République Algérienne Démocratique Et Populaire Ministère De L'enseignement Supérieur Et De La Recherche Scientifique

> Centre Universitaire Cheikh Larbi Tebessi Institut Des Sciences Exactes Et Technologie Laboratoire Des Matériaux Organiques Et Hétérochimie

# Mémoire

Pour obtenir le diplôme de magister en chimie Option : Chimie des Matériaux Organiques

### NOUVEAUX $\pi$ -DONNEURS A SYSTEME ETENDU :

### SYNTHESE, CARACTERISATION ET ETUDE

## PRELIMINAIRE DE MATERIAUX ORGANIQUES

Présenté Par : ZITOUNI Amel

Soutenue le : .. / .. / 2008

Devant le jury

| CHIBANI Aissa           | Professeur, Université de Constantine | Président   |
|-------------------------|---------------------------------------|-------------|
| <b>MOUATAS</b> Chaabane | Professeur, Université de Constantine | Examinateur |
| KABOUB Lakhemici        | MC, Centre Univ. de Tébessa           | Examinateur |
| BENBELLAT Noura         | Docteur, Centre Univ. de Tébessa      | Invitée     |
| GOUASMIA Abdelkrim      | Professeur, Centre Univ. de Tébessa   | Promoteur   |

Ce travail a été réalisé au sein du Laboratoire des Matériaux Organiques et Hétérochimie au centre universitaire de Tébessa.

Jaurais voulu ici remercier toutes les personnes grâce auxquelles ce travail de thèse a été rendu possible.

Je tiens tout d'abord à remercier Monsieur le Professeur GOUASMIA Abdelkrim pour avoir dirigé cette thèse durant toutes ces années. Son enthousiasme, sa compétence scientifique et sa bonne humeur ont largement contribué à la réalisation de ce travail. Je lui suis également très reconnaissante pour m'avoir témoigné sa confiance, et de m'avoir aidé à partir en stage.

Je remercie très sincèrement Monsieur CHIBANI Aissa professeur à l'Université de Constantine pour m'avoir fait l'honneur de présider le jury de cette thèse. Je suis très reconnaissant envers Monsieur MOUATAS Chaabane professeur à l'Université de Constantine et Monsieur KABOUB Lakhemici maitre de conférences à l'Université de Tébessa pour avoir accepté d'être les examinateurs de ce travail.

J' exprime ma grande gratitude à Monsieur KABOUB Lakhemici et Madame BOUGUESSA Sabrina pour leur précieuse aide apportée, leur gentillesse et leur disponibilité.

Je remercie particulièrement Monsieur : AZIZI Omar professeur à l'Université de Sétif pour la voltammétrie cyclique..

Ma reconnaissance s'adresse également aux mes collègues, personnel du laboratoire, notamment Messieurs : HLAIMIA Abdelatif et KHDIRI Abdelmadjid pour leur disponibilité et pour les nombreux services qu'ils m'ont rendus.

*Je* voudrais également remercier tous ceux qui m'ont assisté et m'ont permis de réaliser ce travail, mes amies qui m'ont supporté au cours de ce travail.

### SOMMAIRE

| INTRODUCTION GENERALE | 0 | 5 |
|-----------------------|---|---|
|-----------------------|---|---|

### CHAPITRE I : Généralité Sur Les Matériaux Organiques A Base De Tétrathiafulvalène

| CHAPITRE I: Généralistes Sur Les Matériaux Organiques A Base De        |    |
|------------------------------------------------------------------------|----|
| Tétrathiafulvalène                                                     | 10 |
| I. PRESENTATION DES MATERIAUX ORGANIQUES CONDUCTEURS                   | 11 |
| I.1. NOTIONS GENERALES SUR LA CONDUCTIVITE ELECTRIQUE DANS LES SOLIDES |    |
|                                                                        | 11 |
| a. Echelle de conductivité à température ambiante                      | 11 |
| b. Evolution de la conductivité avec la température                    | 11 |
| I.2. HISTORIQUE DES TTF                                                | 13 |
| I.3. CLASSIFICATION DES MATERIAUX ORGANIQUES CONDUCTEURS               | 16 |
| I. 3.1. Les polymères conducteurs                                      | 16 |
| I. 3.2. Les dérivés du fullerène                                       | 16 |
| I. 3.3. Les molécules neutres conductrices                             | 16 |
| I. 3.4. Les matériaux organiques cristallins                           | 16 |
| I. 3.4.a. Les complexes de transfert de charge (CTC) : DnAm            | 16 |
| I. 3.4.b. Les sels d'ions radicaux (SIR): DnXm                         | 18 |
| I. 4. FACTEURS RESPONSABLES DE LA CONDUCTIVITE DE METAUX ORGANIQUES    | 19 |
| I. 4.1. Facteur structural                                             | 19 |
| I. 4.1.a. Complexe de transfert de charge : CTC                        | 19 |
| I. 4.1.b. Les sels d'ions radicaux : SIR                               | 21 |
| I. 4.2. Facteur électronique                                           | 23 |

| I. 4.1.b. Les complexes de transfert de charge : CTC                                   | 24 |
|----------------------------------------------------------------------------------------|----|
| I. 4.1.b. Les sels d'ions radicaux : SIR                                               | 25 |
| I. 5. DIMENSIONNALITE                                                                  | 26 |
| I. 5. 1. Substitution des atomes de soufre par d'autres chalcogènes                    | 27 |
| I. 5. 2. Multiplication des hétéroatomes dans le donneur                               | 28 |
| I. 5. 3. Introduction d'une dissymétrie dans le donneur                                | 29 |
| I. 5. 4. La nature du contre ion X dans les SIR                                        | 30 |
| 1.6. CHOIX DU SYSTEME DONNEUR-ACCEPTEUR                                                | 32 |
| 1.7. MIGRATION DE L'AROMATICITE                                                        | 33 |
| II. ORIENTATION DES RECHERCHES ACTUELLES                                               | 34 |
| II.1. L'utilisation de nouveaux anions et accepteurs                                   | 35 |
| II.2. Modifications réalisées autour du squelette TTF                                  | 35 |
| II.2.1. Remplacement des atomes de soufre par d'autres chalcogènes                     | 35 |
| II.2.2. Introduction d'un système $\pi$ entre les deux hétérocycles constituant le TTF | 36 |
| II.2.3. Introduction de substituants fonctionnalisés                                   | 37 |
| II.3. Des biTTF aux oligoTTF : enchaînement d'unités TTF liées par covalence           | 39 |
| II.3.1. Les oligo TTF mono lien                                                        | 39 |
| a. Composés à lien conjugué rigide                                                     | 39 |
| b. Composés à lien non conjugué flexible                                               | 40 |
| II.3.2. Les oligo TTF à double lien                                                    | 41 |
| a. Les TTF macrocycliques                                                              | 42 |
| <b>b.</b> Les TTF cyclophanes                                                          | 42 |
| III. DIFFERENTES APPLICATIONS DU NOYAU TTF                                             | 43 |
| BIBLIOGRAPHIE                                                                          | 45 |

## *CHAPITRE II* : Synthèse Des Donneurs-П De Type A Et De Type B

| CHAPITRE II : Synthèse Des Donneurs-II De Type A Et De Type B              | 50 |
|----------------------------------------------------------------------------|----|
| Présentation Des Objectifs                                                 | 51 |
| I. STRATEGIES DE SYNTHESE DES DONNEURS-II DE TYPE TXF                      | 53 |
| I. 1. Voie A : à partir des sels de dithiolium                             | 53 |
| I. 1. a. Par action d'une base sur un sel de dithiolium                    | 53 |
| I. 1. b. Réaction de type Wittig                                           | 54 |
| I. 1. c. Réaction de type Wittig-Horner                                    | 55 |
| I. 2. Voie B : à partir de 2-oxo, 2-thioxo ou 2-sélénoxo-1,3-dithiole      | 55 |
| I. 3. Voie C: à partir de la déprotection-alkylation de thiolate           | 56 |
| II. SYNTHESE DES PRECURSEURS                                               | 57 |
| II. 1. Préparation Des Précurseurs De La Série A                           | 57 |
| <b>a.</b> Synthèse de 4,5- (4-pyridylethylenedithio)-1,3-dithiole-2-thione | 57 |
| <b>b.</b> Synthèse de 4,5- (4-pyridylethylenedithio)-1,3-dithiole-2-one    | 58 |
| <b>c.</b> Synthèse de 4,5-bis (sélénoalkyl)-1,3-dithiole-2-thione          | 58 |
| <b>d.</b> synthèse de 4,5-bis (cyanoethyleséléno)-1,3-dithiole-2-one       | 60 |
| e. Couplage croisé de chalcogénone                                         | 60 |
| II. 2. Préparation Des Précurseurs De La Série B                           | 63 |
| <b>a.</b> Synthèse de 2-formyl-3, 6,7-triméthyles tétrathiafulvalène       | 63 |
| <b>b.</b> Synthèse de 3, 6,7-triméthyl-tétrathiafulvalène                  | 66 |
| c. Synthèse de sel de phosphonium                                          | 67 |

| <b>d.</b> Synthèse de TTF par condensation de type Wittig                              | 69 |
|----------------------------------------------------------------------------------------|----|
| II. 3. Optimisation De La Réaction De Wittig                                           | 69 |
| II. 4. Synthèse Des TTF Cibles                                                         | 71 |
| II. 4. 1. Préparation de bi-TTF à lien espaceur saturé contenant un groupe pyridinique | 73 |
| BIBLIOGRAPHIE                                                                          | 76 |

### *CHAPITRE III :* Etude Electrochimique Et Elaboration Des Matériaux

| CHAPITRE III : Etude Electrochimique Et Elaboration Des Materiaux             |    |  |  |
|-------------------------------------------------------------------------------|----|--|--|
| Introduction                                                                  | 78 |  |  |
| I. Généralités                                                                | 78 |  |  |
| II. Résultats Et Discussions                                                  | 80 |  |  |
| II. 1. Etude du comportement électrochimique des composés formés              | 80 |  |  |
| II. 2. préparation et étude de complexes de transfert de charge               | 84 |  |  |
| II. 2. 1. Préparation des CTC                                                 | 85 |  |  |
| II. 2. 2. Mesure de conductivité électrique à température ambiante            |    |  |  |
| II. 2. 3. Relations conductivité électrique et le taux de transfert de charge |    |  |  |
| (estimé par spectroscopie IR)                                                 | 88 |  |  |
| BIBLIOGRAPHIE                                                                 |    |  |  |
| CONCLUSION GENERALE                                                           |    |  |  |
| PARTIE EXPERIMENTALE                                                          | 97 |  |  |

