

) 

 

https://mathinsight.org/polar_coordinates
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2.3 The application of coordinate systems in stress calculation in the tank 

to calculate the stress in the tank we have to model it, so we choose SolidWorks to model it 

 

1.4.2 Cylindrical face 

To calculate the stresses in the cylindrical wall of the tank we consider it as a thick-walled 

cylinder subjected to internal load (pressure) then we simplify it, because we have an 

axisymmetric plan, it is convenient to express these problem in terms of the cylindrical 

coordinates, but because of symmetry the stress components are independent of the angular 

(𝜃) coordinate, so, all derivatives with respect to vanish and the components 𝜎𝑧𝑧 , 𝜏𝑟𝜃,    𝜏𝜃𝑧  are 

zero, and we neglect the body forces, then the equation will be: 

Figure 2.12 Tank model in SolidWorks 
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The next figure show the analytic model we choose to study which represent an axisymmetric 

plan and that’s simplify the calculation  

 

Figure 2.13 Axi-symmetric plane 

So after applying all the simplification to the equation (3.11), it reduces to: 

 0
rr

rrr
r




 


+ − =


 (3.17) 

Since ( r ) is the only independent variable, the above equation can be written as 

 

0

( ) 0

rr
rr

r

r
r

d
r

dr






 

 


+ − =



− =

 
(3.18) 

For tow-dimensional state of stresses and strains the Hooks law will be: 

 ( ) ( )
1 1

,r rr
E E

 
       = − = −  (3.19) 

Also  

 ,
r

du u

dr r


 = =  (3.20) 

The stresses in terms of strains are 

 ( )
( )

( )
( )

2 2
,

1 1
r rr

E E
 

       
 

= − = −
− −

 
(3.21) 

 

Substituting the values of and in the above expressions, we get  



K. Sami  Chapter 2 

 

19 

 

 
( ) ( )2 21 1

r

du u u duE E

dr r r dr
   

 

   
= − = −   

− −   

 
(3.22) 

 

Substituting these in the equilibrium Eq., then 

 
( ) ( )2 2

0
1 1

E du u u dud E
r

dr r r drdr
 

 

    
− − − =      − −   

 
(3.23) 

 

Dividing by  

( )21

E

−
 it will be: 

 

0
du u u dud

r
dr r r drdr

 
    

− − − =    
    

 

2

2

0
du d u du u du

r
dr dr r drdr

 + + − − =  

(3.24) 

 

Canceling the opposite terms and dividing by r will be: 

 
2 2

2 1
0

d u du u

r drdr r
+ − =  (3.25) 

 

The above equation is called equidimensional equation in radial displacement. 

The solution of the above equation is  

 

2
1

1 2 2

1

C
U C r

r
du

C C
dr r

= +

= −

 
(3.26) 

 

Where C1 and C2 are constants. 
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The radial and tangential stresses are written in terms of constants of integration C1 and C2 

Therefore, 

 

( )

( )

( )
( )

2

2
1 2 12 22

1 2 22

1

1

1

1
1

1

r

r

du uE

dr r

CE
C C C

r r

E
C C

r

 


 



 



 
= + 

−  

 
= − + + 

−  

 −  
= + −   

 −  

 

(3.27) 

 

With the same way we do to second equation: 

 
( )

( )1 2 22

1
1

1

E
C C

r


 



 −  
= + −   

 −  

 
(3.28) 

 

The constants are determined from the boundary conditions. When: 

 

 

Substituting this conditions in the following: 

 

 

( )
( )

( )
( )

1 2 22
1

1 2 22
2

1
1

1

1
1 0

1

E
C C g z

r R

E
C C

R


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


 
 

  −
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  −
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(3.29) 

 

If we devise both of the equations by 
𝐸

(1−𝑣2)
 we get: 
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2
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r in
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r R p g z

r R

 



=  = − =

=  =
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( )
( )

( )

2

21 2
1

21 2
2

11
1

1
1 0

C C g z
R E

C C
R


 




−− 
+ − = − 

 

− 
+ − = 

 

 
(3.29.1) 

After that we subtract the second equation from the first we get: 

 

 

( )2

2 22 2
1 2

11 1
C C g z

R R E

 


−− −   
− + = −   

   

 (3.29.2) 

