

التبســـــي – تــــبســــي – التبســــي – تــــبســـــــي – Université Larbi tébessi – Tébessa –

Faculté des Sciences et de la Technologie

Département de Génie Mécanique

MEMOIRE

Présenté pour l'obtention du diplôme de Master Académique

En : Génie Mécanique

Spécialité : Construction Mécanique

Par : Abderrahmane BOURAS

Sujet

Etude de la propagation des fissures dans les plaques trouées

Présenté et soutenu publiquement, le 22 / 06 / 2021 , devant le jury composé de :

Ms. BELGAHALEM ElhadjMCAMs. HADJAB AbdelhakimMAAMs. DEGHBOUDJ SamirMCA

Président Rapporteur Examinateur 1

Promotion : 2021/2022

نتعلق هذه الدراسة بشكل أساسى بظاهرة تكثيف الضغط في صفيحة مثقبة تخضع لضغوط الشد في هذه الدراسة أخذنا في الاعتبار طريقة تحليلية لتقييم حالة الإجهاد في المنطقة المجاورة وبعيدًا عن الحفرة الطريقة الثانية هي الطريقة العددية على أساس المحاكاة تم إعداد نموذج رقمي يجعل من الممكن تحديد عامل كثافة الإجهاد باستخدام برنامج ANSYS Workbench كما درسنا في هذه الدراسة تأثير تغير قطر الدائرة في منتصف اللوحة المستطيلة على قيمة هذه المعلمة .

Résumé

Cette étude concerne principalement le phénomène d'intensification des contraintes dans une plaque perforée soumise à des contraintes de traction. Dans cette etude nous avons pris en compte une méthode analytique pour évaluer l'état de contraintes au voisinage et au loin du trou. La seconde méthode est numérique basée sur des simulations. Un modèle numérique a été mis en place qui permet de déterminer le facteur de densité de contraintes. à l'aide du logiciel ANSYS Workbench.

Nous avons également examiné dans cette étude l'effet de la variation du diamètre du cercle au milieu de la plaque rectangulaire sur la valeur de ce paramètre.

Summary

This study mainly concerns the phenomenon of stress intensification in a perforated plate subjected to tensile stresses. In this study we took into account an analytical method to evaluate the stress state in the vicinity and far from the hole. The second method is numerical based on simulations. A numerical model was set up which makes it possible to determine the stress density factor. using ANSYS Workbench software. We also examined in this study the effect of the variation of the diameter of the circle in the middle of the rectangular plate on the value of this parameter.

Remerciement

Tout d'abord je tiens à remercier le bon Dieu tout puissant de m'avoir donné assez de courage, de patience et de persévérance pour accomplir ce modeste travail.

Il m'est très difficile d'exprimer en ces quelques lignes toute ma gratitude et reconnaissance à Mr docteur Hadjab Abdelhakim, Maitre des conférences ''A'' à l'université Larbi Tébessi de Tébessa, pour ses conseils, sa disponibilité et son soutien qui furent précieux et son encouragement m'a permis de réaliser ce travail dans les meilleures conditions.

J'aimerais remercier Dr. Deghboudj Samir Maitre des conférences "A" à l'université de Tébessa, qui a accepté de faire partie de ce comité et d'examiner notre travail.

Il nous est aussi très agréable de remercier Dr. Belgahalem Elhadj Maitre des conférences ''A '' à l'université de Tébessa, qui nous a fait l'honneur de présider le jury de notre mémoire.

Le fait que ces lignes et ces mots ne suffiront pas à mentionner toutes les personnes que nous ont soutenues tout au long de notre formation et notre recherche et ont mentionné leur préférence pour nous.

Nous offrons nos remerciements à tous ceux qui ont été privilégiés dans notre éducation et notre soutien formation Les enseignant de Physique de Tébessa.

Bouras Abderrahmane

Sommaire

Introduction générale1
I. Généralités sur l'élasticité plane
I.1. Introduction
I.3.Elasticité plane
I.4. Les deux états plans d'élasticité plane4
I.4.1. Contrainte plane
I.4.2. Déformation Plane
I.5. Fonction d'AIRY
I.5.1 La fonction d'AIRY en coordonnées cartésiennes
I.5.2 Transformation de l'équation $\nabla^4 = 0$ en coordonnées polaires10
I.5.3 Les conditions aux limites11
I.5.4 La fonction d'Airy associée à ce 2 ^e chargement est12
I.6. Détail Expérimentale
I.6.1. Problème spécification
I.7. Etude analytique14
I.7.1. Déplacement
I.7.2. La contrainte radiale σ_r 14
I.7.3. La contrainte σ_0
I.7.4. La contrainte de cisaillement $\tau_{r\Theta}$ 16
I.7.5. La contrainte moyenne : σ_x
I.7.5.1. La contrainte nominale : σ_{nom}
I.7.5.2. La contrait maximal : σ_{max}
II. Mécanique de la rupture élastique linéaire18

II.1 Concentration de contrainte1	18
II.1.1 Historique1	8
II.1.2 Introduction1	8
II.1.3. Définition de k _t 2	0
II.2. Les modes de propagation des fissures	0
II.3. Concept d'intensité des contraintes2	22
II.4. Calculs analytiques sur les concentrations de contraintes2	22
II.5. Facteur de concentration de contrainte dans un trou elliptique2	23
II.6 Facteur d'intensité de contrainte du 1er mode dans une fissure au bord du trou2	26
II.6.1 Cas de deux fissures	6
II.6.2 Cas d'une seule fissure	26
Simulation de la traction d'une plaque à trou centrale avec ANSYS Workbench2	28
Simulation de la fracture dans une plaque trouée	8
Conclusion générale	58

Introduction générale

De nombreux composants en acier avec des trous de différents formes sont généralement utilisés dans diverses structures d'ingénie.

En particulier, la plaque rectangulaire à trou trouve son application dans l'automobile, l'aérospatiale mécanique. En développant de telle pièces, il est impossible d'éviter la présence de trou qui réduit la résistance mécanique des composants conduisant à la rupture de la structure sous la charge de service.

Par conséquent, il est essentiel d'étudier l'état de contrainte autour des trous pour la sécurité et d'analyser la capacité de charge de ces structures.

De nombreuses études [1 - 2] sont présentées sur la concentration de contraintes des plaques composites orthotropes et stratifiées avec des trous de différents types de géométries.

La concentration de contrainte autour d'un trou circuler pour une plaque composite stratifiée a été considérée par KO.W.[3]

La concentration de contraintes est un problème souvent rencontré dans la conception mécanique d'un composant ou d'un organe mécanique. C'est un phénomène d'augmentation locale des contraintes dans une zone comportant une modification géométrique de la pièce [4]. Il apparaît dans une discontinuité de la pièce ou d'une structure avec la présence d'une entaille, après l'usinage par exemple. La zone de concentration de contraintes est souvent le site d'amorçage des fissures de fatigue mais peut être aussi l'origine d'une rupture brutale dans le cas d'un matériau fragile [4]. En 1898, G. Kirsh a été le premier à mettre en évidence le phénomène de concentration de contraintes, cela été pour un problème de détermination des contraintes autour d'un trou [5-6]. Par la suite des solutions analytiques ont été progressivement trouvées et proposés par différents auteurs pour des structures qui présentent des géométries de plus en plus complexes [7]. De nos jours des méthodes de calcul et principalement la méthode des éléments finis continuent à être utilisés pour calculer les coefficients de concentration des contraintes dans des cas pratiques pour différents configurations de structures présentant des singularités (variation brusques de forme). L'emploi de logiciel spécifique basé sur la méthode des éléments finis, utilisant des techniques modernes telles que la génération de maillage automatique et son raffinement ont permis des améliorations considérables dans les précisions de ses calculs [5]. De ce fait notre étude à fixer pour objectif de montrer que la présence de trous, conduit à un affaiblissement

de la structure en raison de sur contrainte locale, appelée concentrations de contrainte. Le cas de la traction d'une plaque 2D percée d'un trou circulaire est traité et analysé analytiquement et numériquement par des simulations numériques utilisant les codes de calcul ANSYS et SOLIDWORKS

Notre travail est répartie sur quatre chapitres, le premier chapitre est une généralité sur l'élasticité plane. Le deuxième chapitre fait l'objet d'une recherche bibliographique sur la mécanique de la rupture. Le troisième est consacré au calcul des contraintes au voisinage du trou et le facteur d'intensité de contrainte dans la zone de concentration de contraintes et dans la fissure. En dernier et 4éme chapitre une simulation numérique sous ANSYS Workbench nous a permis d'évaluer les contraintes, le facteur de concentration de contraintes en fonction du rayon R et la profondeur de la fissure.

I. Généralités sur l'élasticité plane

I.1. Introduction

Lorsque des charges externes sont appliquées aux composants structurels, des forces internes et des déformations sont induites. L'objectif de ce chapitre est de déterminer les contraintes et déformations induites. En effet, l'effet mesuré d'une charge sur un échantillon du matériau dépend de la section transversale. De plus, les changements de longueurs et d'angles sont mesurés par rapport à leurs valeurs initiales ou instantanées. Le but de ce chapitre est de déterminer la réponse des composants structurels aux charges externes, telle qu'elle se manifeste par les contraintes et déformations induites. Les comportements élastiques sont considérés à l'aide des théories de la mécanique des milieux continus. Lorsque les charges sont supprimées, le comportement est élastique si le composant reprend sa forme d'origine.

I.2. Théorie de l'élasticité

La théorie de l'élasticité n'est pas des mathématiques appliquées. La résolution et intégration d'équations différentielles n'est pas l'objectif de la théorie de l'élasticité. Etudiants et jeunes chercheurs, qui peuvent utiliser de logiciels modernes de la méthode des éléments finis (FEM), ils sautent directement de la théorie élémentaire de la résistance des matériaux à FEM sans comprendre les principes de base de la théorie de l'élasticité [1].

Comme il est compréhensible d'après le nom de la science, cela fonctionne avec le domaine élastique des métaux. L'élasticité concerne les contraintes et les déformations dans un corps dues à la charge appliquée, qui peut être mécanique ou thermique, dans ces cas, lorsque le corps reprend sa forme et sa taille d'origine après avoir relâché le chargement [8].