### Listes des abréviations

| A: Accepteur                                            | <b>Me :</b> Méthyle                    |
|---------------------------------------------------------|----------------------------------------|
| BEDT-TTF: Bis-éthylènedithio-tétrathiafulvalène         | <b>ppm:</b> Partie par million         |
| BEDO-TTF: Bis-éthylènedioxo-tétrathiafulvalène          | <b>PF</b> : Point de fusion            |
| CTC : Complexes de transfert de charge                  | Rdt : Rendement                        |
| <b>CPDMTSF:</b> Cyclopentyldiméthyltétrasélénafulvalène | RMN : Résonance magnétique nucléaire   |
| <b>DCNQI</b> : Dicyanoquinonediimine                    | <b>SIR :</b> Sels d'ions radicaux      |
| DCHTTF: Dicyclohexane-tétrathiafulvalène                | SM : Spectrométrie de masse            |
| dmit : Dimercapto-1.3-dithiole-2-thione                 | Tc : Température critique              |
| <b>D</b> : Donneur                                      | TCNQ : Tétracyanoquinodiméthane        |
| <b>DMF</b> : Diméthylformamide                          | TMTSF: Tétraméthyltétrasélénafulvalène |
| ECS : Electrode au calomel saturé                       | TriMeTTF : Triméthyltétrathiafulvalène |
| EDT-TTF : Ethylènedithiotétrthiafuvalène                | TMTTF: Tétraméthyltétrathiafulvalène   |
| E <sub>ox</sub> : Potentiel d'oxydation                 | TTF : Tetrathiafulvalène               |
| E <sub>red</sub> : Potentiel de réduction               | THF : Tétrahydrofuranne                |
| éq: équivalent                                          | S: Siemens                             |
| HOMO : Plus Haute Orbitale Moléculaire Occupe           | $\rho$ : Taux de transfert de charge   |
| Hz : Hertz                                              | σ : Conductivité électrique            |
| J : Constante de couplage                               | $\Omega$ : Ohm                         |
| IR : Infra rouge                                        | $\delta$ : Déplacement chimique        |
| K: Kelvin                                               |                                        |
| LDA : Diisopropylamidure de lithium                     |                                        |
| LUMO : Plus Basse Orbitale Moléculaire vacante          |                                        |

Introduction Générale



C'est en 1911, dans le mercure refroidit à très basse température que Kammerlingh Onnes allait découvrir l'existence d'un tout nouvel état de la matière. Cet état, caractérisé par une résistivité nulle et une expulsion des lignes de flux magnétiques hors du matériau, sera nommé à juste titre *supraconductivité*. Depuis la mise en évidence de ce phénomène, beaucoup d'efforts ont été déployés pour en expliquer l'origine. C'est en 1957 enfin que Bardeen, Cooper et Schrieffer réussissent l'élaboration d'une théorie microscopique capable de décrire quantitativement l'ensemble des propriétés observées dans les supraconducteurs conventionnels (Al, Sn, ...). Le mécanisme proposé repose en bref sur un appariement des électrons.

Parmis les applications de la supraconductivité citons : les applications médicales, imagerie par résonance magnétique, les trains à lévitation magnétique, stockage d'énergie, ... etc.

Depuis quelques années, on assiste à un essor spectaculaire de la chimie des matériaux. De nouveaux concepts s'attachent à faire le lien entre l'univers microscopique des molécules et les propriétés macroscopiques du matériau. Pour voir apparaître de nouvelles propriétés dans un matériau, il faut s'intéresser non seulement aux molécules qui le constituent mais aussi à l'organisation de ces molécules et aux relations intermoléculaires qu'elles entretiennent. *La chimie supramoléculaire*, qualifiée à juste titre de « sociologie moléculaire » par J.M. Lehn, est l'étude des liaisons chimiques intermoléculaires <sup>[1]</sup>. Ces liaisons, beaucoup plus faibles que la liaison covalente (liaison de Van der Waals, liaisons hydrogènes...) peuvent donner naissance à des assemblages supramoléculaires plus ou moins organisés : cristaux organiques, films, gels, micelles, colloïdes. C'est pourquoi, le contrôle de l'organisation et des interactions moléculaires est un objectif de première importance si l'on veut parvenir à générer des superstructures à l'état solide ayant des propriétés physiques aussi attractives que le magnétisme ou la conductivité.

Les composés organiques ont longtemps été considérés comme des isolants. Ce n'est que depuis une trentaine d'année que la conduction électrique à été découverte au sein d'un complexe par transfert de charge résultant de l'organisation et des interactions entre un donneur d'électron  $\pi$ , le tétrathiafulvalène (TTF), et un accepteur d'électron  $\pi$ , le tétracyanoquinodiméthane (TCNQ)<sup>[2]</sup>.



Parmi les modifications apportées au motif TTF, on peut noter la substitution du soufre par d'autre chalcogènes comme le sélénium ou le tellure. En effet, la présence de ces hétéroatomes aux orbitales diffuses contribue à renforcer les interactions au sein du matériau. L'année 1980 marqua une étape déterminante dans cette recherche avec la découverte de la supraconductivité organique dans une famille de sels d'ions radicaux (sels de Bechgaard)<sup>[3]</sup> impliquant l'analogue sélénié du TTF, le tétraméthyltétrasélénafulvalène (TMTSF) à température critique Tc = 1,1 K sous une pression de 13 kBar.

Cette température critique (Tc) a été par la suite améliorée par utilisation d'un donneur d'électron- $\pi$  le bis-éthylènedithio-tétrathiafulvalène (BEDT-TTF)<sup>[4]</sup> possédant huit atomes de soufre dans sa structure. L'état supraconducteur apparait à 12,5K (0,3k Bar) pour le sel d'ion radical (BEDT-TTF)<sub>2</sub>Cu[N(CN)<sub>2</sub>]Cl<sup>[5]</sup>.



Il faut noter que, depuis une dizaine d'années, à côté des nombreuses recherches qui visent à obtenir de nouveaux matériaux à propriétés conductrices <sup>[6]</sup> et supraconductrices <sup>[7]</sup> plus performants, le domaine d'investigation s'est étendu à des matériaux organiques présentant des propriétés magnétiques <sup>[8]</sup> et optiques, et beaucoup plus récemment à des solides bi propriétés <sup>[9]</sup> capables par exemple de réunir à la fois des propriétés conductrices et optiques ou magnétiques et conductrices ... etc.

#### Introduction Générale

Après cette brève introduction, et avant d'aborder plus en détail les différents aspects de notre travail, il sera utile d'avoir un aperçu des diverses définitions. Nous allons donc consacrer le premier chapitre à cette fin. Nous exposons dans ce chapitre quelques généralités sur les matériaux organiques conducteurs et les grandes familles de dérivés de tetrachalcogénofulvalènes (TTF) ainsi que les résultats les plus récentes dans ce domaine.

Dans un deuxième chapitre, on décrit la synthèse des deux nouvelles séries de molécules dérivées du tétrathiafulvalène :

- La première concerne des molécules contenant le groupe pyridine afin d'atteindre des matériaux conducteurs-magnétiques.

- La seconde concerne des TTF originaux à la fois riche en hétéroatomes, dotés d'une grande extension spatiale et contenant des groupements méthyles électrodonneurs d'une part, et de groupements thioalkyles électroattracteurs d'autre part, afin de moduler le pouvoir donneur de ces différents TTF. Nous détaillerons évidemment les méthodes de synthèse les plus accessibles à la préparation de nos molécules.

Enfin, la troisième partie sera consacrée à l'étude électrochimique et à la préparation des matériaux élaborés à partir des donneurs  $\pi$  synthétisés.

Une synthèse des résultats est alors faite et les perspectives des développements futurs sont proposées dans ce qui est la conclusion générale de ce mémoire.

#### **Bibliographie**

- 1. Lehn, J-M., La chimie supramoléculaire concepts et perspectives, **1997**, De Boeck & Larcier.
- Ferraris, J. P.; Cowan, D. O., Walatka, V.; Perlstein, J. H.; J. Am. Chem. Soc., 1973, 95, 948.
- Bechgaard, K.; Carneiro, K.; Rasmussen, F. B.; Olsen, M.; Rindorf, G.; Jacobsen, C. S.; Pedersen, H. J.; Scott, J. C.; *J. Am. Chem. Soc.*, 1981, 103, 2440 et références citées.
- S. S. P. Parkin, E. M. Engler, R. R. Schumaker, R. Lagier, V. Y. Lee, J. C. Jacobsen, H. J. Pedersen, J. C. Scott, *Phys. Rev. Lett.*, 1983, 50, 270.
- J. M. Williams, A. M. Kini, H. H. Wang, K. D. Carlson, U. Geiser, L. K. Montgomery, G. J. Pyrka, D. M. Watkins, J. M. Kommers, S. J. Boryschuk, A. V. S. Crouch, W. K. Kwok, J. E. Schirber, D. L. Overmyer, D. Jung, M. H. Whangbo, *Inorg. Chem.*, **1990**, 29, 3272.
- E. Laukhina, J. Vidal-Gancedo, V. Laukhin, J. Veciana, I. Chuev, V. Tkacheva, K. Wurst, C. Rovira, J. Am. Chem. Soc., 2003, 125, 3948.
- H. Nishikawa, A. Machida, T. Morimoto, K. Kikuchi, T. Kodama, I. Ikemoto, J. I. Yamada, H. Yoshino, K. Murata, Chem. Commun., 2003, 494.
- A. Alberola, E. Cornado, J. R. Galan-Mascaros, C. Gimenez-Saiz, J. C. Gomez-Garcia., J. Am. Chem. Soc., 2003, 125, 10774.
- **9.** L. Ouahab, F. Iwahori, S. Golhen, R. Carlier, J-P. Sutter, Synth. Met., **2003**, 133-134, 505-507.



Généralité Sur Les Matériaux Organiques A Base De Tétrathiafulvalène



Structure cristalline du sel de Bechgaard :(TMTTF)<sub>2</sub>X

Chapitre I

#### Généralité Sur Les Matériaux Organiques A Base De Tétrathiafulvalène

Dans ce premier chapitre, nous présentons tout d'abord les matériaux organiques issus de précurseurs de type tétrathiafulvalène (TTF) et la grande variété de leurs applications.

Nous nous concentrerons ensuite sur les matériaux organiques conducteurs et supraconducteurs dérivés du TTF et de ses analogues en rappelant notamment quelques notions concernant la conductivité et les facteurs qui en sont à l'origine.

Nous évoquerons enfin les divers axes de recherche actuels concernant l'élaboration de nouveaux dérivés TTF, comme précurseurs possible de métaux organiques et supraconducteurs de haute dimensionnalité plus performants.

#### I. PRESENTATION DES MATERIAUX ORGANIQUES CONDUCTEURS

#### I.1. Notions générales sur la conductivité électrique dans les solides

#### I.1.1. Notions relatives à la conductivité électrique

La migration d'un électron libre au sein du réseau moléculaire d'un matériau porte le nom de : *conductivité électrique* ( $\sigma_{RT}$ ), elle est généralement exprimée en S.cm<sup>-1</sup> ou  $\Omega^{-1}$ .cm<sup>-1</sup> (S=Siemens,  $\Omega$ =Ohm), nous allons présenter quelques notions générales sur la conductivité électrique.

#### a) Echelle de conductivité :

Selon la valeur de leurs conductivités électrique à température ambiante, les matériaux solides sont classés en trois catégories <sup>[1-a]</sup>:

- > Les matériaux isolants :  $\sigma_{RT} < 10^{-8}$ , cas du soufre, téflon, ... etc.
- > Les matériaux semi-conducteurs :  $10^{-8} < \sigma_{RT} < 1$ , cas silicium, le germanium, ... etc.

> *Les matériaux conducteurs :*  $1 < \sigma_{RT} < 10^6$ , cas du métaux : le cuivre, le mercure, les métaux précieux.

#### b) Evolution de la conductivité avec la température :

La conductivité électrique mesurée à température ambiante est insuffisante pour caractériser un matériau sur le plan électrique. En effet, une autre notion importante

#### Chapitre I

#### Généralité Sur Les Matériaux Organiques A Base De Tétrathiafulvalène

concerne l'évolution de cette dernière avec la température <sup>[1-b]</sup>. Deux cas peuvent généralement être observés :

La conductivité augmente par l'abaissement de la température. Dans ce cas le matériau présente un comportement métallique par analogue avec les métaux.



Le composé voit sa conductivité diminuer avec la température, le matériau présente alors un caractère semi-conducteur.



 $\succ$  Lorsqu'on abaisse la température, certains matériaux ne suivent pas une loi de croissance régulière. Leurs résistivité devient brusquement nulle en dessous d'une température  $T_C$  appelée température critique, le matériau présente alors l'état supraconducteur.