Then we multiply by (-1) for each side of the eq. (3.29), and take  𝑪𝟐(𝟏 − 𝒗) as a common 

factor we get: 

 

 
( )

( )2

2 22
1 2

11 1
1C g z

R R E


 

− 
− − = 

 

 (3.29.3) 

If we simplify the formula and make  (𝟏 − 𝒗𝟐) = (𝟏 − 𝒗)(𝟏 + 𝒗), we get: 

 

 
( )

( )( )2 2
2 1

2 22
1 2

1 1
1

R R
C g z

R R E

 
 

 − − +
− =  

 

 
(3.29.4) 

And if we cancel the term (1 − 𝑣) from the equation and organize the formula we get: 

 

 

( ) 2 2
1 2

2 22
2 1

1 R R g z
C

R RE

  +
=   − 

 
(3.29.5) 

Then we can find C1 and C2 

 
( )

( )

2
1

2 2
2 1

1

1

R g z
C

E R R

  −
=  

 −
 

 
(3.30) 

Substituting C1 and C2 in Eq. (3.29). We get [10] 

 
( ) ( )

2 22 2
2 21 1
2 22 2 2 2

2 1 2 1

1 1
R RR g z R g z

r r rR R R R

 
 



   
= − = +      − −   

 
(3.31) 

to have a good understanding for the equation, we show the plot of it: [10] 
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2.3.1 Flat Bottom 

We can model the bottom of the tank by a Circular plate under a uniform load (q) which 

represent the hydrostatic pressure duo to the liquid in the tank. 

 

Figure 2.15  uniform  load on circular plate 

If we restrict the model with some assumption, we can actually make a better solution for the 

problem and that’s done by the following assumption: 

• The mid-plane is a “neutral plane”:  

• The middle plane of the plate remains free of in-plane stress/strain. Bending of the plate 

will cause material above and below this mid-plane to deform in-plane 

as shown in the figure 

Figure 2.14 Plot of radial stress and tangential stress 

Figure 2.16 A plate under lateral load 
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• Line elements remain normal to the mid-plane  

Line elements lying perpendicular to the middle surface of the plate remain perpendicular to 

the middle surface during deformation, this is similar the “plane sections remain plane” 

assumption of the beam theory.  

• Vertical strain is ignored  

Line elements lying perpendicular to the mid-surface do not change length during deformation, 

so that  𝜺𝒛𝒛 = 𝟎 throughout the plate. Again, this is similar to an assumption of the beam theory. 

These three assumptions are the basis of the Classical Plate Theory or the Kirchhoff Plate 

Theory. The second assumption can be relaxed to develop a more exact theory. [11] 

 

2.3.1.1 Plat theory 

Plates subjected only to in-plane loading can be solved using two-dimensional plane stress 

theory on the other hand, plate theory is concerned mainly with lateral loading, one of the 

differences between plane stress and plate theory is that in the plate theory the stress 

components are allowed to vary through the thickness of the plate, so that there can be 

bending moments In-plane normal forces and bending moments are: 

 

Figure 2.17   in-plane normal forces and bending moments 
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(3.32) 
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In-plane shear force and twisting moment, figure (3.19): 

 

 

2 2

2 2

h h

xy xyxy xy
h h

N dz M z dz 

+ +

− −

= = 
 (3.33) 

 

In classical plate theory the strains will be [11] 

 

2 2 2

2 2
, ,

xx yy xy

w w w
z z z

x yx y
  

  
=− =− =−

  
 (3.34) 

 

2.3.1.2 Stresses and the Curvatures in a linear Elastic Plate: 

From Hooke’s law, taking 𝜎𝑧𝑧 = 0 

 
1 1 1 1 1

, ,
xx xx yy yy yy xx xy xy

E E E E E


       

+
= − = − =

 
(3.35) 

 

So from (3.34), and solving (3.35) for the normal stresses 
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  
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  
=− + 

  −


=−

−  

 

(3.36) 

2.3.1.3 The moment-Curvature Equations 

 

Figure 2.18  in-plane shear force and twisting moment 
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 ( )
2 2 2 2 2

2 2 2 2
, , 1

w w w w w
M D M D M D

x y xyx y y x x y


       
= + = + =− +              

 
(3.37) 

Where  

   D=
𝑬 𝒉𝟐

𝟏𝟐 (𝟏−𝝂𝟐)
 (3.38) 

 

The factor D is called the plate stiffness or flexural rigidity and plays the same role in the 

plate theory as does the flexural rigidity term EI in the beam theory. 