Comparaison avec la mécanique ou la résistance des matériaux, il y a quelques avantages :

1- La théorie de l'élasticité ne fait aucune hypothèse physique

- 2- La théorie d'élasticité développe une solution à partir de :
 - Les lois du mouvement de Newton ;
 - Géométrie euclidienne ;
 - Loi constitutive matérielle (par exemple, loi de Hook);
- 3- Le principe superposition est également autorisée

Figure I.1. Superposition de deux états de contraintes

I.3.Elasticité plane

La recherche de solutions analytiques sur des corps de formes quelconques tridimensionnels Soumis à des chargements quelconques est quasiment impossible. Pour des prés dimensionnements, on peut fréquemment faire des études bidimensionnelles. Ces géométries sont plus faciles à traiter mathématiquement. En pratique il existe deux cas d'élasticité plane, l'état plan de contraintes planes et l'état de déformations planes. Ce chapitre sera consacré à définir les différents concepts de l'élasticité linéaire, on va ainsi présenter les différents cas 2D : déformations planes, contraintes planes, en coordonnées cartésiennes et polaires. Les résultats développés concerneront principalement le problème étudié de concentration de contraintes dans une plaque trouée soumise à un champ de traction.

I.4. Les deux états plans d'élasticité plane

Les équations de la théorie de l'élasticité se simplifient considérablement dans le cas particulier fréquent ou tous les vecteurs contraints sont parallèles à un même plan. Ce cas se rencontre dans deux types de problèmes nettement distincts, que nous allons étudier. La notation indicielle ne présentant aucun avantage dans les problèmes particuliers, nous emploierons la notation des ingénieurs.

I.4.1. Contrainte plane

Le cas le plus connu est celui d'une plaque mince soumise à des forces dans le plan uniformément distribuées sur toute l'épaisseur si une structure est :

- Mince (épaisseur très petite devant les 02 autres).
- Les 02 autres dimensions sont de même grandeur

- Soumise à une charge dans le plan uniformément répartie sur l'épaisseur.
- Le matériau est le même dans toute la structure.

Toute section à l'intérieur de l'épaisseur subit une contrainte plane et les déplacements de tous les points de la structure déformée se trouvent dans des plans appartenant à l'épaisseur de la structure.

Par habitude, on prendra l'axe « z » l'axe de l'épaisseur et les axes « x et y » les axes dans le plan.

Dans ce cas la contrainte est la même dans toutes les sections de l'épaisseur de la structure

Les composantes « u » et « v » des déplacements élastiques sont fonctions uniquement de « x » et « y » et ne dépendent pas de « z ».

Figure I.2. plaque mince soumise à des forces dans le plan uniformément distribuées. Exemple (état de contrainte plane) :

Considérons (figure I.3) un disque mince d'épaisseur constante, sollicité par des forces appliquée sur son contour. Les contraintes σ_{zz} , σ_{zx} et σ_{zy} sont nulles sur les deux faces du disque. Par raison de continuité, elles ne peuvent prendre à l'intérieur du disque que des valeurs très faibles par rapport à σ_{xx} , σ_{yy} et σ_{xy} .

L'on ne commet pas une erreur sensible en affirmant qu'elles sont nulles sur tout plan intérieur parallèle aux faces [9].

Figure I.3.Disque en état plan de contraintes

Pour la même raison, il est certain que les trois composantes non nulles σ_{xx} , σ_{yy} et σ_{xy} ne dépendent pratiquement pas de z, c'est-à-dire qu'elles restent constantes sur toute l'épaisseur du disque. Le tenseur des contraintes n'a que 3 composantes non nulles. La loi de HOOK d'un matériau élastique isotrope montre que la déformation \mathcal{E}_{zz} n'est pas nulle :

$$\sigma = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & 0\\ \sigma_{yx} & \sigma_{yy} & 0\\ 0 & 0 & 0 \end{bmatrix} \mathcal{E} = \begin{bmatrix} \frac{\sigma_{xx} - v\sigma_{yy}}{E} & \frac{\sigma_{xy}}{2G} & 0\\ \frac{\sigma_{xy}}{2G} & \frac{\sigma_{yy} - v\sigma_{xx}}{E} & 0\\ 0 & 0 & \frac{v(\sigma_{xx} + \sigma_{yy})}{E} \end{bmatrix}$$
(I.1)

En inversant les expressions de \mathcal{E}_{xx} et \mathcal{E}_{yy} dans l'équation (2), on obtient :

$$\begin{cases} \sigma_{xx} = \frac{E}{(1-v^2)} \left(\mathcal{E}_{xx} + v\mathcal{E}_{yy} \right) \\ \sigma_{yy} = \frac{E}{(1-v^2)} \left(\mathcal{E}_{yy} + v\mathcal{E}_{xx} \right) \\ \sigma_{zz} = 0 \end{cases}$$
(I.2)

I.4.2. Déformation Plane

Valable généralement pour des structures très étendues suivant une direction (par exemple la direction « z »). Si une structure est :

- De longueur très importante par rapport aux 02 autres dimensions.
- Sollicitée par des forces perpendiculaires aux éléments longitudinaux et ne changent pas le long de la longueur.
- De sections transversales constantes le long de la longueur.
- Le matériau est le même dans toute la structure.

Un solide se trouve en état de déformation plane, s'il existe un repère orthonormé lié au solide par rapport auquel le vecteur déplacement a des composantes de la forme[10] :

$$\overline{P_{o}P} \begin{cases} u = u(x, y, t) \\ v = v(x, y, t) \\ w = C(t) \cdot z \end{cases}$$
(I.3)

Où C(t) désigne une fonction de t donnée

Les composantes du tenseur de déformation sont indépendantes de z :

$$[\varepsilon] \begin{cases} \varepsilon_{x} = \frac{\partial u}{\partial x} \\ \varepsilon_{y} = \frac{\partial v}{\partial y} \\ \varepsilon_{z} = C \end{cases} \qquad \begin{cases} \gamma_{yz} = 0 \\ \gamma_{zx} = 0 \\ \gamma_{xy} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \end{cases}$$
(I.4)

Une seule équation de comptabilité s'écrit :

$$2\frac{\partial^2 \gamma_{xy}}{\partial x \partial y} = \frac{\partial^2 \varepsilon_y}{\partial x^2} + \frac{\partial^2 \varepsilon_x}{\partial y^2}$$
(I.5)

Le tenseur des déformations, purement thermique, est isotrope et s'écrit $[\varepsilon_{th}] = \alpha (T - T_0)[I]$ La loi de Hooke-Duhamel est donnée par les relations :

$$\sigma_{\rm z} = {\rm EC} + v \left(\sigma_{\rm x} + \sigma_{\rm y} \right) - {\rm E}\alpha ({\rm T} - {\rm T}_0) \tag{I.6}$$

Puis :

$$\begin{cases} \varepsilon_{\rm x} = \frac{1+\nu}{E} \left[(1-\nu)\sigma_{\rm x} - \nu\sigma_{\rm y} \right] - \nu C + (1+\nu)\alpha (T-T_0) \\ \varepsilon_{\rm y} = \frac{1+\nu}{E} \left[(1-\nu)\sigma_{\rm y} - \nu\sigma_{\rm x} \right] - \nu C + (1+\nu)\alpha (T-T_0) \\ \gamma_{\rm xy} = \frac{1+\nu}{E} \tau_{\rm xy} \end{cases}$$
(I.7)

Ou encore :

$$\begin{cases} \sigma_{\rm x} = \frac{E}{(1+\nu)(1-2\nu)} \left[(1-\nu)\varepsilon_{\rm x} + \nu(\varepsilon_{\rm y}+{\rm c}) \right] - E\alpha({\rm T}-{\rm T}_{\rm 0}) \\ \sigma_{\rm y} = \frac{E}{(1+\nu)(1-2\nu)} \left[(1-\nu)\varepsilon_{\rm y} + \nu(\varepsilon_{\rm x}+{\rm c}) \right] - E\alpha({\rm T}-{\rm T}_{\rm 0}) \\ \sigma_{\rm z} = \frac{E}{(1+\nu)(1-2\nu)} \left[\nu(\varepsilon_{\rm x}+\varepsilon_{\rm y}) + (1-\nu){\rm C} \right] - \frac{E\alpha}{1-2\nu} ({\rm T}-{\rm T}_{\rm 0}) \\ \tau_{\rm xy} = \frac{E}{1+\nu} \gamma_{\rm xy} \end{cases}$$
(I.8)

Figure I.4.Exemples de structures en déformation plane : tôle en laminage

I.5. Fonction d'AIRY

La satisfaction simultanée des conditions d'équilibres et des équations de compatibilités peuvent êtres simplifiés par l'introduction d'une fonction définie de manière à satisfaire automatiquement ces équations. Bien sûr, il convient de vérifier ensuite les conditions aux limites.

Cela est possible grâce à des fonctions Φ (x, y) pour un cas à deux dimensions. Ce sont généralement des polynômes en fonction de x et a y qui satisfont l'équation $\nabla^4 \Phi = 0$. Ces fonctions sont appelées fonction de la contrainte d'AIRY. En l'honneur au mathématicien britannique G. B. AIRY qui l'a introduite en 1962 [10].

I.5.1 La fonction d'AIRY en coordonnées cartésiennes :

En élasticité tridimensionnelle les équations d'équilibre s'écrivent :

$$Div \sigma + fi = 0 \tag{I.9}$$

$$\sigma ij: j + fi = 0 \tag{I.10}$$

Dans le cas de la déformation plane, et si on néglige les forces de volume nous aurons

$$\begin{cases} \frac{\partial \sigma_{11}}{\partial x} + \frac{\partial \sigma_{12}}{\partial y} = 0\\ \frac{\partial \sigma_{21}}{\partial x} + \frac{\partial \sigma_{22}}{\partial y} = 0 \end{cases}$$
(I.11)

On introduit alors une fonction $\varphi(x, y)$ telle que :

$$\begin{cases} \sigma_{11} = \frac{\partial^2 \varphi}{\partial x^2} \\ \sigma_{11} = \frac{\partial^2 \varphi}{\partial y \partial x} \\ \sigma_{22} = \frac{\partial^2 \varphi}{\partial y^2} \end{cases}$$
(I.12)

En vérifiant les équations d'équilibre dans le cas particulier des contraintes planes.