Cependant, on ne pourra parler définitivement de matériau supraconducteur que si ce dernier est sujet à l'effet Meissner-Ochsenfield, à savoir que : placé dans un champ magnétique extérieur entre 0 et un champ critique Hc, le matériau supraconducteur est diamagnétique.

#### I.2. Historique Des TTF

Le tétrathiafulvalène (TTF) et ses dérivés sont connus pour être des donneurs d'électron dans le domaine de matériaux organiques. Ceci a débuté en 1972 avec la découverte d'une haute conductivité électrique dans un sel chloré de TTF et des comportements métalliques dans le complexe de transfert de charge TTF-TCNQ<sup>[2]</sup>.

Cet électrodonneur soufré forme, en particulier avec le brome ou le chlore, deux complexes radicalaires stables doués d'une haute conductivité électrique ( $\sigma_{Br} = 2 .10^2$  S.cm<sup>-1</sup> et  $\sigma_{Cl} = 1,5 .10^2$  S.cm<sup>-1</sup>). Ces sels de cations radicaux cristallisent en formant des empilements de radicaux cations (TTF<sup>++</sup>) séparés par des colonnes d'anions bromures <sup>[3]</sup> ou chlorures <sup>[4]</sup> (figure1).



*Figure 1* : Structure cristalline du sel de cations radicaux  $TTF^{+\bullet}/C\Gamma_{0,67}$ a) vue selon l'axe b b) vue selon l'axe c.

Ce type d'empilements avait déjà été observé dans les sels d'anions radicaux du tétracyano-*p*-quinodiméthane (TCNQ)<sup>[5]</sup>, capable pour sa part de se réduire réversiblement en radical anion puis en dianion.

Le TCNQ forme par exemple, avec le sodium <sup>[6]</sup>, un sel d'anion radical ( $\sigma = 10^{-5}$  S.cm<sup>-1</sup>) dont la structure est similaire à celle de TTF-Br<sub>0,79</sub> ou TTF-Cl<sub>0,67</sub> (Figure 2).



*Figure 2* : Structure cristalline du sel Na<sup>+</sup>/TCNQ<sup>•</sup> a) vue selon l'axe b ; b) vue selon l'axe a.

Cowan associe le TTF et le TCNQ conduisant à la formation du complexe de transfert de charge TTF-TCNQ qui présente des propriétés électriques extraordinaires qui font de lui le premier véritable métal organique.



a)

*Figure 3*: a) Structure cristalline de TTF-TCNQ et modélisation des empilements ;b) Evolution de la conductivité du complexe TTF-TCNQ en fonction de la température.

Dès l'apparition de ses résultats, les recherches se sont développées et ont pris un essor considérable pour synthétiser des matériaux bases sur des dérivés de TTF encore plus performants. Cependant, des progrès importants vont être réaliser permettant ainsi, en 1980

d'accéder, avec le  $(TMTSF)_2PF_6$  au premier supraconducteur organique avec une Tc = 0,9K sous une pression de 12KBar<sup>[7-b,c]</sup>.

Le tableau suivant rappelle les découvertes les plus marquantes dans le domaine des conducteurs et supraconducteurs organiques de type TTF.

#### <u>Tableau 1</u>

| Donneurs-π                                                                                                                  | Matériaux : CTC ou SIR                                                                                                                                                                                                                                        |  |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\left[ \begin{array}{c} s \\ s \end{array} \right]$                                                                        | 1973 TTF-TCNQ <sup>[1]</sup><br>Premier métal organique: $\sigma_{RT}$ =500 S.cm <sup>-1</sup> ; T <sub>M-I</sub> =58 K                                                                                                                                       |  |
| Se Se                                                                                                                       | 1974 TSF-TCNQ <sup>[7-a]</sup><br>État métallique stabilisé au dessous de 28 K                                                                                                                                                                                |  |
| Se Se                                                                                                                       | 1980 (TMTSF) <sub>2</sub> PF <sub>6</sub> <sup>[7-b,c]</sup><br>Premier supraconducteur organique sous pression :<br>12kbar; Tc=0,9S.cm <sup>-1</sup>                                                                                                         |  |
| Sé Se                                                                                                                       | 1981 (TMTSF) <sub>2</sub> ClO <sub>4</sub> <sup>[7-d]</sup><br>Premier supraconducteur organique à pression<br>atmosphérique : Tc = 1,4 K                                                                                                                     |  |
| Se Se S                                                                                                                     | 1987 (DMET) <sub>2</sub> AuCl <sub>2</sub> <sup>[8-a]</sup><br>Premier supraconducteur organique obtenu à partir d'un<br>TTF dissymétrique : $Tc = 0.83 K$                                                                                                    |  |
| $1983 (BEDT-TTF)_2 ReO_4^{[8-b]}$ Premier supraconducteur organique sous pre<br>kbar ; Tc = 2K obtenu à partir d'un BEDTTTF |                                                                                                                                                                                                                                                               |  |
| ~ <u>s</u> ~ ·s <u>s</u> ~ <u>s</u> ~                                                                                       | 1990 (BEDT-TTF) <sub>2</sub> Cu[N(CN) <sub>2</sub> ]Cl <sup>[8-c]</sup><br>Record actuel sous pression : 0,3 kbar (Tc =12,8K)<br>(BEDT-TTF) <sub>2</sub> Cu[N(CN) <sub>2</sub> ]Br <sup>[8-d]</sup><br>Record actuel sous pression atmosphérique (Tc =11,6K). |  |

#### I.3. Classification des matériaux organiques conducteurs

On peut classer les conducteurs organiques en trois grandes familles : les polymères conducteurs, les dérivés de fullerène et les matériaux cristallins.

#### I.3.1. Les polymères conducteurs

Généralement obtenus par dopage des polymères neutres tels que :

- Les polymères conjugues dopés comme le polyacétylène, le polythiophène, polypyrrole, polyphénylènes <sup>[9]</sup>...etc.
- Les polymères de type (SN) x<sup>[10]</sup>
- Les polymères organométalliques.<sup>[11]</sup>

#### I.3.2. Les dérivés de fullerène

L'association du fullerène avec les métaux alcalins, peut conduire à des matériaux isolants, conducteurs ou supraconducteurs. Ainsi les sels du type  $M_3C_{60}$  (M : K, Rb, Cs, ...). Le  $K_3C_{60}$  est un supraconducteur tridimensionnel <sup>[12-a]</sup>.

#### I.3.3. Les molécules neutres conductrices

Certains matériaux organiques ne contenant exclusivement qu'une molécule neutre peuvent être semi-conducteur. C'est le cas des composés aromatiques polycycliques <sup>[12-b</sup>]

D'autres comme les dérivés [Ni (tmdt) 2] avec tmdt =triméthylènetétrathiafuvalènedithiolate) sont des métaux synthétiques neutres tridimensionnels<sup>[12-c]</sup>.

#### I.3.4. Les matériaux organiques cristallins

Cette famille de matériau résulte de l'interaction de deux entités et se présente sous deux formes : les complexes de transfert de charge et les sels d'ions radicaux.

#### I.3.4. a. Les complexes de transfert de charge CTC : D<sub>n</sub>A<sub>m</sub>

Ce sont des systèmes stables, qui sont issus d'un échange électronique entre un donneur (D) riche en électron- $\pi$ , tel que le TTF, et un accepteur (A) des électron- $\pi$  tel que le TCNQ.

#### Chapitre I

Généralité Sur Les Matériaux Organiques A Base De Tétrathiafulvalène

La réaction d'oxydoréduction entre le donneur (D) et l'accepteur (A), qui génère le complexe peut être représentée par l'équation suivante :

 $n D + m A \longrightarrow D_n A_m$ 

Les principales familles de donneurs et d'accepteurs sont présentées dans les tableaux 2 et 3





<u>*Tableau 3*</u>: Les grandes familles de accepteurs- $\pi$ 



#### I.3. 4.b. Les sels d'ions radicaux (SIR) : D<sub>n</sub>X<sub>m</sub>

Ces sels sont également des entités stables à l'état solide, ils résultent de l'association d'un donneur d'électron- $\pi$  tel que le TTF et un contre ion, le plus souvent inorganique qui assure la neutralité électrique du système. Ce type de matériaux peut être obtenu soit par :

- Voie chimique par l'action d'un oxydant tel que : I2, Br2, ...etc
- Voie électrochimique par une électrocristallisation.

La méthode d'électrocristallisation est de loin la plus utilisée <sup>[13]</sup>, car elle permet l'obtention directe de sels sous forme de cristaux de qualité suffisante pour les différentes mesures physiques et physico-chimiques (structures cristalline, conductivité, magnétisme ...). La réaction d'oxydation conduisant au sel d'ion radical est donnée par l'équation suivante :



Un grand nombre d'anions, que l'on peut classer en deux catégories, ont été associés aux cations radicaux de type TTF. Il y a les anions monovalents qui peuvent présenter différentes géométries :

- \* Sphérique : Br<sup>-</sup>, Cl<sup>-</sup>, ....
- \* Octaédrique : PF<sub>6</sub>, AsF<sub>6</sub>, ....
- \* Tétraédrique : BF<sub>4</sub>, ClO<sub>4</sub>, ReO<sub>4</sub>, ...
- \* Planaire :  $NO_3^-$ , ...
- \* Linéaire : SCN<sup>-</sup>, ...

Ainsi, de nombreux SIR ont été préparés à l'aide d'anions métalliques de valences supérieurs.

- \* Anion monovalents  $Au(X)_2$ ,  $M(SCN)_2$ ,  $MnCl_3$ , ...
- \* Anion divalents  $MCl_4^{2-}$ ,  $Hg(X)_8^{2-}$ ,  $M_6O_{19}^{2-}$ , ...
- \* Anion trivalents  $NbCl_{18}^{3}$ , ...

#### I.4. Facteurs responsables de la conductivité de métaux organiques

Les différentes études théoriques et expérimentales engagées jusqu'à présent ont permis de mettre en évidence que la conductivité électriques des matériaux organiques est conditionnée par deux critères, l'un l'ordre structural, et l'autre purement électronique.

#### I.4.1. Facteur structural

Il ressort des résultats réalisés par la physique du solide que la conductivité de ces matériaux est liée à des agencements structuraux particuliers des molécules organiques au sein du cristal.

#### I.4.1.a. Les complexes de transfert de charge : CTC

L'étude structurale par diffraction des rayons X des CTC de type TTF-TCNQ a montré qu'il existe deux type d'empilements possibles :

Empilement colonnaire alterné qui implique au sein d'une même colonne une alternance des molécules du donneur et d'accepteur dans une disposition de type Sandwich [14]

| D | А | D | А |
|---|---|---|---|
| А | D | А | D |
| D | А | D | А |
| А | D | А | D |

Empilement colonnaire alterné

Ce type d'empilement défavorise la délocalisation des électrons libres ce qui conduit systématiquement à des composés isolants ou mieux semi-conducteurs.

Ce type d'arrangement est rencontré par exemple dans le complexe DCHTTF-TCNO<sup>[15]</sup> ou TET-TTF-TCNO<sup>[16]</sup> (figure 4).



*Figure 4* : Structure cristalline de type alterné du complexe isolant a) du DCHTTF-TCNQ b) du TET-TTF avec le TCNQ

*Empilement colonnaire séparé* constitué de colonnes séparées de donneurs d'une part et d'accepteurs d'autre part.

| А | D | А | D |
|---|---|---|---|
| А | D | А | D |
| А | D | А | D |
| А | D | А | D |

Empilement colonnaire séparé

La délocalisation des électrons libres le long des colonnes est favorisée car ce mode d'empilement permet un recouvrement orbitalaire intracolonnaire efficace. Ce type d'arrangement a été observé dans la structure cristalline du complexe conducteur TTF-TCNQ<sup>[17]</sup>.