Now this is similar to the beam formula 𝝈 = −
𝑴

𝑰
𝒚 the stresses in the plate will be: 

 3 3 3

12 12 12

, ,y xyx
xx yy xy

h h h

M MM
z z z  = − = − =  

(3.39) 

 

2.3.1.4 Deflection of a Circular plate under a uniform lateral load 

A circular plate with boundary 

 
2 2 2x y a+ =  (3.40) 

 

Welded at its edges and subjected to a uniform lateral load P  

 

Figure 2.19  circular plate subjected to a uniform lateral load 

 

The differential equation for the problem is given by: 

 

4 4 4

4 2 2 4
2

w w w q

Dx x y y

  
+ + = −

   
 (3.41) 
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This equation is called the equation of Sophie Germain after the French investigator who first 

obtained in 1815 [11]. This partial differential equation is solved subject to the boundary 

conditions of the problem. 

The boundary conditions are that the slope and deflection are zero ate the boundary, along   𝑥2 +

𝑦2 = 𝑎2 

 0, 0, 0
w w

w
x y

 
= = =

 
 (3.42) 

It will be shown that the deflection  

 2 2 2 2( )w c x y a= + −  (3.43) 

 

Is a solution to the problem. First, this function certainly satisfies (). Further, letting  

 2 2 2( , )f x y x y a= + −  (3.45) 

The relevant partial derivatives are  
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x x y y

 
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 

  
= + = = +
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   
= = = =

     
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   

 

(3.46

) 

Substituting these into the differential equation (3.41), yields to: 

 
64

q
c

D
= −  

(3.47) 

So, the deflection is  

 ( )
2

2 2 2

64

q
w x y a

D
=− + +  

(3.48) 

The maximum deflection occurs at the plate center, where 
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4

max
64

q a
W

D
=−  

(3.49) 

 

The moments occurring in the plate are, from the moment-curvature equations ( ) and ( ) 

 

 

( ) ( ) ( )

( ) ( ) ( )

( )

2 2 2

2 2 2

3 3 1 1
16

3 3 1 1
16

1
16

q
M x y a

x

q
M x y a

y

q
M x y

xy

  

  



 =− + + + − +
 

 =− + + + − +
 

= +

 
(3.50) 

1.4.2.1 Stress in the Plate 

From (3.50), (3.39), the stresses in the plate will be: 

 

( ) ( ) ( )

( ) ( ) ( )

( )

2 2 2

3

2 2 2

3

3

2

2

3
3 3 1 1

4

3
3 3 1 1

4

3
1

2

2
3

1
4

2
3

1
4

h

h

q z
x y a

x h

q z
x y a

y h

q z
x y

xy h

q z z
zx h

q z z
zy h

   

   

 





 = − + + + − +
 

 =− + + + − +
 

= +

 
 

 = −  
  

 

 
 

 = −  
  

 

 

(3.51) 

 

Converting to polar coordinates (r, θ) through 

 cos , sinx r y r = =  (3.52) 

And using a stress transformation [11],  

 

( )

2 2cos sin sin 2

2 2cos sin sin 2

cos sin cos2

rr xx yy xy

xx yy xy

r yy xx xy





      

      

      

= + +

= + −

= − +

 
(3.53) 
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Leads to the axisymmetric stress field: 

 

( ) ( )

( ) ( )

2 2

3

2 2

3

3
3 1

4

3
3 1 1

4

0

rr

r

q z
r a

h

q z
r a

h




  

  



 = + − +
 

 = + − +
 

=

 (3.54) 

 

Where:  q:  lateral pressure 

  z:  perpendicular distance from the neutral plan to a point away from it. 

  h:  the thickness of the plate 

 

At the center of the plate  

 ( )
2

2

3

3
1

4
rr

q z a
a

h
  = = +  (3.55) 

At the edge of the plate r = a,  

 

2 2

3 3

3 3
,

2 2
rr

q z a q z a

h h


  = =  (3.56) 

The maximum stress in the plate is  

 ( )
2

2

3
,

4
h

rr rr

aq
a

h
 

 
= =  

 

 (3.57) 

 

2.3.2 Hemisphere Bottom 

A sphere is a very strong structure and this make it the best shape of a pressure vessel. but a 

spherical shape is tough to manufacture, therefore more expensive. The even distribution of 

stresses on the sphere's surfaces, both internally and externally, generally means that there are 

no weak points. Spheres however, are much more costly to manufacture than cylindrical vessels. 