Le champ des contraintes est donné par les équations suivantes :

$$\begin{cases} \sigma_{x} = \frac{\partial^{2} \varphi}{\partial y^{2}} + \omega_{x} \\ \sigma_{y} = \frac{\partial^{2} \varphi}{\partial x^{2}} + \omega_{y} \\ \tau_{xy} = -\frac{\partial^{2} \varphi}{\partial x \partial y} \end{cases}$$
(I.13)

Elles sont vérifiées quand les forces ω_x et ω_y dérivent d'un potentiel w et s'écrivent selon les équations :

$$\begin{cases} \omega_x = -\frac{\partial w}{\partial x} \\ \omega_y = -\frac{\partial w}{\partial y} \end{cases}$$
(I.14)

Les équations d'équilibre étant vérifiées, nous établissons la relation d'AIRY en vérifiant la première équation de compatibilité

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{\partial^2 \gamma_{xy}}{\partial x \partial y}$$
(I.15)

Pour cela nous déterminons les valeurs de ε_x , ε_y et γ_{xy} en utilisant les relations entre les contraintes et les déformations

$$\varepsilon_{\chi} = \frac{1}{E} \left(\frac{\partial^2 \Phi}{\partial y^2} - v \frac{\partial^2 \Phi}{\partial x^2} + \omega \left(1 + v \right) \right)$$
(I.16)

D'après la première équation de compatibilité, il résulte :

$$\frac{\partial^{2} \varepsilon_{x}}{\partial y^{2}} = \frac{1}{E} \left[\frac{\partial^{4} \phi}{\partial x^{4}} - v \frac{\partial^{4} \phi}{\partial x^{2} \partial y^{2}} + \frac{\partial^{2} \omega}{\partial y^{2}} (1 - v) \right]$$

$$\frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}} = \frac{1}{E} \left[\frac{\partial^{4} \phi}{\partial x^{4}} - v \frac{\partial^{4} \phi}{\partial x^{2} \partial y^{2}} + \frac{\partial^{2} \omega}{\partial x^{2}} (1 - v) \right]$$

$$\frac{\partial^{2} \gamma_{xy}}{\partial x \partial y} = -\frac{1}{G} \frac{\partial^{4} \phi}{\partial x^{2} \partial y^{2}} = -\frac{2}{E} (1 - v) \frac{\partial^{4} \phi}{\partial x^{2} \partial y^{2}}$$
(I.17)

Après addition :

$$\frac{\partial^4 \Phi}{\partial y^4} + \frac{\partial^4 \Phi}{\partial x^4} + 2 \frac{\partial^4 \Phi}{\partial x^2 \partial y^2} = -(1-\nu) \left(\frac{\partial^2 \omega}{\partial y^2} + \frac{\partial^2 \omega}{\partial x^2} \right)$$
(I.18)

- La quantité ∇^4 est appelé opérateur harmonique.

- La quantité ∇^2 est appelé opérateur Laplace.

$$\nabla^4 \Phi = \frac{\partial^4 \Phi}{\partial y^4} + \frac{\partial^4 \Phi}{\partial x^4} + 2 \frac{\partial^4 \Phi}{\partial x^2 \partial y^2} \tag{I.19}$$

$$\nabla^2 \omega = \left(\frac{\partial^2 \omega}{\partial y^2} + \frac{\partial^2 \omega}{\partial x^2}\right) \tag{I.20}$$

$$\nabla^4 \, \Phi = -(1-\nu) \, \nabla^2 \omega \tag{I.21}$$

La contrainte fournie par l'équation bi harmonique précédente représente une bonne approximation du champ de contrainte, à condition que le corps soit très mince.

Dans le cas, ou les forces de volumes sont nulles, l'équation bi harmonique se réduit à $\nabla 4 \Phi$ = 0. Elle s'écrit aussi sous cette forme

$$\frac{\partial^4 \Phi}{\partial y^4} + \frac{\partial^4 \Phi}{\partial x^4} + 2 \frac{\partial^4 \Phi}{\partial x^2 \partial y^2} = 0 \tag{I.22}$$

I.5.2 Transformation de l'équation $\nabla^4 = 0$ *en coordonnées polaires*

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ r = \sqrt{x^2 + y^2} \\ \theta = \arctan \frac{x}{y} \end{cases}$$
(I.23)

D'où :
$$\begin{cases} \frac{\partial r}{\partial x} = \cos \theta , & \frac{\partial r}{\partial y} = \sin \theta \\ \frac{\partial \theta}{\partial x} = -\frac{\sin \theta}{r}, & \frac{\partial \theta}{\partial y} = -\frac{\cos \theta}{r} \end{cases}$$
(I.24)

Cherchons $\Phi = \Phi(r, \theta)$, il faut d'abord calculer

$$\frac{\partial \Phi}{\partial x} = \frac{\partial \Phi}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial \Phi}{\partial \theta} \frac{\partial \theta}{\partial x} = \frac{\partial \Phi}{\partial r} \left(\frac{x}{r} \right) + \frac{\partial \Phi}{\partial \theta} \left(-\frac{y}{r} \right) = \frac{\partial \Phi}{\partial r} \left(\cos \theta \right) - \frac{\partial \Phi}{\partial \theta} \left(\frac{\sin \theta}{r} \right)$$
(I.25)

$$\frac{\partial^2 \Phi}{\partial x^2} = \frac{\partial}{\partial r} \left(\frac{\partial \Phi}{\partial x} \right) \frac{\partial r}{\partial x} + \frac{\partial}{\partial \theta} \frac{\partial \Phi}{\partial x} \frac{\partial \theta}{\partial x} = \left[\frac{\partial^2 \Phi}{\partial r^2} (\cos \theta) - \frac{\partial_{\Phi}}{\partial \theta} \left(\frac{-\sin \theta}{r^2} \right) - \frac{\partial^2 \Phi}{\partial r \partial \theta} \left(\frac{\sin \theta}{r} \right) \right] \cos \theta + \left[\frac{\partial \Phi}{\partial r} \left((-\sin \theta) + \frac{\partial^2 \Phi}{\partial r \partial \theta} (\cos \theta) - \frac{\partial \Phi}{\partial \theta} (\frac{\cos \theta}{r}) \right) - \frac{\partial^2 \Phi}{\partial \theta^2} (-\frac{\sin \theta}{r}) \right] \left(-\frac{\sin \theta}{r} \right)$$
(I.26)

$$=\frac{\partial^2 \Phi}{\partial r^2} \cos^2 \theta + 2 \frac{\partial^2 \Phi}{\partial r \partial \theta} \frac{\sin \theta \cos \theta}{r} + 2 \frac{\partial \Phi}{\partial \theta} \frac{\sin \theta \cos \theta}{r^2} + \frac{\partial \Phi}{\partial r} \frac{\sin^2 \theta}{r} + \frac{\theta^2}{\partial \theta^2} \frac{\sin^2 \theta}{r^2}$$

De même on obtient :

$$\frac{\partial^2 \Phi}{\partial y^2} = \frac{\partial^2 \Phi}{\partial r^2} \sin^2 \theta + 2 \frac{\partial^2 \Phi}{\partial r \partial \theta} \frac{\sin \theta \cos \theta}{r} - 2 \frac{\partial \Phi}{\partial \theta} \frac{\sin \theta \cos \theta}{r^2} + \frac{\partial \Phi}{\partial r} \frac{\cos^2 \theta}{r} + \frac{\partial^2}{\partial \theta^2} \frac{\cos^2 \theta}{r^2}$$
(I.27)

En additionnant les équations

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = \frac{\partial^2 \Phi}{\partial r^2} + \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2}$$
(I.28)

L'équation bi-harmonique est maintenant en coordonnées polaires.

$$\nabla^4 \Phi = \nabla^2 (\nabla^2 \Phi) = \left[\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right] \left(\frac{\partial^2 \Phi}{\partial r^2} + \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2} \right)$$
(I.29)

I.5.3 Les conditions aux limites :

Selon le principe de Saint Venant, $\overline{\sigma}$ loin de petit trou de rayon a est le même si la plaque est non trouée. Sur le contour de rayon b >> a, on a donc :

En coordonnée cartésiennes
$$\overline{\sigma}(x, y) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \sigma^{\infty} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (I.30)

En coordonnée polaire $\overline{\overline{\sigma}}(r, \theta) = P.\overline{\overline{\sigma}}(x, y). Pt$

Avec
$$P = \begin{pmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$
(I.31)

$$\sigma_{rr} = \sigma^{\infty} sin^{2} \theta = \frac{\sigma^{\infty}}{2} \left(1 - \cos 2\theta\right) = \frac{\sigma^{\infty}}{2} - \frac{\sigma^{\infty}}{2} \cos 2\theta$$

$$\sigma_{\theta\theta} = \sigma^{\infty} cos^{2} \theta = \frac{\sigma^{\infty}}{2} \left(1 + \cos 2\theta\right) = \frac{\sigma^{\infty}}{2} + \frac{\sigma^{\infty}}{2} \cos 2\theta \qquad (I.32)$$

$$\tau_{r\theta} = \sigma^{\infty} \sin\theta \cos\theta = \frac{\sigma^{\infty}}{2} \sin 2\theta$$

$$\overline{\overline{\sigma}}(\mathbf{r},\theta) = \begin{pmatrix} \frac{\sigma^{\infty}}{2} - \frac{\sigma^{\infty}}{2}\cos 2\theta & \frac{\sigma^{\infty}}{2}\sin 2\theta \\ \frac{\sigma^{\infty}}{2}\sin 2\theta & \frac{\sigma^{\infty}}{2} + \frac{\sigma^{\infty}}{2}\cos 2\theta \end{pmatrix}$$
(I.33)

Le premier terme des expressions de σ_{rr} et de $\sigma_{\theta\theta}$ correspond bien en remplaçant σ^{∞} par $\frac{\sigma^{\infty}}{2}$, le second terme à l'association de contrainte normales - $\sigma^{\infty} cos 2\theta/2$ et de cisaillement $\sigma^{\infty} cos 2\theta/2$