Afin de favoriser le mode d'empilement structural régulier de type séparé, les molécules doivent être relativement planes et présentant un faible encombrement stérique(figure 5).





Figure 5 : Structure cristalline de type séparé du complexe conducteur TTF-TCNQ ( $\sigma$ = 500S.cm<sup>-1</sup>  $\rho$ =0,59)

Lorsque les conditions électriques soient favorables, ce type d'empilement donne des complexes à caractère conducteur.

#### I.4.1.b. Les sels d'ions radicaux : SIR

Chapitre I

Dans le cas des sels d'ions radicaux, des études structurales ont montrées là encore, que les matériaux conducteurs présentaient le plus souvent des structures colonnaires homogènes de donneur. Les espèces anioniques, qui assurent uniquement la neutralité électrique du système, se placent généralement entre les colonnes de donneurs.



Empilement colonnaire des SIR

En fonction de son volume et sa géométrie, le contre ion peut cependant influencer la régularité et même le type d'empilement des donneurs et de ce fait il peut modifier les propriétés de conduction.

Des études structurales réalisées sur des sels d'ions radicaux ont montrés que le seul mode d'empilement possible est celui de type séparé. On constate que la conductivité

de ces matériaux est influencée d'une façon directe par la régularité des colonnes <sup>[18]</sup>. Ces résultats sont confirmés par les travaux réalisés par A.K. Gouasmia et Coll <sup>[19]</sup>.

Ce mode d'arrangement est parfaitement bien illustré par la structure du sel supraconducteur  $(TMTSF)_2ClO_4^{[7-d]}$  (figure 6).



Figure 6 : Structure colonnaire de type séparé du (TMTSF)<sub>2</sub>ClO<sub>4</sub>

Pour ces sels à valence mixte, la régularité de ces empilements de donneurs est également un paramètre structural important en ce qui concerne la conductivité des matériaux, les défauts d'empilement ou les irrégularités dans l'empilement, tel que l'apparition de tétramères ou de dimères perturbant les propriétés électriques du sel qui devient semi-conducteur et même isolant.

Il faut également noter que certains SIR, notamment ceux de la famille du BEDT-TTF donnent d'excellents conducteurs voir des supraconducteurs malgré l'absence de structure colonnaire séparée. Ces sels possèdent une structure en couche (phase kappa), avec l'alternance de feuillets de molécules BEDT-TTF arrangées en dimères orthogonaux et de feuillets de contre ions. La conductivité s'exerce au sein des feuillets de donneurs présentant un fort caractère bidimensionnel par l'intermédiaire de nombreux contacts S---S intermoléculaire.

L'exemple représentatif est le sel supraconducteur  $(BEDT-TTF)_2Cu(NCS)_2$  à  $T_c{=}10{,}4K$  (figure 7).



Figure 7: Structure cristalline de la phase kappa du (BEDT-TTF)<sub>2</sub>Cu(NCS)<sub>2</sub>

Enfin, on peut conclure que les conditions structurales ne sont pas les seules à régir la conductivité des matériaux organiques. Il est également nécessaire de satisfaire certains facteurs d'ordre électronique.

#### I.4.2. Facteur électronique

Les zones de non propagation des électrons sont appelées : bande interdite ou *gap* d'électron. Suivant la largeur de la bande interdite et le taux de transfert électronique, les électrons vont pouvoir ou non se déplacer librement : on observera alors un comportement métallique, isolant ou semi-conducteur selon le schéma simple décrit ci-dessous :



La formation d'une bande de conduction est la cause principale d'une conductivité de type métallique, cette bande est crée par un transfert électronique fractionnaire de la bande de valence à la bande de conduction <sup>[20]</sup>.

Donc la différence entre la conductivité des métaux et celle des matériaux organiques c'est que dans le cas des métaux la bonde de conduction existe déjà, mais dans le deuxième cas il faut créer cette bande.

Dans les matériaux de type TTF, la présence d'électrons libres et leurs déplacements dépendent du taux de transfert de charge dans le cas des CTC et de l'état de valence pour les SIR.

#### I.4.2.1. Les complexes de transfert de charge : CTC

La présence d'électrons libres au sein du complexe, résulte d'un transfert de charge entre le donneur **D** et l'accepteur **A**. Ce transfert de charge, qui peut être plus au moins important, est caractérisé par le taux de transfert de charge  $\delta$  dont la valeur peut varier de **0** à **1**.

#### a) Transfert de charge nul : (D<sup>0</sup>, A<sup>0</sup>)

Il n'y a pas de transfert de charge  $\delta = 0$ . On a alors un complexe moléculaire isolant puisqu'il n'y a pas d'électrons libres. Dans ce contexte, il n'existe plus d'électrons libres mobiles, c'est un complexe moléculaire ionisé (D<sup>0</sup>, A<sup>0</sup>) et par conséquent isolant.

 $\mathbf{D}^{\circ} + \mathbf{A}^{\circ} \longrightarrow \mathbf{D}^{\circ} \mathbf{A}^{\circ}$ 

#### b) Transfert de charge total : (D<sup>+</sup>, A<sup>-</sup>)

Dans ce cas, le transfert de charge entre le D et le A est total  $\delta = 1$ . Le complexe est donc ionique. Les donneurs (ou les accepteurs) ayant le même état d'oxydation, la délocalisation des électrons libres implique le passage par des états doublements chargés, ce qui est énergétiquement très défavorables (répulsions coulombiennes fortes). Le complexe est alors isolant ou au mieux semi-conducteur.



énergétiquement défavorable

### c) Transfert de charge partiel : $(D^{\delta^+}, A^{\delta_-})$

Dans ce cas  $0 < \delta < 1$ , les donneurs et les accepteurs présentent différents états d'oxydation, ce qui permet, en présence d'un champ électrique, une délocalisation des électrons libres. Le complexe est donc conducteur si le facteur structural le permet.



#### I.4.2.2. Les sels d'ions radicaux SIR

Dans le cas des SIR, ils doivent posséder un état de valence mixte pour prétendre être conducteurs. Pour les SIR de la famille des TTF représentés par la formule  $D_nX_m$ , cela implique donc la règle de n > m.

C'est le cas des sels à valence mixte de type  $(TTF)_2X$ , comme le  $(TMTTF)_2Br$ . Par contre en absence de valence mixte les sels de type  $(TTF)_1Cl_1$  assimilables à un CTC ionique et dont le donneur est totalement oxydé sont des matériaux isolants.

Le sel  $(TTF)_1Cl_{0,68}$  <sup>[21]</sup> (n > m) présente un état de valence mixte. Les molécules de TTF sont alors à des états d'oxydations différents, ce sel est conducteur ( $\sigma_{RT}$ = 100-500 S.cm<sup>-1</sup>) (figure 8).

25



*Figure 8* : mécanisme de conduction dans un matériau conducteur Les plaque : donneur, les boule : contre ion ou accepteur

#### I.5. Dimensionnalité

Certains conducteurs organiques possèdent des empilements colonnaires réguliers mais pour lesquels les interactions interchaînes entre les colonnes sont inexistantes, ce système subira à une basse température une transition métal-isolant à cause de la distorsion de Peierls <sup>[22-a]</sup>.

Ce phénomène est caractéristique de systèmes monodimensionnels. A noter qu'au dessous de cette température de transition de subtiles vibrations de réseau cristallin interviennent, ce qui provoque un grand écart d'énergie entre la bande la plus haute occupée et la bande la plus basse vacante.



Pour éviter cette distorsion structurale à basse température, il suffit de faire évoluer ce système vers la pluridimensionnalité <sup>[22-b]</sup>. Pour cela il faudrait intensifier les contactes

inter et intrachaînes, ceci peut être réalisé de différentes manières, les efforts ont été essentiellement sur des modifications structurales.

#### I.5.1. Substitution des atomes de soufre par d'autres chalcogènes

La substitution des atomes de soufre par des chalcogènes (Se et Te) à orbitales plus volumineuses et diffuses du sélénium ou du tellure, permet d'augmenter les contactes et les interactions inter et intrachaînes au sein des sels obtenus. Comme le montre le sel (TMTTF)<sub>2</sub>ClO<sub>4</sub> qui subit une transition métal-isolant à 228 K par contre son homologue sélénié le (TMTSF)<sub>2</sub>ClO<sub>4</sub> est supraconducteur à Tc = 1,2 K<sup>[23]</sup>.



Contrairement au sel  $(TMTTF)_2ClO_4^{[24]}$  qui est quasi-unidimensionnel (Figure 09), le sel correspondant du TMTSF présente, grâce aux interactions intra et intercolonnes entre les atomes de sélénium<sup>[25]</sup> (distance Se....Se intra et intercolonnaires inférieures à la somme des rayons de Van Der Waals du sélénium), un certain caractère bidimensionnel (Figure 10). Il faut noter également que les interactions intercolonnes s'exercent au travers des contacts cation-anion (interaction Se...O).



Figure 9 : Structure 1D du (TMTTF)<sub>2</sub>ClO<sub>4</sub> : pas de contacts interchaînes



Figure 10: Interactions intra et intercolonnes du (TMTSF)<sub>2</sub>ClO<sub>4</sub>

#### I.5.2. Multiplication des hétéroatomes dans le donneur

L'utilisation de donneurs polysoufrés voir polysélénies a été développée pour accroître les contactes intermoléculaires intra et intercolonnaires.

L'examen structural des matériaux issus de BEDT-TTF qui contient huit atomes de soufre, et qui est à l'origine de toute une série de matériaux bidimensionnels conducteurs ou supraconducteurs, est l'exemple le plus significatif, avec ses sels à phase kappa évoqués précédemment, et ceux à structure colonnaire bidimensionnelle comme le (BEDT-TTF)<sub>2</sub>BrO<sub>4</sub><sup>[26]</sup> (Figure 11).



Figure 11 : Interactions inter et intracolonnes du sel (BEDT-TTF)<sub>2</sub>BrO<sub>4</sub>

#### I.5.3. Introduction d'une dissymétrie dans la structure du TTF

Dans ce cas la dimensionnalité des sels peut être accrue par la tendance de ces TTF dissymétriquement substitués à former des dimères centrosymétriques dans les matériaux correspondants, ce qui été observé dans le sel (CPDMTSF)<sub>2</sub>PF<sub>6</sub> qui ne présente pas de transition métal-isolant (Figure 12). Cette stabilisation métallique à basse température a été associée au caractère bidimensionnel de la structure colonnaire de ce sel.



*Figure 12 :* Mode d'empilement et Résistivité électrique en fonction de T du sel (CPDMTSF)<sub>2</sub>PF<sub>6</sub>

Une autre technique physique qui permet d'augmenter la dimensionnalité, consiste à appliquer une haute pression sur le matériau afin d'éliminer la distorsion de Peierls. Ainsi, le sel (TMTSF)<sub>2</sub>PF<sub>6</sub> qui subit une transition métal-isolant vers 12K à pression ambiante devient supraconducteur sous 12 kbar avec une température critique de 0,9K (Figure 13).



*Figure 13* : a- Variation de la résistivité du (TMTSF)<sub>2</sub>PF<sub>6</sub> en fonction de la température b- Structure en colonne et recouvrement orbitalaire du (TMTSF)<sub>2</sub>PF<sub>6</sub>

#### I.5.4. La nature du contre ion X dans les SIR

Les travaux réalisés par A.K. Gouasmia et Coll<sup>[27]</sup> ont mis en évidence l'existence d'une relation entre la nature du contre ion, la régularité de l'empilement et la conductivité de ces matériaux dérivés.