[12] 

So, we want to analyze this shape which is a spherically symmetric, and determine the stress 

formula of it in every point of the hemisphere as shown in fig. (3.21) 
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Figure 2.20 Hemispheric bottom of the tank 

We return to the equation (3.16) and simplify it, because we have an axisymmetric case where: 

 ( ), 0
r

u u r u u
 

= = =  (3.57.1) 

We use this relationship between strain and displacement, form Appendix of the book [5]  

 

1 1
, , sin cos

sin

1 1

2

1 1
cot

2 sin

1 1

2 sin

r
r rr

r
r

r
r

u uu
u u u

r r r

u uu

r r r

u u
u

r

u uu

r r r

 
 

 


 
 

 


    
 




 
  


 

   
= = + = + +       

 
= + − 

  

 
= + − 

  

 
= + − 

  

 

(3.58) 

Substitute the eq. (3.57.1) in (3.58) 

 , , 0r r
r r r

u u

r r
    

     
= = =


= = =  (3.59) 

We know that hook’s law in spherical coordinates is: 

 

( ) 2

( ) 2

( ) 2

2

2

2

r r r

r

r

r r

r r

 

   

   

 

 

 

     

     

     

  

  

  

= + + +

= + + +

= + + +

=

=

=

 
(3.60) 

Then we substitute the equation (3.59) in (3.60) and we get: 
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( )2 2 2

2 (2 2 )

0

r r r r
r

r r r r r r

r r

u uu u u ur r
r r r r r r

u u u u u u

r r r r r r
 

  

     

      

  

             
= + + + = + +                            

              
= = + + + = + +                         

= = =

 

(3.61) 

If we substitute this equation in eq. (3.16) we get: 

 ( )
2

0rr
rr

r r



 


+ =


−  (3.62) 

Replacing (𝝈𝒓𝒓, 𝝈𝜽𝜽) with their form we get 

 

( )

( )

( )

2

2 2

2

2 2

2 2

1
2 2

1
2 2 2

r r

r r r

r r r

u urr
r rr r

u u u

r rr r

u u u

r rr r


  

  

   

      
= + +          

  
= + + − 

  

 
= + + −



 

(3.63) 

Substitute (3.63) in (3.62), we get: 

 

( )

( )

2
1

2 2 2
2 2

2
2 2 (2 2 ) 0

u u u
r r r

r rr r

u u u u
r r r r

r r r rr

   

     

  
 + + − +
 
  

          
+ + − + + =                         

 

(3.64) 

 ( )
( )

2

2 2 22

22 2 2 4 (2 2 )
2 2 2 0r

r

u ur u
r r r r r rrr

      
 

 +  + 
+ + + − + − + + =      

 
(3.65) 

After simplification and dividing by ( )2 + , and because we have only one variable (r) 

we can change the partial derivative to ordinary one, and we get: 

 

2

2 2

2 2
0r r

r

d u du
u

r drdr r
+ − =  (3.66) 

The equation (9) is second order deferential equation the form of the solution is:  
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 2
1 2

C
u C r

r
= +  (3.67) 

So, if we substitute this equation into eq. (3.61) we get: 

 2 2
1 13 3

2
,

r

K K
K K

R R
 

  = − = = +  (3.68) 

Where: 

 
( )

1 1 2 2

2 1
, 2

1 2
K C K C

 




+
= =

−

 
(3.69) 

To find the formula of stress we consider that the spherical shell is subjected to an internal 

pressure P1 and external pressure P2, and applying the boundary Conditions we get: 

 ( ) ( )1 21 2
,

r r
r P r P = − = −  (3.70) 

And if we substitute this in the equation (3.68), we get:  

 
( )

( )

3 33 3
1 2 1 21 1 2 2

1 23 3 3 3
2 1 2 1

,
2

P P R RP R P R
K K

R R R R

−−
= =

− −
 (3.71) 

And the stresses become:   

 

( )

( )
( )

( )