I.5.4 La fonction d'Airy associée à ce 2^e chargement est :

$$\phi(r,\theta) = (Ar^2 + B/r^2 + C)\cos 2\theta \qquad (I.34)$$

$$\Delta \phi = \frac{\partial^2 A}{\partial r^2} + \frac{1}{r} \frac{\partial A}{\partial r} + \frac{1}{r^2} \frac{\partial^2 A}{\partial \theta^2} = -\frac{4C}{r^2} \cos 2\theta \qquad (I.35)$$

$$\Delta \left(\Delta \phi \right) = \frac{\partial^2}{\partial r^2} \left(-\frac{4C}{r^2} \cos 2\theta \right) + \frac{1}{r \partial r} \left(-\frac{4C}{r^2} \cos 2\theta \right) + \frac{1}{r^2 \partial \theta^2} \left(-\frac{4C}{r^2} \cos 2\theta \right)$$
(I.36)

$$\Delta (\Delta \phi) = \left(-\frac{24C}{r^4} + \frac{8C}{r^4} + \frac{16C}{r^4} \right) \cos 2\theta \tag{I.37}$$

(I.38)

$$\begin{cases} \sigma_{rr}(r,\theta) = \frac{1}{r} \left(\frac{\partial \phi}{\partial r} + \frac{1}{r} \cdot \frac{\partial^2 \phi}{\partial \theta^2} \right) = -(2A + \frac{4C}{r^2} + \frac{6B}{r^4}) \cos 2\theta \\ \sigma_{\theta\theta}(r,\theta) = \frac{\partial^2 \phi}{\partial \theta^2} = (2A + \frac{6B}{r^4}) \cos 2\theta \\ \tau_{r\theta}(r,\theta) = -\frac{\partial}{\partial r} \left(\frac{1}{r} \cdot \frac{\partial \phi}{\partial r} \right) = (2A - \frac{2C}{r^2} - \frac{6B}{r^4}) \sin 2\theta \\ \sigma_{rr}(b \gg a) = -\frac{\sigma^{\infty}}{2} \cos 2\theta \Rightarrow A = \frac{\sigma^{\infty}}{4} \end{cases}$$
(I.39)

$$\sigma_{rr}(a,\theta) = \tau(a,\theta) = 0 \Rightarrow \begin{cases} 2A + \frac{4C}{a^2} + \frac{6B}{a^4} = 0\\ 2A - \frac{2C}{a^2} - \frac{6B}{a^4} = 0 \end{cases} \Rightarrow \begin{cases} C = -a^2 \frac{\sigma^{\infty}}{2}\\ B = a^4 \frac{\sigma^{\infty}}{4} \end{cases}$$
(I.40)

Les contraintes pour le chargement sont la somme des contraintes des deux chargements précédents :

Chargement 1 :

$$\sigma_{rr}(r) = \frac{\sigma^{\infty}}{2} \left(1 - \frac{a^2}{r^2} \right) et \, \sigma_{\theta\theta}(r) = \frac{\sigma^{\infty}}{2} \left(1 + \frac{a^2}{r^2} \right) \tag{I.41}$$

Chargement 2 :

$$\begin{cases} \sigma_{rr}(r,\theta) = -\frac{\sigma^{\infty}}{2} \left(1 - \frac{4a^2}{r^2} + \frac{3a^4}{r^4}\right) \cos 2\theta \\ \sigma_{r\theta}(r,\theta) = \frac{\sigma^{\infty}}{2} \left(1 - \frac{2a^2}{r^2} + \frac{3a^4}{r^4}\right) \sin 2\theta \\ \sigma_{\theta\theta}(r) = \frac{\sigma^{\infty}}{2} \left(1 + \frac{3a^2}{r^2}\right) \cos 2\theta \end{cases}$$
(I.42)

Finalement la somme des contraintes des deux chargements donne :

$$\begin{cases} \sigma_{rr}(r,\theta) = \frac{\sigma^{\infty}}{2} \left\{ \left(1 - \frac{a^2}{r^2}\right) - \left(1 - \frac{4a^2}{r^2} + \frac{3a^4}{r^4}\right) \cos 2\theta \right\} \\ \sigma_{rr}(r,\theta) = \frac{\sigma^{\infty}}{2} \left(1 - \frac{2a^2}{r^2} + \frac{3a^4}{r^4}\right) \sin 2\theta \\ \sigma_{\theta\theta}(r) = \frac{\sigma^{\infty}}{2} \left\{ \left(1 + \frac{a^2}{r^2}\right) + \left(1 + \frac{3a^2}{r^2}\right) \cos 2\theta \right\} \end{cases}$$
(I.42)

I.6. Détail Expérimentale :

I.6.1. Problème spécification :

Prenons l'exemple classique d'un trou circulaire dans une plaque rectangulaire d'épaisseur constante.

La plaque est en acier avec un module d'élasticité de E et un coefficient de poisson v

L'épaisseur de la plaque est [e], le rayon de trou est [R], la longueur de la plaque est [L] et la largeur de la plaque est [2b], comme l'indique la figure ci-dessous

Fig I.5. Géométrie et chargement d'une laque trouée

I.7. Etude analytique

I.7.1. Déplacement :

Estimons le déplacement attendu du bord droit par rapport au centre du trou. Nous pouvons obtenir une estimation raisonnable en négligeant le trou et en approximant la tonalité plaque comme étant en tension uni axiale. Division de la contrainte de la traction appliquée par le module d'Young donne la déformation uniforme dans la direction x

Donc :

$$\begin{cases} \varepsilon_{xx} = \frac{\sigma_{xx}}{E} \\ Avec : \Longrightarrow \Delta L = \frac{\sigma_{xx} L}{E} \\ \varepsilon_{xx} = \frac{\Delta L}{L} \end{cases}$$
(I.43)

I.7.2. La contrainte radiale σ_r

Considérons les tendances attendues pour σ_r , la contrainte radiale au voisinage du trou et loin du trou.

La solution analytique pour σ_r dans une plaque trouée est :

$$\sigma_r(r,\theta) = \frac{1}{2} \sigma_0 \left[(1 - \frac{R^2}{r^2}) + (1 + 3 \frac{R^4}{r^4}) \cos(2\theta) \right]$$
(I.44)

p (la force appliquée)

Ou R est rayon du trou est σ_0 est la contrainte uniforme appliquée (notée p dans la spécification du problème).

Au niveau du trou (r = R), cela se réduit à : $\sigma_r = 0$

Ce résultat peut être compris en regardant un élément extrêmement petit au niveau du trou comme montré schématiquement ci- dessous :

Fig I.6. Contrainte radiale au voisinage du trou et loin du trou

Nous voyons que σ_r à l'intérieur du trou est la contrainte normale à un élément de surface du trou, puisque le trou est une surface libre. Cela doit être nulle.

Avec : r>>R

$$\sigma_r(r,\theta) = \sigma_r(\theta) = \frac{1}{2} \sigma_r \left[1 + \cos\left(2\theta\right)\right]$$
(I.45)

Au loin du trou, σ_r est une fonction de thêta (θ) uniquement à $\theta = 0 \rightarrow \sigma_r \approx \sigma_o(P)$

Cet est logique puisque r est aligné avec x lorsque $\theta = 0$

A $\theta = 90^{\circ} \rightarrow \sigma_r = 0$ qui a également un sens puisque r est maintenant aligné sur Y.

I.7.3. La contrainte σ_0

Considérons ensuite les tendances attendues pour σ_{o} . La contrainte circonférentielle dans le voisinage du trou et loin du trou.

La solution pour σ_0 dans la plaque est :

$$\sigma_0(r,\theta) = \frac{1}{2} \sigma_0 \left[\left(1 + \frac{R^2}{r^2} \right) - \left(1 + 3\frac{R^4}{r^4} \right) \cos(2\theta) \right]$$
(I.46)

$$\sigma_0(r,\theta) = \frac{1}{2} \sigma_0 \left(2 - 4\cos(2\theta)\right)$$
(I.47)

à $\theta = \frac{\pi}{2}$, $\sigma_0 = 3\sigma_0 = 3P$ pour une plaque infinie.

$$a r >> R$$
 $\sigma_o(r, \theta) \cong \sigma_o(\theta) = \frac{1}{2} \sigma_o \left[1 - \cos(2\theta)\right]$ (I.48)

à
$$\theta = 0 \text{ et } \theta = \frac{\pi}{2}$$

$$\begin{cases}
\sigma_o(0) = \frac{1}{2} & \sigma_o[1 - \cos(2.0)] = 0 \\
\sigma_o(\frac{\pi}{2}) = \frac{1}{2} & \sigma_o[1 - \cos(2.\frac{\pi}{2})] = \sigma_o = P
\end{cases}$$
(I.49)

I.7.4. La contrainte de cisaillement $\tau_{r\theta}$

La solution de la contrainte de cisaillement $\tau r \theta$ dans une plaque trouée est :

$$\tau_{r\,\theta} = -\frac{1}{2}\,\sigma_0\,(1 - 3\frac{R^4}{r^4} + \,2\frac{R^2}{r^2})\,\sin(2\theta) \tag{I.50}$$

à $r = R \rightarrow \tau_{r\,\theta} = 0$

En regardant un élément extrêmement petit au niveau du trou, nous voyons que $\tau_{r\theta}$ est le cisaillement contraint sur une surface de contrainte, elle doit donc être nulle.

$$\dot{a} r >> R \qquad \tau_{r\theta} (r, \theta) = \tau_{r\theta} (\theta) = \frac{1}{2} \sigma_0 \sin(2\theta)$$
(I.51)

I.7.5. La contrainte moyenne : σ_x

Tous d'abord, commencent par trouver la contrainte moyenne. La contrainte de surface nominal σ nom et maximal σ_{max} avec un facteur de concentration.