En effet, le (CHDMTTF)<sub>2</sub>ReO<sub>4</sub> qui présente un empilement régulier avec une faible dimérisation est un conducteur ( $\sigma = 1 \text{ S.cm}^{-1}$ ) à température ambiante. Par contre le (CHDMTTF)<sub>2</sub>ClO<sub>4</sub>, pour lequel l'empilement des cations est caractérisé par une forte dimérisation est un semi-conducteur.

Finalement, toutes les modifications chimiques citées auparavant ont permis la préparation d'un grand nombre de matériaux organiques supraconducteurs de type TTF ( tableau 4).

| TMTSF         9           (TMTSF)2F6         0.9 (12 kbar)           (TMTSF)2AsF6         1,1 (12 kbar)           (TMTSF)2SbF6         0,4 (11 kbar)           (TMTSF)2ReQ4         1,3 (9,5 kbar)           (TMTSF)2FSO3         2,1 (6,5 kbar)           (TMTSF)2CIQ4         1,4 <b>BEDT-TTF (ET)</b> (ET)2ReQ4         2,0 (4,5 kbar) $\beta$ (ET)2I3         8,0 (0,5 kbar) $\gamma$ (ET)2I3,5         2,5 $\phi$ -(ET)2I3 et k-(ET)2I3         3,6 $\alpha_r$ (ET)2I3 et k-(ET)2I3         3,6 $\alpha_r$ (ET)2B12         2,8 $\beta$ -(ET)2HB12         2,8 $\beta$ -(ET)2UI1         5,0 $\kappa$ -(ET)2Gu(NCS)2         10,4 $\kappa$ -(ET)2Gu(NCN)2H20         5,0 $\kappa$ -(ET)2Cu(NCN)2H20         5,0 $\kappa$ -(ET)2Cu(NCN)2IC1         12,5 (0,3 kbar)           (ET)4H2(CN)4.H2O         2,2 (6,5 kbar)           (ET)4P4(CN)4.H2O         1,2 (7 kbar) $\kappa$ -(ET)2Cu(NCN)2[C1,5Br0,5         11,3 $\kappa$ -(ET)2Cu(NCN)2[C1,5Br0,5         11,3 $\kappa$ -(ET)2Cu(NCN)2[C1,5Br0,5         11,3 $\kappa$ -(ET)2Cu(NCN)2[C1,5Br0,5         1,1 $\kappa$ -(ET)2Cu(NCN)2[C1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Composé                                                                                            | <b>Tc</b> (K)       |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------|--|
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TMTSF                                                                                              |                     |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (TMTSF)2PF6                                                                                        | 0.9 (12 kbar)       |  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (TMTSF)2AsF6                                                                                       | 1,1 (12 kbar)       |  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (TMTSF)2SbF6                                                                                       | 0,4 (11 kbar)       |  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (TMTSF)2TaF6                                                                                       | 1,4 (12 kbar)       |  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (TMTSF) <sub>2</sub> ReO <sub>4</sub>                                                              | 1,3 (9,5 kbar)      |  |
| (IMTSF)2CIO41.4 <b>BEDT-TTF (ET)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (TMTSF) <sub>2</sub> FSO <sub>3</sub>                                                              | 2,1 (6,5 kbar)      |  |
| BEDT-TTF (ET)         (ET)2ReO4         2,0 (4,5 kbar) $\beta$ -(ET)2I3         1,4 $\beta^*$ -(ET)2I3         8,0 (0,5 kbar) $\gamma$ (ET)3I2,5         2,5 $\theta$ -(ET)2I3 et k~(ET)2I3         3,6 $\alpha_{t}$ -(ET)13 et k~(ET)2I3         3,6 $\alpha_{t}$ -(ET)2I3 et k~(ET)2I3         4,6 $\beta$ -(ET)2Br2         2,8 $\beta$ -(ET)2HB2,89B78         4,3; 6,7 (3,5 kbar)           (ET)2Hg1,41Br4         2,0 $\kappa$ -(ET)4H22,89B78         4,3; 6,7 (3,5 kbar)           (ET)2Hg1,41Br4         2,0 $\kappa$ -(ET)2Cu(NCS)2         10,4 $\kappa$ -(ET)2Cu(NCN)2]Br         11,6 $\kappa$ -(ET)2Cu[N(CN)2]Cl         12,5 (0,3 kbar)           (ET)4Pd(CN)4.H2O         2,0 (6,5 kbar)           (ET)4Pd(CN)4.H2O         1,2 (7 kbar) $\kappa$ -(ET)2Cu[N(CN)2]Cl_0,5Br0,5         11,3 $\beta^*$ -(ET)2SF5CH2CF2SO3         5,2 $\beta^*$ -(ET)2Au(CN)2         1,1,2 $\kappa$ -(ET)2Au(CN)2         0,8 (5 kbar) $\beta^*$ -(ET)2Au(CN)2         0,5 $\beta^*$ -(ET)2Au(CN)2         0,5 $\beta^*$ -(ET)2Au(CN)2         0,5 $\beta^*$ -(ET)2Au(CN)2         0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (IMISF)2ClO4                                                                                       | 1,4                 |  |
| (ET)2ReO4       2,0 (4,5 kbar) $\beta$ -(ET)2I3       1,4 $\beta^*$ -(ET)2I3       8,0 (0,5 kbar) $\gamma$ (ET)3I2,5       2,5 $\theta$ -(ET)2I3 et k~(ET)2I3       3,6 $\alpha^-$ (ET)1,96(MET)0,04I3       4,6 $\beta$ -(ET)2Br2       2,8 $\beta$ -(ET)2HBr2       5,0 $\kappa$ -(ET)2Hg2,89Br8       4,3; 6,7 (3,5 kbar)         (ET)2Hg1,41Br4       2,0 $\kappa$ -(ET)2Cu(NCS)2       10,4 $\kappa$ -(ET)2Cu[N(CN)2]Br       11,6 $\kappa$ -(ET)2Cu[N(CN)2]Cl       12,5 (0,3 kbar)         (ET)4H20       2,0 (6,5 kbar)         (ET)4P4(CN)4.H20       1,2 (7 kbar) $\kappa$ -(ET)2Cu[N(CN)2]Cl,0,5Br0,5       11,3 $\kappa^-(ET)2Cu(CN)(N(CN)2]$ 11,2 $\kappa^-(ET)2Cu(N(CN)2]Cl_0,5Br0,5       11,3         \beta^*-(ET)2Afe(C204)3.H20.PhCN       8,5         \beta^*-(ET)4Fe(C204)3.H20.PhCN       8,5         \beta^*-(ET)4Ae(CN)2       0,8 (5 kbar)         (DMET)2Au[2       0,6         (DMET)2Au[2       0,6         (DMET)2Au[2       0,6         (DMET)2Au[2       0,6         (DMET)2AuBr2       1,0         (DMET)2AuBr2       1,0         (DMET)2AuB$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BEDT-TTF (ET)                                                                                      |                     |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ET) <sub>2</sub> ReO <sub>4</sub>                                                                 | 2,0 (4,5 kbar)      |  |
| $\beta^*$ -(ET)2I3       8.0 (0.5 kbar) $\gamma$ -(ET)3I2,5       2,5 $\theta$ -(ET)2I3 et k-(ET)2I3       3,6 $\alpha_{t}$ -(ET)2I3       7-8 $\beta$ -(ET)1,96(MET)0,04I3       4,6 $\beta$ -(ET)2HBr2       2,8 $\beta$ -(ET)2AuI2       5,0         k-(ET)2Hg2,89Br8       4,3; 6,7 (3,5 kbar)         (ET)2Hg1,41Br4       2,0 $\kappa$ -(ET)2Cu(NCS)2       10,4 $\kappa$ -(ET)2Cu[NCN)2H20       5,0 $\kappa$ -(ET)2Cu[NCN)2H20       5,0 $\kappa$ -(ET)2Cu[NCN)2H20       5,0 $\kappa$ -(ET)2Cu[NCN)2H20       2,0 (6,5 kbar)         (ET)4P4(CN)4.H2O       1,2 (7 kbar)         (ET)4P4(CN)4.H2O       1,2 (7 kbar) $\kappa$ -(ET)2Cu[N(CN)2]Cl0,5Br0,5       11,3 $\beta^*$ -(ET)2SF5CH2CF2SO3       5,2 $\beta^*$ -(ET)2Au(CN)2       0,8 (5 kbar) $\beta^*$ -(ET)2AuEr2       0,6 $\beta^*$ -(ET)2AuEr2       0,6 $\beta^*$ -(ET)2AuEr2       0,6 $\beta^*$ -(ET)2AuEr2       0,8 $\beta^*$ -(ET)2AuEr2       0,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | β-(ET) <sub>2</sub> I <sub>3</sub>                                                                 | 1,4                 |  |
| $\gamma$ -(ET)3I2,5       2.5 $\theta$ -(ET)2I3 et k-(ET)2I3       3,6 $\alpha_{t}$ -(ET)2I3       7-8 $\beta$ -(ET)1,96(MET)0,04I3       4,6 $\beta$ -(ET)2MBr2       2.8 $\beta$ -(ET)2MI2       5.0 $\kappa$ -(ET)4Hg2,89Br8       4,3; 6,7 (3,5 kbar)         (ET)2Hg1,41Br4       2.0 $\kappa$ -(ET)2Qu(NCS)2       10,4 $\kappa$ -(ET)2Cu[N(CN)2]Br       11,6 $\kappa$ -(ET)2Cu[N(CN)2]Cl       12,5 (0,3 kbar)         (ET)4Pd(CN)4.H2O       2.0 (6,5 kbar)         (ET)2Pd(CN)4.H2O       1,2 (7 kbar) $\kappa$ -(ET)2Cu[(CN)2]Cl,5Br0,5       11,3 $\kappa$ -(ET)2Cu[(CN)2]Cl0,5Br0,5       11,3 $\kappa$ -(ET)2Cu[CN)2]Cl0,5Br0,5       11,3 $\kappa$ -(ET)2Cu[CN)2]Cl0,5Br0,5       11,3 $\beta$ -(ET)2SF5CH2CF2SO3       5.2 $\beta$ -(ET)2Au(CN)2       0,8 (5 kbar) $\beta$ -(ET)2Au(CN)2       0,8 (5 kbar)         (DMET)2Au(CN)2       0,8 (5 kbar)         (DMET)2Au(2)       0,6 (5 kbar)         (DMET)2AuBr2       0,6 (5 kbar)         (DMET)2AuBr2       0,6 (5 kbar)         (DMET)2AuBr2       0,8 (26 kbar)         (DMET)2AuBr2       0,8 (26 kbar)         (DMET)2AuBr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | β*-(ET) <sub>2</sub> I <sub>3</sub>                                                                | 8,0 (0,5 kbar)      |  |