3 33 3
1 2 1 21 1 2 2

3 3 33 3
2 1 2 1

3 33 3
1 2 1 21 1 2 2

3 3 33 3
2 1 2 1

1

1

2

r

P P R RP R P R

R R rr r

P P R RP R P R

R R rR R
 



 

−−
= −

− −

−−
= = +

− −

 

(3.72) 

For our case we have 𝑷𝟏 = 𝑷   and 𝑷𝟐 = 𝟎, then the equation (3.72) will be: 

 

33
21 1
33 3

2 1

3 3
1 1 2

3 3 3
2 1

1

1
2

r

RP R

rR R

P R R

R R r
 



 

 
= − 

−   

 
= = + 

−  

 

(3.73) 



K. Sami  Chapter 2 

 

32 

 

2.4 Numerical application for the Tank 

Our objective in this section is to apply the equation that we developpe in the previous 

sections. So, We chose for this purpose a 2 tank of the following form: 

 

Figure 2.21dimension of the liquid in the tank 

2.4.1 Assumptions 

2.4.1.1 A Flat bottom cylindrical tank 

We want to contain a volume of 187 m3 of diesel gasoline, which has the following 

characteristics 

 

For our tank we choose the initial dimension to contain this volume which is: 

• Diameter: 5m 

• Fill depth: 9.5m 

• High: 10m 

3.4.1.2 Hemispheric bottom cylindrical tank 

For this tank we choose the same dimension except we add the hemispheric volume and for 

this the initial dimension will be as following: 

• Diameter: 5m 

• Fill depth: f = 9.5m plus hemispheric volume 

• High: h=10m plus 2.5m 
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We choose the material to be stainless steel which have the following characteristics: [12] 

And assume the following point in the properties of the material to be: 

• Homogenous 

• Isotropy 

• No crack 

2.4.2 Cylindrical wall 

Cylinders are widely used for storage due to their being less 

expensive to produce than spheres. However, cylinders are 

not as strong as spheres due to the weak point at each end. 

This weakness is reduced by hemispherical or rounded ends 

being fitted. If the whole cylinder is manufactured from 

thicker material than a comparable spherical vessel of 

similar capacity, storage pressure can be similar to that of a 

sphere. 

To analyze the stresses in the cylindrical face in the tank we 

model it as shown in figure (2.23).  Then we calculate the 

hydrostatic pressure, applying the of hydrostatics.  

( ) 812*9.81*9.5 75674.34P z g Paz= = =  

And then using the equations (3.31), we do the iterative calculation with Excel   

( ) ( )

2 22 2

2 22 2 2 2
2 1 2 1

1 , 1
b ba g z a g z

r r rR R R R

 
 



   
= − = +      − −   

 

To calculate the require thickness (e) of the cylindrical face we must change the form of the 

equation, to represent the thickness e in  the formula, by changing the form of (𝑹𝟐
𝟐 − 𝑹𝟏

𝟐) 

by: 

𝑹𝟐
𝟐 − 𝑹𝟏

𝟐 = (𝑹𝟐 − 𝑹𝟏)(𝑹𝟐 + 𝑹𝟏) = 𝒆 (𝑹𝟐 + 𝑹𝟏) 

Table 2-1 Stainless steel characteristics 

Figure 2.22 cylindrical wall under 

hydrostatic pressure 
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Where e: the thickness of the tank. So, the form of the eq. (3.31) will be:  

 
( ) ( )

2 22 2

2 2
2 1 2 1

1 , 1
b ba g z a g z

r r re R R e R R

 
 



   
= − = +      + +   

 
(1) 

From the figure (), we know that the maximum stresses are in the point (r =a) and by 

substitute this in the equation () we get   

 ( ) ( )
( )1 2

max max
,r

R R
g z g z

e
   

+
= =  (2) 

 𝝈𝒓𝒎𝒂𝒙
= 𝝆𝒈𝒛,   𝝈𝜽𝒎𝒂𝒙

=
𝑹𝟐 + 𝑹𝟏

𝒆
𝝆𝒈𝒛 ≈

𝟐𝑹𝟏

𝒆
𝝆𝒈𝒛, 𝝈𝒛 = 𝟎 (3) 

 

VON Mises yield criterion takes the form: 

( ) ( ) ( )

( )