I.7.5.1. La contrainte nominale : σ_{nom}

La contrainte nominale est déterminée par l'équation de base et définie en fonction du type de charge qui agit sur l'élément, dans le cas d'une charge axiale qui provoque une traction, cette valeur est calculée par l'équation suivant :

$$\sigma_{\text{nom}} = \frac{P}{A} = \frac{Force\ axiale}{La\ section} \tag{I.52}$$

Avec
$$A = \begin{cases} L - R & \text{d'une plaque mince} \\ e (L - R) & \text{d'une plaque épaisse} \end{cases}$$
(I.53)

I.7.5.2. La contrait maximal : σ_{max}

La contrainte maximale est déterminée par l'équation de Kt (facteur de concentration du contrainte) et est définie en fonction de σ_{nom} la contrainte nominale.

$$\sigma_{max} = K_t \cdot \sigma_{nom} \tag{I.54}$$

On a deux cas :

$$\sigma_{\max} = \begin{cases} \frac{K_t P}{L-R} & e = 0 \text{ (plaque mince)} \\ \frac{K_t P}{e(L-R)} & e \neq 0 \text{ (plaque épaisse)} \end{cases}$$
(I.55)

II. Mécanique de la rupture élastique linéaire

II.1 Concentration de contrainte

II.1.1 Historique

En 1898, G. Kirsh a été le premier à mettre en évidence le phénomène de concentration de Contraintes, cela été pour un problème de détermination des autours d'un trou. Par la suite des solutions analytiques ont été progressivement trouvées et proposés par différents auteurs pour des structures qui présentent des géométries est de plus en plus complexe [2].

II.1.2 Introduction

Les calculs sur la résistance des structures sont principalement basés sur la théorie de l'élasticité. Si la limite d'élasticité est dépassée, une déformation plastique se produit et la théorie plus complexe de la plasticité doit être utilisée. Cependant, la fatigue, ainsi que la corrosion sous contrainte, sont des phénomènes qui se produisent généralement à des niveaux de contrainte relativement faibles, et on peut supposer que le comportement élastique est applicable. Le comportement élastique macroscopique d'un matériau isotrope est caractérisé par trois constantes élastiques, le module d'élasticité ou module de Young (E), le module de cisaillement (G) et le coefficient de Poisson (v). La relation bien connue entre les constantes est E = 2G (1 + v). Dans une structure, les encoches géométriques telles que les trous ne peuvent pas être évitées. Les entailles provoquent une répartition des contraintes inhomogène, voir figure II.1, avec une concentration de contraintes à la « racine de l'entaille ». Le facteur de concentration de contrainte (théorique), Kt, est défini comme le rapport entre la contrainte maximale à la base de l'encoche et la contrainte nominale qui serait présente si la concentration de contrainte nominale qui serait présente si la

Figure. II.1. Plaque avec trou central comme prototype d'une pièce crantée.

$$k_t = \frac{\sigma_{max}}{\sigma_{nom}} \tag{II.1}$$

La sévérité de la concentration de contrainte dépend de la géométrie de la configuration de l'encoche, généralement appelée forme de l'encoche. Les concepteurs doivent toujours essayer de réduire autant que possible les concentrations de contraintes afin d'éviter les problèmes de fatigue. Le présent chapitre traite de divers aspects des concentrations de contraintes et de l'effet de la géométrie (la forme) sur k_t ,. C'est l'un des enjeux fondamentaux de la conception d'une structure résistante à la fatigue, c'est-à-dire la conception contre la fatigue. Les problèmes discutés dans le présent chapitre couvrent les définitions des facteurs de concentration de contraintes, les calculs et les estimations des valeurs k_t , les gradients de contraintes, les aspects liés aux effets de taille et de forme, la superposition des encoches et les méthodes pour déterminer les valeurs k_t [5]

II.1.3. Définition de k_t

La plaque avec un trou central représenté sur la figure II.1 est un prototype d'élément cranté. Il est souvent utilisé des expériences de fatigue pour étudier les effets d'entaille sur la fatigue. Si la bande est chargée par une répartition homogène des contraintes, le trou provoquera une répartition des contraintes inhomogène dans la section critique, qui est la section minimale au niveau du trou. Cette distribution des contraintes est caractérisée par une contrainte de pointe σ max à la racine de l'entaille et une contrainte de section nette anomale σ nominale. Le rapport de la contrainte maximale et de la contrainte nominale dans la section nette conduit à la définition couramment utilisée du facteur de concentration de contrainte k_t donné dans l'équation (II.1). Il faut souligner que toutes les déformations sont supposées être élastiques. k_t est essentiellement un concept élastique. Il donne une indication directe de la sévérité de la concentration de contrainte, car c'est un facteur d'amplification sur le niveau de contrainte qui est nominalement présent dans la section nette de l'entaille.

$$\sigma_{max} = k_t \sigma_{min} \tag{II.2}$$

II.2. Les modes de propagation des fissures :

Le bilan des contraintes qui s'exercent au voisinage de l'extrémité d'une fissure va jouer un rôle de premier plan quant à la propagation de cette dernière.

En théorie, les fissures sont planes et se propagent dans leur plan, il est ainsi possible de montrer que l'état général de propagation se limite à la superposition de trois modes (figure II.2):

- Mode I (mode par ouverture) : les surfaces de la fissure se déplacent dans des directions opposées et perpendiculairement au plan de fissure
- Mode II (glissement de translation) : les surfaces de la fissure se déplacent dans le même plan et dans une direction perpendiculaire au front de fissure
- Mode III (glissement de rotation) : les surfaces de la fissure se déplacent dans le même plan et dans une direction parallèle au front de fissure Le mode I est souvent le plus critique

Figure II.2 : les trois modes de rupture

Mode I
$$\begin{cases} \sigma_{xx} = \frac{K_{I}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right) \\ \sigma_{yy} = \frac{K_{I}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right) \\ \tau_{xy} = \frac{K_{I}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \sin \frac{\theta}{2} \cos \frac{3\theta}{2} \end{cases}$$
(II.3)

$$Mode II \qquad \begin{cases} \sigma_{xx} = -\frac{K_{II}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \left(2 + \cos \frac{\theta}{2} \cos \frac{3\theta}{2} \right) \\ \sigma_{yy} = \frac{K_{II}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos \frac{3\theta}{2} \\ \tau_{xy} = \frac{K_{II}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right) \end{cases}$$
(II.4)

Mode II
$$\begin{cases} \sigma_{xx} = -\frac{K_{II}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \left(2 + \cos \frac{\theta}{2} \cos \frac{3\theta}{2} \right) \\ \sigma_{yy} = \frac{K_{II}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos \frac{3\theta}{2} \\ \tau_{xy} = \frac{K_{II}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right) \end{cases}$$
(II.5)

II.3. Concept d'intensité des contraintes

La figure II.3 schématise l'ensemble des contraintes appliquées sur un élément centré en un point M de coordonnées polaires (r, θ) par rapport à l'extrémité d'une fissure sollicitée en mode d'ouverture ou mode I. Ces contraintes sont décrites par les relations suivantes :

$$\sigma_{XX} = \frac{K_{I}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right)$$

$$\sigma_{YY} = \frac{K_{I}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right)$$

$$\tau_{XX} = \frac{K_{I}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \sin \frac{\theta}{2} \cos \frac{3\theta}{2}$$

(II.6)

Ces relations peuvent s'écrire sous la forme condensée suivante :

$$\sigma_{ij} = \frac{K_{I}}{\sqrt{2\pi r}} f_{ij}(\theta)$$
(II.7)

21

Figure II.3 : Contraintes près de l'extrémité d'une fissure

II.4. Calculs analytiques sur les concentrations de contraintes :

Les solutions analytiques basées sur la théorie de l'élasticité ne sont pas traitées en détail ici. L'analyse peut être trouvée dans divers manuels. Fondamentalement, la procédure suivante est utilisée : pour un problème à deux dimensions, comme le montre la figure II.1, les fonctions de déplacement u (x, y) et v (x, y) doivent être trouvées. Si ces fonctions sont obtenues, les déformations découlent de ces fonctions, et les contraintes sont liées aux déformations par la loi de Hooke. Le problème est alors apparemment résolu. Pour trouver la solution, les déformations de traction, ε_X (x, y) et ε_Y (x, y), et la déformation de cisaillement γ_{XY} (x, y) doivent satisfaire l'équation de compatibilité. De plus, il existe des équations d'équilibre pour σ_X , σ_Y et τ_{XY} . Ces contraintes sont liées aux déformations par trois équations représentant

II.5. Facteur de concentration de contrainte dans un trou elliptique :

Considérons le facteur de concentration de contrainte pour un trou elliptique dans une grande plaque linéaire-élastique soumise à une contrainte uni axiale distante [11]. On peut montrer que le facteur de concentration de contrainte est le suivant :

$$K_{t} = \frac{\sigma_{max}}{\sigma_{nom}} = 1 + \frac{2a}{b}$$
(II.8)

Figure II.4 Trou elliptique dans une plaque infinie

Ainsi, comme $b \to 0$ le trou elliptique dégénère à une fissure, et $\frac{a}{b} \to \infty$ de sorte que la contrainte d'entaille va aussi à l'infini (c'est-à-dire devient singulière), $\frac{\sigma_{max}}{\sigma_{nom}} = \infty$, à condition que le comportement du matériau reste linéaire élastique. Le rayon de la racine d'une ellipse est donné par

$$\rho = \frac{b^2}{a} \implies b = \sqrt{a\rho} \tag{II.9}$$

de sorte que
$$\frac{\sigma_{max}}{\sigma_{nom}} = 1 + 2\sqrt{\frac{a}{\rho}}$$
 (II.10)

et encore, lorsque le rayon de la pointe de l'entaille tend vers zéro, c'est-à-dire $r \rightarrow 0$, la contrainte de la pointe de l'entaille passe à nouveau à l'infini :

$$\frac{\sigma_{max}}{\sigma_{nom}} \to 2\sqrt{\frac{a}{\rho}} \to \infty$$
 (II.11)

L'état de contrainte singulier (infini) au fond d'une fissure est l'un des aspects fondamentaux et les plus importants de la mécanique de la rupture. Base de l'approche énergétique de la mécanique de la rupture Griffith (1921) a étudié la rupture fragile du verre et a adopté une approche énergétique pour résoudre le problème. Il a estimé qu'une propagation instable des fissures ne se produit que si une augmentation de la croissance des fissures, da, entraîne la libération d'une énergie de déformation supérieure à celle absorbée par la création de nouvelles surfaces de fissures. Ceci peut être réexprimé comme la variation de l'énergie de déformation dU, due à l'extension de la fissure, étant supérieure à l'énergie absorbée par la création des nouvelles surfaces de fissure. Ainsi, si l'on désigne l'énergie surfacique par unité de surface de la fissure γ_S , alors l'énergie surfacique associée à une fissure de longueur 2a dans un corps d'épaisseur B (comme le montre la figure II.4) est donnée par [11]:

$$W_{\rm S} = 4aB\gamma_{\rm S} \tag{II.12}$$

Une analyse détaillée des contraintes d'un trou elliptique dans une plaque élastique infinie a établi que l'énergie de déformation dans un tel corps est

$$W_p = -\frac{\pi a^2 \sigma^2 B}{E'} \tag{II.13}$$

Où σ est la contrainte à distance (loin du trou) et où, pour la déformation plane et la contrainte plane, respectivement,

$$E' = \frac{E}{1 - v^2}$$
(II.14)
Et $E' = E$

L'énergie totale du système est donc

$$W = -\frac{\pi a^2 \sigma^2 B}{E'} + 4aB\gamma_S \tag{II.15}$$

Selon Griffith, la condition critique pour le début de la croissance des fissures est

$$\frac{\mathrm{d}U}{\mathrm{d}A} = -\frac{\pi a \sigma^2}{E'} + 2\gamma_s = 0 \tag{II.16}$$