| $\theta - (ET)_2 l_3$ et $\kappa - (ET)_2 l_3$ 3,6 $\alpha_t - (ET)_2 l_3$ 7-8 $\beta - (ET)_1 , 96 (MET)_{0,0} 4 l_3$ 4,6 $\beta - (ET)_2 A u l_2$ 5,0 $\kappa - (ET)_4 M l_2, 89 B r_8$ 4,3; 6,7 (3,5 kbar) $(ET)_2 H g_1, 4 l B r_4$ 2,0 $\kappa - (ET)_2 Cu(NCS)_2$ 10,4 $\kappa - (ET)_2 Cu[N(CN)_2 l B r       11,6         \kappa - (ET)_2 Cu[N(CN)_2 l C l       12,5 (0,3 kbar)         (ET)_4 P4(CN)_4 H_2 O       2,0 (6,5 kbar)         (ET)_4 P4(CN)_4 H_2 O       1,2 (7 kbar)         \kappa - (ET)_2 Cu[N(CN)_2] C l_0, 5 B r_0,5       11,3         \kappa - (ET)_2 Cu_2 (CN) [N(CN)_2]       11,2         \kappa - (ET)_2 Cu_2 (CN) [N(CN)_2] C l_0, 5 B r_0,5       11,3         \beta^- (ET)_4 Fe (C_2 O 4)_3 . H_2 O . Ph CN       8,5         \beta^- (ET)_4 Cr(C_2 O 4)_3 . H_2 O . Ph CN       8,5         \beta^- (ET)_4 L CN)_2       0,8 (5 kbar)         (DMET)_2 Au(CN)_2       0,8 (5 kbar)         (DMET)_2 Au(2N)_2       0,6         (DMET)_2 Au B r_2       0,6         (DMET)_2 Au B r_2       0,6         (DMET)_2 Au B r_2       0,6 (5 kbar)         (DMET)_2 Au B r_2       0,8 (26 kbar)         \kappa - (DMET)_2 Au B r_2       0,8 (26 kbar)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | γ-(ET)3I2,5                                                                                        | 2,5                 |  |
| $\alpha_t$ -(ET)2I3         7-8 $\beta$ -(ET)1,96(MET)0,04I3         4,6 $\beta$ -(ET)2IBr2         2,8 $\beta$ -(ET)2AuI2         5,0 $\kappa$ -(ET)4Hg2,89Br8         4,3; 6,7 (3,5 kbar)           (ET)2Hg1,41Br4         2,0 $\kappa$ -(ET)2Qu(NCS)2         10,4 $\kappa$ -(ET)2Qu(NCN)2H20         5,0 $\kappa$ -(ET)2Qu(NCN)2Br         11,6 $\kappa$ -(ET)2Cu[N(CN)2]Cl         12,5 (0,3 kbar)           (ET)4Pd(CN)4.H2O         2,0 (6,5 kbar)           (ET)4Pd(CN)4.H2O         1,2 (7 kbar) $\kappa$ -(ET)2Cu[N(CN)2]Cl_0,5Br0,5         11,3 $\kappa$ -(ET)2Cu[N(CN)2]Cl_0,5Br0,5         11,3 $\beta^{-}$ (ET)2SF5CH2CF2SO3         5,2 $\beta^{-}$ (ET)4Fe(C2O4)3.H2O.PhCN         8,5 $\beta^{-}$ (ET)4Fe(C2O4)3.H2O.PhCN         8,5 $\beta^{-}$ (ET)4Cu(CN)2         0,8 (5 kbar)           (DMET)2Au         0,5           (DMET)2Au         0,6           (DMET)2Au         0,6           (DMET)2AuBr2         0,6           (DMET)2AuBr2         0,6           (DMET)2AuBr2         0,6           (DMET)2AuBr2         0,8           (DMET)2AuBr2         0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\theta$ -(ET) <sub>2</sub> I <sub>3</sub> et $\kappa$ -(ET) <sub>2</sub> I <sub>3</sub>           | 3,6                 |  |
| β-(ET)1,96(MET)0,04I3         4,6           β-(ET)2IBr2         2,8           β-(ET)2AuI2         5,0           κ-(ET)4Hg2,89Br8         4,3; 6,7 (3,5 kbar)           (ET)2Hg1,41Br4         2,0           κ-(ET)2Cu(NCS)2         10,4           κ-(ET)2Ag(CN)2.H20         5,0           κ-(ET)2Cu[N(CN)2]Br         11,6           κ-(ET)2Cu[N(CN)2]Cl         12,5 (0,3 kbar)           (ET)4Pd(CN)4.H2O         2,0 (6,5 kbar)           (ET)4Pd(CN)4.H2O         1,2 (7 kbar)           κ-(ET)2Cu[N(CN)2]Cl0,5Br0,5         11,3           κ'-(ET)2Cu[N(CN)2]Cl0,5Br0,5         11,3           β''-(ET)2SF5CH2CF2SO3         5,2           β''-(ET)4Fe(C2O4)3.H2O.PhCN         8,5           β''-(ET)4Fe(C2O4)3.H2O.PhCN         8,5           β''-(ET)4Cr(C2O4)3.H2O.PhCN         5,0           DMET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\alpha_t$ -(ET) <sub>2</sub> I <sub>3</sub>                                                       | /-8                 |  |
| β-(ET)2IBr2       2.8         β-(ET)2AuI2       5,0         κ-(ET)4Hg2,89Br8       4,3; 6,7 (3,5 kbar)         (ET)2Hg1,41Br4       2,0         κ-(ET)2Cu(NCS)2       10,4         κ-(ET)2Qu[N(CN)2H20       5,0         κ-(ET)2Cu[N(CN)2]Br       11,6         κ-(ET)2Cu[N(CN)2]Cl       12,5 (0,3 kbar)         (ET)4Pd(CN)4.H2O       2,0 (6,5 kbar)         (ET)4Pd(CN)4.H2O       1,2 (7 kbar)         κ-(ET)2Cu[N(CN)2]Cl0,5Br0,5       11,3         κ'-(ET)2Cu[N(CN)2]Cl0,5Br0,5       11,3         β'-(ET)2SF5CH2CF2SO3       5,2         β''-(ET)4Fe(C2O4)3.H2O.PhCN       8,5         β''-(ET)4Fe(C2O4)3.H2O.PhCN       5,0         DMET       0,8 (5 kbar)         (DMET)2Au(CN)2       0,8 (5 kbar)         (DMET)2Au2       0,6 (5 kbar)         (DMET)2Au2       0,6 (5 kbar)         (DMET)2Au32       0,6 (5 kbar)         (CMET)2Au32       0,6 (5 kbar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | β-(ET) <sub>1,96</sub> (MET) <sub>0,04</sub> I <sub>3</sub>                                        | 4,0                 |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\beta$ -(ET) <sub>2</sub> IBr <sub>2</sub>                                                        | 2,8                 |  |
| $\kappa$ -(ET)4Hg2,89Br8       4,3; 6,7 (3,5 kbar)         (ET)2Hg1,41Br4       2,0 $\kappa$ -(ET)2Cu(NCS)2       10,4 $\kappa$ -(ET)2Ag(CN)2.H20       5,0 $\kappa$ -(ET)2Cu[N(CN)2]Br       11,6 $\kappa$ -(ET)2Cu[N(CN)2]Cl       12,5 (0,3 kbar)         (ET)4Pd(CN)4.H2O       2,0 (6,5 kbar)         (ET)4Pd(CN)4.H2O       1,2 (7 kbar) $\kappa$ -(ET)2Cu[N(CN)2]Cl0,5Br0,5       11,3 $\kappa$ -(ET)2Cu[N(CN)2]Cl0,5Br0,5       11,3 $\beta^{"}$ -(ET)2SF5CH2CF2SO3       5,2 $\beta^{"}$ -(ET)4Fe(C2O4)3.H2O.PhCN       8,5 $\beta^{"}$ -(ET)4Cr(C2O4)3.H2O.PhCN       5,0 <b>DMET</b> 0,8 (5 kbar)         (DMET)2Au(CN)2       0,8 (5 kbar)         (DMET)2Au2       0,6         (DMET)2Au2       0,6 (5 kbar)         (DMET)2Au2       0,6 (5 kbar)         (DMET)2Au3       1,9         Autres composés       1,9 $\kappa$ -(MDT-TTF)2Au32       1,0 (1,5 kbar) $\kappa$ -(MDT-TTF)2Au32       0,8 (26 kbar) $\kappa$ -(MDT-TTF)2Au32       0,8 $\kappa$ -(MDT-TTF)2Au32       0,9 $\kappa$ -(MDT-TTF)2Au32       0,9 $\kappa$ -(MDT-TTF)2Au32       0,9 $\kappa$ -(BED0-TTF)2Go2(SCN)3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\beta$ -(ET) <sub>2</sub> AuI <sub>2</sub>                                                        | 5,0                 |  |
| (E1)2Hg1,41Br4       2,0 $\kappa$ -(ET)2Cu(NCS)2       10,4 $\kappa$ -(ET)2Ag(CN)2.H20       5,0 $\kappa$ -(ET)2Cu[N(CN)2]Br       11,6 $\kappa$ -(ET)2Cu[N(CN)2]Cl       12,5 (0,3 kbar)         (ET)4Pd(CN)4.H2O       2,0 (6,5 kbar)         (ET)4Pd(CN)4.H2O       1,2 (7 kbar) $\kappa$ -(ET)2Cu[N(CN)2]Cl0,5Br0,5       11,3 $\kappa$ -(ET)2Cu[N(CN)2]Cl0,5Br0,5       11,3 $\beta^{"}$ -(ET)2SF5CH2CF2SO3       5,2 $\beta^{"}$ -(ET)4Fe(C2O4)3.H2O.PhCN       8,5 $\beta^{"}$ -(ET)4Fe(C2O4)3.H2O.PhCN       5,0 <b>DMET</b> 0,8 (5 kbar)         (DMET)2Au(CN)2       0,8 (5 kbar)         (DMET)2Au2       0,6 (5 kbar)         (DMET)2Au2       0,6 (5 kbar)         (DMET)2Au2       0,6 (5 kbar)         (DMET)2Au32       0,8 (26 kbar) $\kappa$ -(DMT-TTF)2Au32       1,1         (BEDO-TTF)2RO4_H2O       0,9 $\lambda$ -(BEDT-TSF)2GaC14       8,0         (DMET-TSF)2GaC14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | κ-(ET)4Hg2,89Br8                                                                                   | 4,3; 6,7 (3,5 kbar) |  |
| k-(E1) <sub>2</sub> Cu(NCS) <sub>2</sub> 10,4         k-(ET) <sub>2</sub> Ag(CN) <sub>2</sub> .H <sub>2</sub> O       5,0         k-(ET) <sub>2</sub> Cu[N(CN) <sub>2</sub> ]Br       11,6         k-(ET) <sub>2</sub> Cu[N(CN) <sub>2</sub> ]Cl       12,5 (0,3 kbar)         (ET) <sub>4</sub> Pt(CN) <sub>4</sub> .H <sub>2</sub> O       2,0 (6,5 kbar)         (ET) <sub>4</sub> Pd(CN) <sub>4</sub> .H <sub>2</sub> O       1,2 (7 kbar)         k-(ET) <sub>2</sub> Cu(CN)[N(CN) <sub>2</sub> ]       11,2         k'-(ET) <sub>2</sub> Cu <sub>2</sub> (CN) <sub>1</sub> N(CN) <sub>2</sub> ]       11,3         k'-(ET) <sub>2</sub> Cu <sub>2</sub> (CN) <sub>2</sub> ]Cl <sub>0,5</sub> Br <sub>0,5</sub> 11,3         β"-(ET) <sub>2</sub> SF <sub>5</sub> CH <sub>2</sub> CF <sub>2</sub> SO <sub>3</sub> 5,2         β"-(ET) <sub>4</sub> Fe(C <sub>2</sub> O <sub>4</sub> ) <sub>3</sub> .H <sub>2</sub> O.PhCN       8,5         β"-(ET) <sub>4</sub> Cr(C <sub>2</sub> O <sub>4</sub> ) <sub>3</sub> .H <sub>2</sub> O.PhCN       5,0         DMET       0,8 (5 kbar)         (DMET) <sub>2</sub> Au(CN) <sub>2</sub> 0,8 (5 kbar)         (DMET) <sub>2</sub> Au <sub>2</sub> 0,6 (5 kbar)         (DMET) <sub>2</sub> Au <sub>1</sub> 0,5         (DMET) <sub>2</sub> Au <sub>1</sub> 1,0 (1,5 kbar)         k-(DMET) <sub>2</sub> Au <sub>1</sub> 1,0 (1,5 kbar)         k-(DMET) <sub>2</sub> Au <sub>1</sub> 0,8 (26 kbar)         (DMET) <sub>2</sub> Au <sub>1</sub> 0,8 (26 kbar)         k-(MDT-TTF) <sub>2</sub> Au <sub>1</sub> 4,5         βm-(BEDO-TTF) <sub>3</sub> Cu <sub>2</sub> (SCN) <sub>3</sub> 1,1         (BEDO-TTF) <sub>2</sub> ReO <sub>4</sub> H <sub>2</sub> O       0,9         λ-(BEDT-TSF) <sub>2</sub> GaCl <sub>4</sub> 8,0         (DMET-TSF) <sub>2</sub> GaCl <sub>4</sub> 6,6         (TTTF) | (EI) <sub>2</sub> Hg <sub>1,41</sub> Br <sub>4</sub>                                               | 2,0                 |  |