2 2 2

2 2 2

1

2

1

2

von r r z z

r r

 

 

      

   

 = − + − + −
 

 = − + +
 

 

 

 𝝈𝒗𝒐𝒏 = √
𝟏

𝟐
[(𝝈𝒓 − 𝝈𝜽)𝟐 + (𝝈𝒓 − 𝝈𝒛)𝟐 + (𝝈𝜽 − 𝝈𝒛)𝟐] = √

𝟏

𝟐
[(𝝈𝒓 − 𝝈𝜽)𝟐 + 𝝈𝒓

𝟐 + 𝝈𝜽
𝟐] (4) 

 𝝈𝒗𝒐𝒏 = √
𝟏

𝟐
[(𝝈𝒓 − 𝝈𝜽)𝟐 + 𝝈𝒓

𝟐 + 𝝈𝜽
𝟐] ≤ 𝑹𝒆 (5) 

 
the thickness e of the reservoir is given by the solution of this inequality:  

 (
2𝑅1

𝑒
)

2

−
2𝑅1

𝑒
+ 1 ≤ (

𝑅𝑒

𝜌𝑔𝑧
)

2

 (6) 

We have to organize it with the following steps: 

 

 (
2𝑅1

𝑒
)

2

−
2𝑅1

𝑒
+ 1 ≤ (

𝑅𝑒

𝜌𝑔𝑧
)

2

 (7) 
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2.4.3 Hemispherical bottom: 

for the hemispherical tank calculate the pressure is distribute 

nonlinearly at every point in the curve (a b), we know that this curve is 

a form of quad circular which has the formula of the form: 

1
siny r =  

 

1

( )

( ) sin

y
P z g z P

P z g z g r



  

= +

= +
 (8) 

Using Excel, we calculate the pressure at every point in the curve (a b) 

 

 

 

 

 

 

And we calculate the stresses using the previous eq. (3.73), and we have 

from the previous table that P(max) = 95588.64 Pa 

3 33 3
2 21 1 1 1
3 33 3 3 3

2 1 2 1

1 , 1
2r

R RP R P R

r rR R R R
 

  
   

= − = = +   
− −      

 

As we mention before the maximum stress is when r = R1 and if substitute that in the eq. (), 

and change the form on (𝑹𝟐
𝟑 − 𝑹𝟏

𝟑) with the following: 

𝑹𝟐
𝟑 − 𝑹𝟏

𝟑 = (𝑹𝟐 − 𝑹𝟏)(𝑹𝟐
𝟐 + 𝑹𝟏𝑹𝟐 + 𝑹𝟏

𝟐) ≈ 𝟑𝒆 𝑹𝟏
𝟐
 

And the eq. () will be: 

Θ      (°) Y      (m) P(y)     (Pa) 

0 0 75674.34 

10 0.434120081 79132.41901 

20 0.855049666 82485.42622 

30 1.249999042 85631.48237 

40 1.606967895 88474.9963 

50 1.915109923 90929.56942 

60 2.165062404 92920.62089 

70 2.34923067 94387.65373 

80 2.462018871 95286.09296 

90 2.5 95588.64 

 

3 33 3
2 2max 1 max 1
3 32 2

1 11 1

1 , 1
23 3

r

R RP R P R

R Re R e R
 

  
   

= − = = +   
      

 
(9) 
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3 Simulation with SolidWorks 

SOLIDWORKS® Simulation is an easy-to-use portfolio of structural analysis tools that use 

Finite Element Analysis (FEA) to predict a product’s real-world physical behavior by virtually 

testing CAD models. The portfolio provides linear, non-linear static and dynamic analysis 

capabilities. 

And to do a simulation with it with the following of this steps 

3.1 CAD Model 

3.1.1 Cylindrical wall 

To simulate the cylindrical wall, we start with sketching it’s geometry in front plan, and we 

apply revolve feature in features tab as shown in figure (): 

  

Figure 3.1 Sketch of the tank model 

    After that we start a new stady in stady advisor, and we choose 

static stady, the simulationn menu shown up fig. (4.2), the first thing 

is applying material to cylindrical tank and sins in solidworks material 

library don’t have stainless stell 304. We choose a closly material 

which is alloy steel, then we select the fixture for our model we choose a  

fixed fixture on the bottom of the cylindre, then we 

apply the external loads which is pressure load varie 

linierly in the direction of (y), but we must ser a 

coordinate system as a reference, cause the pressure 

load need a reference coordinate to start the 

distribution of the loas, and that’s shown in the fig. (4.5): 