Par conséquent :

$$\frac{\pi a \sigma^2}{E'} = 2\gamma_s \tag{II.17}$$

Où A = 2aB est la surface de la fissure et dA désigne une augmentation incrémentielle de la surface de la fissure. La surface totale des deux surfaces de fissure est de 2A. Cette relation est classiquement réexprimée sous la forme

$$G = G_c \tag{II.18}$$

Figure II.5 Fissure dans une plaque infinie

où G est appelé le taux de libération d'énergie de déformation, la force motrice de fond de fissure ou la force d'extension de fissure. Gc est une propriété matérielle, connue sous le nom de taux de libération d'énergie de déformation critique, de ténacité ou de force critique d'extension de fissure. Une valeur élevée de Gc signifie qu'il est difficile de provoquer une croissance instable de fissure dans le matériau alors qu'une valeur faible signifie qu'il est facile de faire croître une fissure de manière instable. Ainsi, le cuivre, par exemple, a une valeur de $G_c \approx 10^6$ J/m², alors que le verre a une valeur de $G_c \approx 10$ J/m². Les relations suivantes pour la contrainte plane et la déformation plane, respectivement, découlent de ce qui précède [11] :

$$G = \frac{\pi a \sigma^2}{E} \qquad (contrainte plane) G = \frac{(1-v^2)}{E} \pi a \sigma^2 \qquad (déformation plane)$$
(II.19)

II.6 Facteur d'intensité de contrainte du 1er mode dans une fissure au bord du trou circulaire :

$$K_{I} = \sigma \sqrt{\pi a} f(s),$$

$$f(s) = (1 - \lambda) f_{1(s)} + \lambda f_{2}(s) \qquad (II.20)$$

$$s = \frac{a}{a + R}, \text{ pour les deux (a) et b}$$

Figure II.6 Fissure au bord du trou dans la plaque infinie. (a) deux fissures et (b) une seule fissure [12] .

II.6.1 Cas de deux fissures

$$f_1(s) = 0.5(3-s)[1+1.243(1-s)^2]$$
(II.21)
$$f_2(s) = 1 + [0.5+0.743(1-s)^3].$$

II.6.2 Cas d'une seule fissure

$$f_1(s) = [1 + 0.2(1 - s) + 0.3(1 - s)^6]f_2(s)$$
(II.22)
$$f_2(s) = 2.243 - 2.64s + 1.352s^2 - 0.248s^3$$

Etude statique d'une plaque trouée

Considérons une plaque avec un trou circulaire en traction.

Etude analytique

Caractéristiques de la plaque trouée

Géométrie de la plaque

- Longueur : L=400 mm
- Largeur : 2.b= 200 mm
- Diamètre du trou : 2.R = 100 mm
- Epaisseur : e =5 mm

Matériaux

La plaque est en acier avec un module d'Young E = 200 GPa et un coefficient de Poisson = 0,3.

Chargement

F= 200 kN

Etat de contraintes

$$\sigma_{rr}(r,\theta) = \frac{\sigma^{\infty}}{2} \left\{ \left(1 - \frac{R^2}{r^2} \right) - \left(1 - \frac{4R^2}{r^2} + \frac{3R^4}{r^4} \right) \cos 2\theta \right\}$$

$$\sigma_{r\theta}(r,\theta) = \frac{\sigma^{\infty}}{2} \left\{ \left(1 - \frac{4R^2}{r^2} + \frac{3R^4}{r^4} \right) \sin 2\theta \right\}$$

$$\sigma_{\theta\theta}(r,\theta) = \frac{\sigma^{\infty}}{2} \left\{ \left(1 + \frac{R^2}{r^2} \right) + \left(1 + \frac{3R^2}{r^2} \right) \cos 2\theta \right\}$$
(III.1)

Le facteur de concentration de contrainte pour une plaque rectangulaire avec un trou central circulaire est donné par l'équation :

$$K_t = \frac{\sigma_{max}}{\sigma_{nom}} \tag{III.2}$$

$$\sigma_{nom} = \frac{Force \ appliquée}{Aire} = \frac{F}{A} = \frac{F}{2.b.e} = \frac{200000}{1000} = 200 \ MPa$$

Alors que σ_{max} est la contrainte maximale, qui est susceptible de se produire au voisinage du trou, tandis que σ_{nom} est la contrainte nominale dans la plaque.

La contrainte normale maximale est obtenue pour $\theta = \frac{\pi}{2}$

Figure III.1 Variation de la contrainte normale maximale en fonction du rayon R du trous

Figure III.2 Variation du coefficient de concentration de contrainte $K_{t}\,en$ fonction du rayon

R du trous pour $\theta = \frac{\pi}{2}$

On remarque sur les deux courbes que la contrainte normale maximale et le coefficient de concentration de contrainte augmentent avec l'augmentation du diamètre du trou.

Facteur d'intensité de contrainte du 1^{er} mode dans une Fissure au bord du trou circulaire :

Dans notre cas traction uni axiale $\lambda = 0$, plaque avec deux fissures symétriques. La fonction $f(s) = f_1(s)$ Cas de deux fissures et

$$f_1(s) = 0.5(3-s)[1+1.243(1-s)^2]$$
(II.21)
$$K_I = \sigma \sqrt{\pi a} f(s) = \sigma \sqrt{\pi a} f_1(s)$$

$$K_I = 0.5\sigma\sqrt{\pi a}.(3-s)[1+1.243(1-s)^2]$$

а	S	Kı
0	0	0
10	0,166667	2958,903
20	0,285714	3515,98
30	0,375	3785,744
40	0,444444	3963,821
50	0,5	4106,954
60	0,545455	4235,397
70	0,583333	4357,148
80	0,615385	4475,529
90	0,642857	4591,931
100	0,666667	4706,915

Le facteur d'intensité de contrainte augmente avec l'augmentation de la longueur de la fissure.

$\int_{0,0}^{0,0} \frac{100,00 \text{ (mm)}}{50,00} \text{ (mm)}$

Simulation de la traction d'une plaque à trou centrale avec ANSYS Workbench

Units

TABLE 1			
Unit System	Metric (mm, kg, N,		
	s, mV, mA)		
	Degrees rad/s		
	Celsius		
Angle	Degrees		
Rotational	mod/a		
Velocity	rau/s		
Temperature	Celsius		

Materials

TABLE 2 Acier standard	Elasticité	isotrope
------------------------	------------	----------

Young's Modulus MPa	Poisson's Ratio	Bulk Modulus MPa	Shear Modulus MPa	Temperature C
2,e+005	0,3	1,6667e+005	76923	

Symétrie

TABLE 5 Zone de symetrie				
Object Name	Zone de symétrie	Zone de symétrie 2		
State	Fully	Fully Defined		
Scope				
Scoping Method	Geometr	y Selection		
Geometry	1 Edge			
Definition				
Scope Mode	Manual			
Туре	Symmetric			
Coordinate System	Système de coordonnées global			
Symmetry Normal	X Axis	Y Axis		
Suppressed	No			

TABLE 3 Zone de symétrie

Maillage

TABLE 4 Mesh			
Object Name	Maillage		
Defa	aults		
Physics Preference	Mechanical		
Element Order	Quadratic		
Element Size	3, mm		
Sizing			
Use Adaptive Sizing	Yes		
Resolution	5		
Span Angle Center	Fine		
Quality			
Error Limits	Standard Mechanical		
Smoothing	Medium		
Statistics			
Nodes	19234		
Elements	18942		

FIGURE 2 Maillage

Structure statique

INDLL 51	inary 515		
Object Name	Structure statique (A5)		
State	Solved		
Definition			
Physics Type	Structural		
Analysis Type	Static Structural		
Solver Target	Mechanical APDL		
Options			
Environment Temperature	22, °C		
Generate Input Only	No		

TABLE 5 Analysis

Steps	Time [s]	X [N]	Y [N]
1	0,	= 0,	0
1	1,	0,	0,
2	2,		= 22222
3	3,		= 44444
4	4,		= 66667
5	5,		= 88889
6	6,	= 0,	= 1,1111e+005
7	7,		= 1,3333e+005
8	8,		= 1,5556e + 005
9	9,		= 1,7778e + 005
10	10,		2,e+005

TABLE 6 Force

FIGURE 3 Force appliquée

Solution

TABLE 7 Résults

Object Name	Déplacement directionnel	Contrainte normale	Déformation élastique de cisaillement	Contrainte principale maximale
State			Solved	
		Defini	tion	
Туре	Directional Deformation	Normal Stress	Shear Elastic Strain	Maximum Principal Stress
Orientation	X Axis	Y Axis	XY Component	
Results				
Minimum	-0,11493 mm	-28,436 MPa	-4,777e-003 mm/mm	0, MPa
Maximum	0, mm	1355, MPa	1,1421e-003 mm/mm	1355,4 MPa
Average	-3,5957e-002 mm	414,29 MPa	-2,2565e-004 mm/mm	417,85 MPa

TABLE 8Déplacement directionnel

Time [s]	Minimum [mm]	Maximum [mm]	Average [mm]		
1,	0,		0,		
2,	-1,277e-002	-	-3,9953e-003		
3,	-2,5539e-002		-7,9905e-003		
4,	-3,8309e-002	0,	-1,1986e-002		
5,	-5,1078e-002		-1,5981e-002		
6,	-6,3848e-002		-1,9976e-002		
7,	-7,6617e-002		-2,3972e-002		
8,	-8,9387e-002		-2,7967e-002		
9,	-0,10216		-3,1962e-002		
10,	-0,11493		-3,5957e-002		