| k-(E1)2Ag(CN)2.H20       5.0         k-(ET)2Cu[N(CN)2]Br       11,6         k-(ET)2Cu[N(CN)2]Cl       12,5 (0,3 kbar)         (ET)4Pt(CN)4.H2O       2,0 (6,5 kbar)         (ET)4Pd(CN)4.H2O       1,2 (7 kbar)         k-(ET)2Cu[(N(CN)2]       11,2         k-(ET)2Cu2(CN)[N(CN)2]       11,2         k-(ET)2Cu2(CN)[N(CN)2]       11,3         β"-(ET)2Cu2(CN)3       3,8         k-(ET)2Cu2(CN)3       5,2         β"-(ET)2SF5CH2CF2SO3       5,2         β"-(ET)4Fe(C2O4)3.H2O.PhCN       8,5         β"-(ET)4Cr(C2O4)3.H2O.PhCN       5,0         DMET       0,8 (5 kbar)         (DMET)2Au(CN)2       0,8 (5 kbar)         (DMET)213       0,5         (DMET)2Au212       0,6 (5 kbar)         (DMET)2Au212       0,6 (5 kbar)         (DMET)2Au32       1,0 (1,5 kbar)         k-(DMET)2Au32       1,0 (1,5 kbar)         k-(DMET)2Au32       1,0 (1,5 kbar)         k-(MDT-TTF)2Au32       1,0 (1,5 kbar)         k-(MDT-TTF)2Au32       0,8 (26 kbar)         fm-(BED0-TTF)3Cu2(SCN)3       1,1         (BED0-TTF)2ReO4.H2O       0,9         λ-(BEDT-TSF)2GaC14       8,0         (DMET-TSF)2GaC14       8,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | κ-(ET) <sub>2</sub> Cu(NCS) <sub>2</sub>                                                           | 5.0                 |  |
| k-(E1)2Cu[N(CN)2]Br       11.0         k-(ET)2Cu[N(CN)2]Cl       12,5 (0,3 kbar)         (ET)4Pd(CN)4.H2O       2,0 (6,5 kbar)         (ET)4Pd(CN)4.H2O       1,2 (7 kbar)         k-(ET)2Cu(CN)[N(CN)2]       11,2         k'-(ET)2Cu2(CN)3       3,8         k-(ET)2Cu2(CN)[N(CN)2]       11,3 $\beta^{"}$ -(ET)2SF5CH2CF2SO3       5,2 $\beta^{"}$ -(ET)4Fe(C2O4)3.H2O.PhCN       8,5 $\beta^{"}$ -(ET)4Cr(C2O4)3.H2O.PhCN       5,0         DMET       0,8 (5 kbar)         (DMET)2Au(CN)2       0,8 (5 kbar)         (DMET)213       0,5         (DMET)2Au2       0,6 (5 kbar)         (DMET)2Au2       0,6 (5 kbar)         (DMET)2Au32       0,6 (5 kbar)         (DMET)2Au42       0,6 (5 kbar)         (DMET)2Au42       0,6 (5 kbar)         (DMET)2Au42       0,6 (5 kbar)         (DMET)2Au45       1,0 (1,5 kbar)         k-(DMET)2Au45       1,0 (1,5 kbar)         k-(MDT-TTF)2Au12       4,5 $\beta_m$ -(BED0-TTF)3Cu2(SCN)3       1,1         (BED0-TTF)2ReO4.H2O       0,9 $\lambda$ -(BEDT-TSF)2GaC14       8,0         (DMET-TSF)2GaC14       8,0         (DMET-TSF)2GaC14       6,4 (20,7 kbar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\kappa$ -(ET) <sub>2</sub> Ag(CN) <sub>2</sub> .H <sub>2</sub> 0                                  | 11.6                |  |
| k-(E1) <sub>2</sub> Cu[N(CN) <sub>2</sub> ]Cl       12.5 (0.5 kbar)         (ET) <sub>4</sub> Pt(CN) <sub>4</sub> .H <sub>2</sub> O       2,0 (6,5 kbar)         (ET) <sub>4</sub> Pd(CN) <sub>4</sub> .H <sub>2</sub> O       1,2 (7 kbar)         k-(ET) <sub>2</sub> Cu(CN)[N(CN) <sub>2</sub> ]       11,2         k'-(ET) <sub>2</sub> Cu <sub>2</sub> (CN) <sub>3</sub> 3,8         k-(ET) <sub>2</sub> Cu <sub>2</sub> (CN) <sub>2</sub> ]Cl <sub>0,5</sub> Br <sub>0,5</sub> 11,3 $\beta^{"}$ -(ET) <sub>2</sub> SF <sub>5</sub> CH <sub>2</sub> CF <sub>2</sub> SO <sub>3</sub> 5,2 $\beta^{"}$ -(ET) <sub>4</sub> Fe(C <sub>2</sub> O <sub>4</sub> ) <sub>3</sub> .H <sub>2</sub> O.PhCN       8,5 $\beta^{"}$ -(ET) <sub>4</sub> Cr(C <sub>2</sub> O <sub>4</sub> ) <sub>3</sub> .H <sub>2</sub> O.PhCN       5,0 <b>DMET</b> 0,8 (5 kbar)         (DMET) <sub>2</sub> Au(CN) <sub>2</sub> 0,8 (5 kbar)         (DMET) <sub>2</sub> Lau <sub>2</sub> 0,6         (DMET) <sub>2</sub> Au <sub>2</sub> 0,6 (5 kbar)         (DMET) <sub>2</sub> Au <sub>2</sub> 0,6 (5 kbar)         (DMET) <sub>2</sub> Au <sub>1</sub> 1,0 (1,5 kbar)         k-(DMET) <sub>2</sub> Au <sub>1</sub> 1,0 (1,5 kbar)         k-(DMET) <sub>2</sub> Au <sub>1</sub> 0,8 (26 kbar)         (DMET) <sub>2</sub> Au <sub>1</sub> 4,5         fm <sup>-</sup> (BEDO-TTF) <sub>3</sub> Cu <sub>2</sub> (SCN) <sub>3</sub> 1,1         (BEDO-TTF) <sub>2</sub> ReO <sub>4</sub> H <sub>2</sub> O       0,9         λ-(BEDT-TSF) <sub>2</sub> GaCl <sub>4</sub> 8,0         (DMET-TSF) <sub>2</sub> GaCl <sub>4</sub> 8,0         (DMET-TSF) <sub>2</sub> GaCl <sub>4</sub> 6,6         (TTTF)[Ni(dmit) <sub>2</sub> ] <sub>2</sub> 1,6 (7 kbar)                                                                                                                  | $\kappa$ -(ET) <sub>2</sub> Cu[N(CN) <sub>2</sub> ]Br                                              | 12.5(0.3  kbar)     |  |
| (ET) <sub>4</sub> Pt(CN) <sub>4</sub> .H <sub>2</sub> O       2.0 (6,5 kbar)         (ET) <sub>4</sub> Pd(CN) <sub>4</sub> .H <sub>2</sub> O       1,2 (7 kbar)         k-(ET) <sub>2</sub> Cu(CN)[N(CN) <sub>2</sub> ]       11,2         k'-(ET) <sub>2</sub> Cu <sub>2</sub> (CN) <sub>3</sub> 3,8         k-(ET) <sub>2</sub> Cu <sub>2</sub> (N(CN) <sub>2</sub> ]Cl <sub>0,5</sub> Br <sub>0,5</sub> 11,3 $\beta^{"}$ -(ET) <sub>2</sub> SF <sub>5</sub> CH <sub>2</sub> CF <sub>2</sub> SO <sub>3</sub> 5,2 $\beta^{"}$ -(ET) <sub>4</sub> Fe(C <sub>2</sub> O <sub>4</sub> ) <sub>3</sub> .H <sub>2</sub> O.PhCN       8,5 $\beta^{"}$ -(ET) <sub>4</sub> Cr(C <sub>2</sub> O <sub>4</sub> ) <sub>3</sub> .H <sub>2</sub> O.PhCN       5,0 <b>DMET</b> 0.8 (5 kbar)         (DMET) <sub>2</sub> Au(CN) <sub>2</sub> 0,8 (5 kbar)         (DMET) <sub>2</sub> I <sub>3</sub> 0,5         (DMET) <sub>2</sub> Au <sub>1</sub> C       0,6 (5 kbar)         (DMET) <sub>2</sub> Au <sub>2</sub> L       0,6 (5 kbar)         (DMET) <sub>2</sub> Au <sub>1</sub> C       0,8 (26 kbar)         k-(DMET) <sub>2</sub> Au <sub>1</sub> C       1,9 <b>Autres composés</b> 1,1         (TMTTF) <sub>2</sub> Br       0,8 (26 kbar)         k-(MDT-TTF) <sub>2</sub> Au <sub>1</sub> C       0,9         λ-(BED0-TTF) <sub>3</sub> Cu <sub>2</sub> (SCN) <sub>3</sub> 1,1         (BED0-TTF) <sub>2</sub> ReO <sub>4</sub> .H <sub>2</sub> O       0,9         λ-(BEDT-TSF) <sub>2</sub> GaCl <sub>4</sub> 8,0         (DMET-TSF) <sub>2</sub> GaCl <sub>4</sub> 6,6         (TTF)[Ni(dmit) <sub>2</sub> ]2       1,6 (7 kbar)                                                                                                                                                                                                                    | κ-(ET) <sub>2</sub> Cu[N(CN) <sub>2</sub> ]Cl                                                      | 12,5 (U,5 KDar)     |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(ET)_4Pt(CN)_4.H_2O$                                                                              | 2,0 (6,5 kbar)      |  |
| $\kappa$ -(ET) <sub>2</sub> Cu(CN)[N(CN) <sub>2</sub> ]       11,2 $\kappa'$ -(ET) <sub>2</sub> Cu <sub>2</sub> (N(CN) <sub>2</sub> ]Cl <sub>0,5</sub> Br <sub>0,5</sub> 3,8 $\kappa'$ -(ET) <sub>2</sub> SF <sub>5</sub> CH <sub>2</sub> CF <sub>2</sub> SO <sub>3</sub> 5,2 $\beta''$ -(ET) <sub>4</sub> Fe(C <sub>2</sub> O <sub>4</sub> ) <sub>3</sub> .H <sub>2</sub> O.PhCN       8,5 $\beta''$ -(ET) <sub>4</sub> Cr(C <sub>2</sub> O <sub>4</sub> ) <sub>3</sub> .H <sub>2</sub> O.PhCN       5,0 <b>DMET</b> 0.8 (5 kbar)         (DMET) <sub>2</sub> Au(CN) <sub>2</sub> 0,8 (5 kbar)         (DMET) <sub>2</sub> Ia       0,5         (DMET) <sub>2</sub> AuCl <sub>2</sub> 0,6         (DMET) <sub>2</sub> Au2       0,6 (5 kbar)         (DMET) <sub>2</sub> Au3       1,0 (1,5 kbar) $\kappa$ -(DMET) <sub>2</sub> Au3       1,0 (1,5 kbar) $\kappa$ -(DMET) <sub>2</sub> Au3       1,9 <b>Autres composés</b> 1,3         (TMTTF) <sub>2</sub> Br       0,8 (26 kbar) $\kappa$ -(DDT-TTF) <sub>2</sub> Au3       1,1         (BEDO-TTF) <sub>2</sub> ReO <sub>4</sub> H <sub>2</sub> O       0,9 $\lambda$ -(BEDT-TSF) <sub>2</sub> GaCl <sub>4</sub> 8,0         (DMET-TSF) <sub>2</sub> GaCl <sub>4</sub> 8,0         (DMET-TSF) <sub>2</sub> GaCl <sub>4</sub> 1,6 (7 kbar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(ET)_4Pd(CN)_4.H_2O$                                                                              | 1,2 (7 Kbar)        |  |