Figure 3.3 Type 

of simulation 

menu 

Figure 3.2 fixed fixture 
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Figure 3.5 Ceating a reference point in the model 

We must select the following option to activate the nonuniform distribution fig. (4.6), so after 

applying the previous steps we get the following model fig. (4.7), which represent the 

distribution of pressure act on the internal surface and represent the fixture chosen for this model  

Figure 3.4 Simulation menu 
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Figure 3.7 Applying distributed load and fixture 

Then we run the run the simulation, and getting the following results: 

Figure 3.6 Non-uniform distribution option 



K. Sami  Chapter 2 

 

40 

 

 

Figure 3.8 the results of simulation 

If we examine the fig. (4.8) we that the stress distribution is linearly with depth, and this duo 

to hydrostatic forces, and we see that the maximum stress is in the bottom of the tank and the 

value of it is 1,009 .1010 Pa. and this value is under Von Mises method. The bottom of tank is 

a critical point cause the maximum stresses located in it and the displacement to.  

So, for the designer of this type of tank made a great attention in that zone and this prevent a 

large deformation in the bottom and minimize the failure in the foundation of the tank. 

3.1.2 Flat Bottom analysis 

For the bottom plate of the tank we follow the same steps we do the previous model, we 

preper the CAD model which is a simple circul represent the bottom of the tank with a 

diametre of 5.2 m  

 

Figure 3.9 CAD model for the bottom of the tank 
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Material Properties 

Model Reference Properties Components 

 

Name: Alloy Steel (SS) 

Model type: Linear Elastic Isotropic 

Default failure criterion: Unknown 

Yield strength: 6.20422e+008 N/m^2 

Tensile strength: 7.23826e+008 N/m^2 

Elastic modulus: 2.1e+011 N/m^2 

Poisson's ratio: 0.28   

Mass density: 7700 kg/m^3 

Shear modulus: 7.9e+010 N/m^2 

Thermal expansion 

coefficient: 

1.3e-005 /Kelvin 

 

SolidBody 1(Split 

Line1)(3_flat bottom) 

Curve Data:N/A 

 

 

Affter selecting the material we apply the load and the fixtures in the model we choose the 

type of it as we do to the previous model as shown in the following fig. 

 

Figure 4.10 load and fixture conditions 
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Mesh properties 

Total Nodes 14493 

Total Elements 7129 

Maximum Aspect Ratio 7.1252 

% of elements with Aspect Ratio < 3 93.6 

% of elements with Aspect Ratio > 10 0 

% of distorted elements(Jacobian) 0 

Time to complete mesh(hh;mm;ss):  00:00:02 

Computer name:  SAMI 

 

 

And after the meshing we run 

the simulation and we get the 

following results as shown in 

fig. (4.11), the results is under 

Von Mises method and that 

the maximum stress in the 

plate is 1,223 .108 Pa and this 

is in the boundary of the 

circular plat 

 

 

Figure 0.11 Results of simulation 



K. Sami  Chapter 2 

 

43 

 

3.5 Conclusion  

In this brief simulation we understand that the tanks have a 2 critical zone that make it easy to 

fail duo the huge amount of stresses 

• The bottom of the cylindrical wall 

• The boundary of the plate  

and if know that we can make a good solution to avoid that that’s why the designer change the 

shape of the plat to spherical one or conical, and that’s a better solution to avoid the excessive 

stress in the bottom of tank. 
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The need for a good design of a cylindrical tank require a good study of its shape and 

better understanding how the stresses are distribute in it and to achieve such results require a 

good understanding of the behavior of a material. 

in this work we find that it’s a superb method to develop the equilibrium equations in different 

coordinate systems which make it an easy way to find the distribution of the stresses in 

complex geometry such we study it.  

in our research we find a critical point in the tank that make a huge amount of  stresses in the 

tank which make great possibility for a failure of the flat bottom tank, and that’s lead us to the 

hemispherical bottom which have a better performance in distribution of the stress because of 

its geometry, and that’s make it a good choice in industries. And we prof that critical points in 

a simulation by solidWorks. 
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