FIGURE 4 Déplacement directionnel

TABLE 9 Contrainte normale

Time [s]	Minimum [MPa]	Maximum [MPa]	Average [MPa]
1,	0,	0,	0,
2,	-3,1595	150,56	46,032
3,	-6,3191	301,11	92,064
4,	-9,4786	451,67	138,1
5,	-12,638	602,22	184,13
6,	-15,798	752,78	230,16
7,	-18,957	903,33	276,19
8,	-22,117	1053,9	322,22
9,	-25,276	1204,4	368,26
10,	-28,436	1355,	414,29

FIGURE 5 Contrainte normale

Time [s]	Minimum [mm/mm]	Maximum [mm/mm]	Average [mm/mm]
1,	0,	0,	0,
2,	-5,3078e-004	1,269e-004	-2,5073e-005
3,	-1,0616e-003	2,5379e-004	-5,0145e-005
4,	-1,5923e-003	3,8069e-004	-7,5218e-005
5,	-2,1231e-003	5,0759e-004	-1,0029e-004
6,	-2,6539e-003	6,3448e-004	-1,2536e-004
7,	-3,1847e-003	7,6138e-004	-1,5044e-004
8,	-3,7154e-003	8,8827e-004	-1,7551e-004
9,	-4,2462e-003	1,0152e-003	-2,0058e-004
10,	-4,777e-003	1,1421e-003	-2,2565e-004

TABLE 10 Déformation élastique de cisaillement

FIGURE 6 Déformation élastique de cisaillement

TABLE 11 Contrainte principale maximale

Time [s]	Minimum [MPa]	Maximum [MPa]	Average [MPa]
1,		0,	0,
2,		150,59	46,427
3,		301,19	92,855
4,		451,78	139,28
5,	0,	602,38	185,71
6,		752,97	232,14
7,		903,57	278,56
8,		1054,2	324,99
9,		1204,8	371,42
10,		1355,4	417,85

FIGURE 7 Contrainte principale maximale

Fig 9 Facteur de concentration de contrainte en fonction de R

Simulation de la fracture dans une plaque trouée

Contents

- <u>Units</u>
- <u>Model (A4)</u>
 - o <u>Geometry</u>
 - Solid
 - <u>Materials</u>
 - Coordinate Systems
 - o <u>Mesh</u>
 - <u>Mesh Controls</u>
 - Static Structural (A5)
 - Analysis Settings
 - Loads
 - Solution (A6)
 - Solution Information
 - <u>Results</u>

Material Data

• <u>Structural Steel</u>

Units

TABLE 1

Unit System	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius
Angle	Degrees
Rotational Velocity	rad/s
Temperature	Celsius

Model (A4)

Geometry

TABLE 2Model (A4) > Geometry

Object Name	Geometry	
State	Fully Defined	
Definition		
Source	G:\plate tuto2\plate with hole 2_files\dp0\SYS\DM\SYS.agdb	
Туре	DesignModeler	
Length Unit	Meters	
Element Control	Program Controlled	
Display Style	Body Color	
Bounding Box		
Length X	200, mm	
Length Y	5, mm	

Length Z	400, mm		
Properties			
Volume	3,6071e+005 mm ³		
Mass	2,8316 kg		
Scale Factor Value	1,		
	Statistics		
Bodies	1		
Active Bodies	1		
Nodes	57617		
Elements	32664		
Mesh Metric	None		
	Update Options		
Assign Default Material	No		
Basic Geometry Options			
Parameters	Independent		
Parameter Key			
Attributes	Yes		
Attribute Key			
Named Selections	Yes		
Named Selection Key			
Material Properties	Yes		
Ad	vanced Geometry Options		
Use Associativity	Yes		
Coordinate Systems	Yes		
Coordinate System Key			
Reader Mode Saves Updated File	No		
Use Instances	Yes		
Smart CAD Update	Yes		
Compare Parts On Update	No		
Analysis Type	3-D		
Import Facet Quality	Source		
Clean Bodies On Import	No		
Stitch Surfaces On Import	None		
Decompose Disjoint Geometry	Yes		
Enclosure and Symmetry Processing	Yes		

TABLE 3		
Model (A4) > Geometry > Parts		
	~ ~ ~	

Object Name	Solid	
State	Meshed	
Graphics Properties		
Visible	Yes	
Transparency 1		
Definition		

Suppressed	No	
Stiffness Behavior	Flexible	
Coordinate System	Default Coordinate System	
Reference Temperature	By Environment	
Treatment	None	
Material		
Assignment	Structural Steel	
Nonlinear Effects	Yes	
Thermal Strain Effects	Yes	
Bounding Box		
Length X	200, mm	
Length Y	5, mm	
Length Z	400, mm	
Properties		
Volume	3,6071e+005 mm ³	
Mass	2,8316 kg	
Centroid X	-3,1293e-015 mm	
Centroid Y	-6,1115e-017 mm	
Centroid Z	3,0893e-015 mm	
Moment of Inertia Ip1	41682 kg⋅mm ²	
Moment of Inertia Ip2	51951 kg∙mm²	
Moment of Inertia Ip3	10281 kg·mm ²	
Statistics		
Nodes	57617	
Elements	32664	
Mesh Metric	None	

FIGURE 1 Model (A4) > Geometry > Figure

TABLE 4		
Model (A4) > Materials		
Object Name	Materials	
State	Fully Defined	
Statistic	S	
Materials	1	
Material Assignments	0	

Coordinate Systems

TABLE 5		
Model (A4) > Coordinate Systems > Coordinate System		
Object Name	Global Coordinate System	
State	Fully Defined	
Definition		
Туре	Cartesian	
Coordinate System ID	0,	
Origin		
Origin X	0, mm	
Origin Y	0, mm	
	TA del (A4) > Coordinate Object Name State Def Type Coordinate System ID Origin X Origin Y	TABLE 5TABLE 5del (A4) > Coordinate Systems > Coordinate SystemObject NameGlobal Coordinate SystemStateFully DefinedDefinitionOcartesianCoordinate System IDCoordinate System ID0,Origin XOrigin Y0, mmOrigin Y0, mm

N n

Origin Z	0, mm
Directio	onal Vectors
X Axis Data	[1,0,0,]
Y Axis Data	[0, 1, 0,]
Z Axis Data	[0,0,1,]

Mesh

TABLE 6Model (A4) > Mesh

	-		
Object Name	Mesh		
State	Solved		
Display			
Display Style	Use Geometry Setting		
Defaults			
Physics Preference	Mechanical		
Element Order	Program Controlled		
Element Size	Default (22,362 mm)		
Sizing			
Use Adaptive Sizing	No		
Growth Rate	Default (1,85)		
Max Size	Default (44,724 mm)		
Mesh Defeaturing	Yes		
Defeature Size	Default (0,11181 mm)		
Capture Curvature	Yes		
Curvature Min Size	Default (0,22362 mm)		
Curvature Normal Angle	Default (70,395°)		
Capture Proximity	No		
Bounding Box Diagonal	447,24 mm		
Average Surface Area	9508,2 mm ²		
Minimum Edge Length	0,38637 mm		
Quality			
Check Mesh Quality	Yes, Errors		
Error Limits	Aggressive Mechanical		
Target Quality	Default (0.050000)		
Smoothing	Medium		
Mesh Metric	None		
Inflation			
Use Automatic Inflation	None		
Inflation Option	Smooth Transition		
Transition Ratio	0,272		
Maximum Layers	2		
Growth Rate	1,2		
Inflation Algorithm	Pre		
View Advanced Options	No		

.

Advanced			
Number of CPUs for Parallel Part Meshing	Program Controlled		
Straight Sided Elements	No		
Rigid Body Behavior	Dimensionally Reduced		
Triangle Surface Mesher	Program Controlled		
Topology Checking	Yes		
Pinch Tolerance	Default (0,20126 mm)		
Generate Pinch on Refresh	No		
Statistics			
Nodes	57617		
Elements	32664		

TABLE 7

 $\mathbf{\alpha}$

widdel (A4) > wiesn > wiesn Controls			
Object Name	Body Sizing	Refinement	
State Fully Define		d	
	Scope		
Scoping Method Geometry Selection		ction	
Geometry	1 Body	8 Faces	
	Definition		
Suppressed	No		
Туре	Element Size		
Element Size	5, mm		
Refinement		2	
Advanced			
Defeature Size	Default (0,11181 mm)		
Behavior	Soft		
Growth Rate	Default (1,85)		
Capture Curvature	No		
Capture Proximity	No		

FIGURE 2 Model (A4) > Mesh > Figure

Static Structural (A5)

TABLE 8		
Model (A4) >	Analysis	
Object Name	Static Structural (A5)	
State	Solved	
Definition		
Physics Type	Structural	
Analysis Type	Static Structural	
Solver Target	Mechanical APDL	
Options		
Environment Temperature	22, °C	
Generate Input Only	No	

TABLE 9 Model (A4) > Static Structural (A5) > Analysis Settings

Object Name	Analysis Settings	
State	Fully Defined	
Step Controls		
Number Of Steps	10,	

Current Step Number	1,		
Step End Time	1, s		
Auto Time Stepping	Program Controlled		
	Solver Controls		
Solver Type	Program Controlled		
Weak Springs	Off		
Solver Pivot Checking	Program Controlled		
Large Deflection	Off		
Inertia Relief	Off		
Quasi-Static Solution	Off		
l	Rotordynamics Controls		
Coriolis Effect	Off		
	Restart Controls		
Generate Restart Points	Program Controlled		
Retain Files After Full Solve	No		
Combine Restart Files	Program Controlled		
	Nonlinear Controls		
Newton-Raphson Option	Program Controlled		
Force Convergence	Program Controlled		
Moment Convergence	Program Controlled		
Displacement Convergence	Program Controlled		
Rotation Convergence	Program Controlled		
Line Search	Program Controlled		
Stabilization	Program Controlled		
	Advanced		
Inverse Option	No		
Contact Split (DMP)	Off		
Output Controls			
Stress	Yes		
Surface Stress	No		
Back Stress	No		
Strain	Yes		
Contact Data	Yes		
Nonlinear Data	No		
Nodal Forces	No		
Volume and Energy	Yes		
Euler Angles	Yes		
General Miscellaneous	No		
Contact Miscellaneous	No		
Store Results At	All Time Points		
Result File Compression	Program Controlled		
Analysis Data Management			
Solver Files Directory	$G:\time tuto 2\time with hole 2_files\dp 0\SYS\MECH\$		
Future Analysis	None		

Scratch Solver Files Directory	
Save MAPDL db	No
Contact Summary	Program Controlled
Delete Unneeded Files	Yes
Nonlinear Solution	No
Solver Units	Active System
Solver Unit System	nmm

TABLE 10 Model (A4) > Static Structural (A5) > Analysis Settings Step-Specific ''Step Controls''

	_
Step	Step End Time
1	1, s
2	2, s
3	3, s
4	4, s
5	5, s
6	6, s
7	7, s
8	8, s
9	9, s
10	10, s

TABLE 11

Model (A4) > Static Structural (A5) > Loads

Object Name	Fixed Support	Pressure
State	Fully Defined	
	Scope	
Scoping Method	Geometry Selection	
Geometry	1 Face	
Definition		
Туре	Fixed Support	Pressure
Suppressed	No	
Define By		Normal To
Applied By		Surface Effect
Loaded Area		Deformed
Magnitude		Tabular Data
Tabular Data		
Independent Variable		Time

FIGURE 3 Model (A4) > Static Structural (A5) > Pressure

 TABLE 12

 Model (A4) > Static Structural (A5) > Pressure

 Steps
 Time [s]

 Pressure [MPa]

Steps	Time [s]	Pressure [MPa]
1	0,	0,
	1,	,
2	2,	= -22,222
3	3,	= -44,444
4	4,	= -66,667
5	5,	= -88,889
6	6,	= -111,11
7	7,	= -133,33
8	8,	= -155,56
9	9,	= -177,78
10	10,	-200,

FIGURE 4 Model (A4) > Static Structural (A5) > Pressure > Figure

Solution (A6)

del (A4) > Static Structural (A5) > Solu		
Object Name	Solution (A6)	
State	Solved	
Adaptive Mesh Refinement		
Max Refinement Loops	1,	
Refinement Depth	2,	
Information		
Status	Done	
MAPDL Elapsed Time	6 m 35 s	
MAPDL Memory Used	311, MB	
MAPDL Result File Size	125,06 MB	
Post Processing		
Beam Section Results	No	
On Demand Stress/Strain	No	

TABLE 13Model (A4) > Static Structural (A5) > Solution

TABLE 14Model (A4) > Static Structural (A5) > Solution (A6) > Solution Information

Object Name	Solution Information	
State	Solved	
Solution Inform	nation	
Solution Output	Solver Output	
Newton-Raphson Residuals	0	
Identify Element Violations	0	
Update Interval	2,5 s	
Display Points	All	
FE Connection Visibility		
Activate Visibility	Yes	
Display	All FE Connectors	
Draw Connections Attached To	All Nodes	
Line Color	Connection Type	
Visible on Results	No	
Line Thickness	Single	

TABLE 15

Model (A4) > Static Structural (A5) > Solution (A6) > Results

Object Name	Maximum Principal Stress	Directional Deformation					
State	Solved						
	Scope						
Scoping Method	Geometry	Selection					
Geometry	All B	odies					
	Definition						
Туре	Maximum Principal Stress	Directional Deformation					
By	Tiı	me					
Display Time	La	ist					
Calculate Time History	Y	es					
Identifier	Identifier						
Suppressed	No						
Orientation	Z Axis						
Coordinate System	Global Coordinate System						
Integration Point Results							
Display Option	Averaged						
Average Across Bodies	No						
	Results						
Minimum	-38,634 MPa	0, mm					
Maximum	n 6418,2 MPa 0,62051 mm						
Average	Average 291,3 MPa 0,30209 mm						
Minimum Occurs On	1 Solid						
Maximum Occurs On Solid							
	Minimum Value Over Time						
Minimum	-38,634 MPa	0, mm					
Maximum	0, MPa	0, mm					

Maximum Value Over Time				
Minimum	0, MPa	0, mm		
Maximum	6418,2 MPa	0,62051 mm		
Information				
Time 10, s		, \$		
Load Step	10			
Substep	1			
Iteration Number	10			

TABLE 16

Model (A4) > Static Structural (A5) > Solution (A6) > Maximum Principal Stress

Time [s] Minimum [MPa]		Maximum [MPa]	Average [MPa]	
1,	0,	0,	0,	
2,	-4,2927	713,13	32,367	
3,	-8,5853	1426,3	64,734	
4,	-12,878	2139,4	97,102	
5,	-17,171	2852,5	129,47	
6,	-21,463	3565,7	161,84	
7,	-25,756	4278,8	194,2	
8,	-30,049	4991,9	226,57	
9,	-34,341	5705,1	258,94	
10,	-38,634	6418,2	291,3	

FIGURE 7 Model (A4) > Static Structural (A5) > Solution (A6) > Directional Deformation

 TABLE 17

 Model (A4) > Static Structural (A5) > Solution (A6) > Directional Deformation

 Time [s] Minimum [mm] Maximum [mm] Average [mm]

I ime [s]	Minimum [mm]	Maximum [mm]	Average [mm]
1,		0,	0,
2,		6,8946e-002	3,3566e-002
3,		0,13789	6,7131e-002
4,	0,	0,20684	0,1007
5,		0,27578	0,13426
6,		0,34473	0,16783
7,		0,41367	0,20139
8,		0,48262	0,23496
9,		0,55156	0,26852
10,		0,62051	0,30209

FIGURE 8 Model (A4) > Static Structural (A5) > Solution (A6) > Directional Deformation > Figure

Material Data

Structural Steel

	TABLE 18					
	Structural Steel > Constants					
	Density	7,85e-006 kg mm^-3				
	Coefficient of Thermal Expansion	1,2e-005 C^-1				
Specific Heat Thermal Conductivity		4,34e+005 mJ kg^-1 C^-1				
		6,05e-002 W mm^-1 C^-1				
	Resistivity	1,7e-004 ohm mm				

TABLE 19Structural Steel > ColorRedGreenBlue132,139,179,

TABLE 20 Structural Steel > Compressive Ultimate Strength Compressive Ultimate Strength MPa

0,

TABLE 21 Structural Steel > Compressive Yield Strength Compressive Yield Strength MPa

250,

TABLE 22Structural Steel > Tensile Yield StrengthTensile Yield Strength MPa250,

TABLE 23Structural Steel > Tensile Ultimate StrengthTensile Ultimate Strength MPa460,

TABLE 24

Structural Steel > Isotropic Secant Coefficient of Thermal Expansion

Zero-Thermal-Strain Reference Temperature C

22,

TABLE 25 Structural Steel > S-N Curve

Alternating Stress MPa	Cycles	Mean Stress MPa				
3999,	10,	0,				
2827,	20,	0,				
1896,	50,	0,				
1413,	100,	0,				
1069,	200,	0,				
441,	2000,	0,				
262,	10000	0,				
214,	20000	0,				
138,	1,e+005	0,				
114,	2,e+005	0,				
86,2	1,e+006	0,				

TABLE 26Structural Steel > Strain-Life Parameters

Strength Coefficient MPa	Strength Exponent	Ductility Coefficient	Ductility Exponent	Cyclic Strength Coefficient MPa	Cyclic Strain Hardening Exponent
920,	-0,106	0,213	-0,47	1000,	0,2

TABLE 27Structural Steel > Isotropic Elasticity

Young's Modulus	Poisson's	Bulk Modulus	Shear Modulus	Temperature
MPa	Ratio	MPa	MPa	C
2,e+005	0,3	1,6667e+005	76923	

TABLE 28 Structural Steel > Isotropic Relative Permeability Relative Permeability 10000

Conclusion générale

Les plaques trouées sont couramment utilisées dans les applications technologiques et spécialement en construction mécanique, mais ils sont source de concentrations de contraintes et d'initiation de fissure qui causent des ruptures brutales. La propagation des fissures fait l'objet de la recherche scientifique.

Notre travail est consacré au calcul des contraintes au voisinage du trou et le facteur d'intensité de contrainte dans la zone de concentration de contraintes et dans la fissure. Enfin une simulation numérique sous ANSYS Workbench nous a permis d'évaluer les contraintes, le facteur de concentration de contraintes en fonction du rayon R et la profondeur de la fissure.

[1] Konish, H.J. and Whitney, J.M., "Approximate Stresses in an Orthotropic Plate Containing a Circular Hole", Journal of Composite Materials, Vol. 9, pp. 157-166, 1975.

[2] Tan, S.C.," Laminated Composite Containing an Elliptical Opening Approximate Stress Analyses and International Journal of Mechanical And Production Engineering, ISSN: 2320-2092, Volume- 3, Issue-5, May-2015.

[3] Ko, W. "Stress concentration around a small circular hole in the Hi-Mat composite plates", NASA TM 86038, 1985.

[4] Concentration de contraintes, Jian LU Henri, Paul LIEURADE, BM 5 040, Techniques de L'Ingénieur, traité Génie mécanique

[5] Détermination des contraintes résiduelles par méthode ultrasonore, Farid BELAHCENE, Techniques de l'Ingénieur, IN 8-1 12-2002 N

[6] Concentration de contraintes, Paul LIEURADE, B50-40, Techniques de l'Ingénieur, traité Génie mécanique

[7] Mécanique de la rupture, Jean-Luc ENGERAND, B 5 060 –1, Techniques de l'Ingénieur, traité Génie mécanique.

[8] Yukitaka Murakami, Theory of Elasticity and Stress Concentration, Kyushu University, Fukuoka, Japan, 2017.

[9] Helmut Klöcker, Mécanique des Milieux continus Elasticité, CHAPITRE VII, ELASTICITE PLANES.

[10] Mécanique des structures Tome 3, Serge LAROZE, CÉPADUÈS-ÉDITIONS, TOULOUSE – France septembre 2005

[11] Michael Clifford, An Introduction to Mechanical Engineering, University of Nottingham, 1998.

[12] Surjya Kumar Maiti, FRACTURE MECHANICS Fundamentals and Applications, Cambridge University Press 2015