| $\kappa^{-}(ET)_2Cu_2(CN)_3$ 3,8 $\kappa^{-}(ET)_2Cu_1N(CN)_2]Cl_{0,5}Br_{0,5}$ 11,3 $\beta^{"}$ -(ET)_2SF_5CH_2CF_2SO_3       5,2 $\beta^{"}$ -(ET)_4Fe(C_2O_4)_3.H_2O.PhCN       8,5 $\beta^{"}$ -(ET)_4Cr(C_2O_4)_3.H_2O.PhCN       5,0 <b>DMET</b> 0.8 (5 kbar)         (DMET)_2Au(CN)_2       0,8 (5 kbar)         (DMET)_213       0,5         (DMET)_2Au2       0,6 (5 kbar)         (DMET)_2Au2       0,6 (5 kbar)         (DMET)_2Au3       1,0 (1,5 kbar) $\kappa$ -(DMET)_2Au3       1,0 (1,5 kbar) $\kappa$ -(DMET)_2Au3       1,9 <b>Autres composés</b> 1,3         (TMTTF)_2Br       0,8 (26 kbar) $\kappa^{-}(MDT-TTF)_2Au3       1,1         (BEDO-TTF)_3Cu_2(SCN)_3       1,1         (BEDO-TTF)_2ReO4.H_2O       0,9         \lambda-(BEDT-TSF)_2GaC14       8,0         (DMET-TSF)_2Au32       0,6         (TTF)[Ni(dmit)_2]2       1,6 (7 kbar)         \alpha'_{-}(TTF)[Pd(dmit)_2]2       6,4 (20,7 kbar)   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\kappa$ -(ET) <sub>2</sub> Cu(CN)[N(CN) <sub>2</sub> ]                                            | 11,2                |  |
| $\kappa$ -(ET) <sub>2</sub> Cu[N(CN) <sub>2</sub> ]Cl <sub>0</sub> ,5Br <sub>0</sub> ,5       11,3 $\beta^{"}$ -(ET) <sub>2</sub> SF <sub>5</sub> CH <sub>2</sub> CF <sub>2</sub> SO <sub>3</sub> 5,2 $\beta^{"}$ -(ET) <sub>4</sub> Fe(C <sub>2</sub> O <sub>4</sub> ) <sub>3</sub> .H <sub>2</sub> O.PhCN       8,5 $\beta^{"}$ -(ET) <sub>4</sub> Cr(C <sub>2</sub> O <sub>4</sub> ) <sub>3</sub> .H <sub>2</sub> O.PhCN       5,0 <b>DMET</b> 5,0         (DMET) <sub>2</sub> Au(CN) <sub>2</sub> 0,8 (5 kbar)         (DMET) <sub>2</sub> Ia       0,5         (DMET) <sub>2</sub> Ia <sub>1</sub> 0,5         (DMET) <sub>2</sub> Aul <sub>2</sub> 0,6 (5 kbar)         (DMET) <sub>2</sub> Aul <sub>2</sub> 0,6 (5 kbar)         (DMET) <sub>2</sub> Aul <sub>2</sub> 1,0 (1,5 kbar) $\kappa$ -(DMET) <sub>2</sub> AuBr <sub>2</sub> 1,9         Autres composés       1,3         (TMTTF) <sub>2</sub> Br       0,8 (26 kbar) $\kappa$ -(MDT-TTF) <sub>2</sub> Aul <sub>2</sub> 0,8 $\beta$ m-(BEDO-TTF) <sub>3</sub> Cu <sub>2</sub> (SCN) <sub>3</sub> 1,1         (BEDO-TTF) <sub>2</sub> ReO <sub>4</sub> .H <sub>2</sub> O       0,9 $\lambda$ -(BEDT-TSF) <sub>2</sub> GaCl <sub>4</sub> 8,0         (DMET-TSF) <sub>2</sub> Cl <sub>2</sub> La <sub>2</sub> 0,6         (TTF)[Ni(dmit) <sub>2</sub> ] <sub>2</sub> 1,6 (7 kbar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | κ'-(ET) <sub>2</sub> Cu <sub>2</sub> (CN) <sub>3</sub>                                             | 3,8                 |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | κ-(ET) <sub>2</sub> Cu[N(CN) <sub>2</sub> ]Cl <sub>0,5</sub> Br <sub>0,5</sub>                     | 11,3                |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | β"-(ET) <sub>2</sub> SF <sub>5</sub> CH <sub>2</sub> CF <sub>2</sub> SO <sub>3</sub>               | 5,2                 |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\beta$ "-(ET) <sub>4</sub> Fe(C <sub>2</sub> O <sub>4</sub> ) <sub>3</sub> .H <sub>2</sub> O.PhCN | 8,5                 |  |
| $\begin{tabular}{ c c c } \hline DMET & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | β"-(ET) <sub>4</sub> Cr(C <sub>2</sub> O <sub>4</sub> ) <sub>3</sub> .H <sub>2</sub> O.PhCN        | 5,0                 |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DMET                                                                                               |                     |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (DMET) <sub>2</sub> Au(CN) <sub>2</sub>                                                            | 0,8 (5 kbar)        |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (DMET) <sub>2</sub> I <sub>3</sub>                                                                 | 0,5                 |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (DMET) <sub>2</sub> IBr <sub>2</sub>                                                               | 0,6                 |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (DMET)2AuCl2                                                                                       | 0.8                 |  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (DMET)2AuBra                                                                                       | 1.0(1.5  kbar)      |  |
| Autres composés         0,8 (26 kbar)           (TMTTF)2Br         0,8 (26 kbar) $\kappa$ -(MDT-TTF)2AuI2         4,5 $\beta_m$ -(BEDO-TTF)3Cu2(SCN)3         1,1           (BEDO-TTF)2ReO4.H2O         0,9 $\lambda$ -(BEDT-TSF)2GaCl4         8,0           (DMET-TSF)2AuI2         0,6           (TTF)[Ni(dmit)2]2         1,6 (7 kbar) $\alpha$ '-(TTF)[Pd(dmit)2]2         6,4 (20,7 kbar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K-(DMFT)2AuBr2                                                                                     | 1,9                 |  |
| Autres composes         0,8 (26 kbar) $(TMTTF)_2Br$ 0,8 (26 kbar) $\kappa$ -(MDT-TTF)_2AuI_2         4,5 $\beta_m$ -(BEDO-TTF)_3Cu_2(SCN)_3         1,1           (BEDO-TTF)_2ReO4.H_2O         0,9 $\lambda$ -(BEDT-TSF)_2GaCl4         8,0           (DMET-TSF)_2GaCl4         0,6           (TTF)[Ni(dmit)_2]_2         1,6 (7 kbar) $\alpha'$ -(TTF)[Pd(dmit)_2]_2         6,4 (20,7 kbar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                    | 20040 <sup>0</sup>  |  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Autres composes                                                                                    | 0.8 (26 kbar)       |  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (INIT IP)2BT                                                                                       | 4.5                 |  |
| pm://db.DO-TTF)3Lu2(SCN)3         1,1           (BEDO-TTF)2ReO4.H2O         0,9           λ-(BEDT-TSF)2GaCl4         8,0           (DMET-TSF)2GaCl4         0,6           (TTF)[Ni(dmit)2]2         1,6 (7 kbar)           α'-(TTF)[Pd(dmit)2]2         6,4 (20,7 kbar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | K-(MDI-TIF)2AUI2                                                                                   | 11                  |  |
| λ-(BEDT-TSF) <sub>2</sub> GaCl <sub>4</sub> 8,0           (DMET-TSF) <sub>2</sub> GaU <sub>2</sub> 0,6           (TTF)[Ni(dmit) <sub>2</sub> ] <sub>2</sub> 1,6 (7 kbar)           α'-(TTF)[Pd(dmit) <sub>2</sub> ] <sub>2</sub> 6,4 (20,7 kbar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $p_{m}$ -(BEDO-TTF) <sub>2</sub> ReO <sub>4</sub> H <sub>2</sub> O                                 | 0.9                 |  |
| (DMET-TSF) <sub>2</sub> Aul <sub>2</sub> 0,6           (TTF)[Ni(dmit) <sub>2</sub> ] <sub>2</sub> 1,6 (7 kbar)           α'-(TTF)[Pd(dmit) <sub>2</sub> ] <sub>2</sub> 6,4 (20,7 kbar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\lambda$ -(BEDT-TSF)2GaCl4                                                                        | 8,0                 |  |
| (TTF)[Ni(dmit) <sub>2</sub> ] <sub>2</sub> 1,6 (7 kbar)<br>α'-(TTF)[Pd(dmit) <sub>2</sub> ] <sub>2</sub> 6,4 (20,7 kbar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (DMET-TSF)2AuI2                                                                                    | 0,6                 |  |
| α'-(TTF)[Pd(dmit) <sub>2</sub> ] <sub>2</sub> 6,4 (20,7 kbar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (TTF)[Ni(dmit)2]2                                                                                  | 1,6 (7 kbar)        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\alpha'$ -(TTF)[Pd(dmit) <sub>2</sub> ] <sub>2</sub>                                              | 6,4 (20,7 kbar)     |  |









#### I.6. Choix du système donneur-accepteur

Pour établir une corrélation entre la nature des entités de départ (D et A) et la conductivité électrique des complexes de transfert de charge obtenus (CTC), il faut que les deux molécules constituants le système donneur-accepteur aient des pouvoirs électrodonneurs et électroaccepteur modérés. Ce concept a été quantifié par R.C.Wheland et ses collaborateurs <sup>[27-e]</sup>. Ils proposent que ce choix soit tel que la différence entre les premier potentiels d'oxydation du donneur E  $^{1}_{1/2}$  (D) et de réduction des accepteurs E  $^{1}_{1/2}$  (A), ne soit ni trop faible, ni trop élevée<sup>[23]</sup>.

$$|E^{1}_{1/2}(A) - E^{1}_{1/2}(D)| \le 0.25 \text{ V}$$

Avec :  $0,1 \le E_{1/2}^{-1}(D) \le 0,4 V$  $-0,02 \le E_{1/2}^{-1}(A) \le 0,35 V$ 

Le caractère réducteur des molécules de type TTF dépend à la fois de l'hétéroatome introduit dans le squelette et la nature des substituants fixés sur celui-ci. Ainsi le pouvoir donneur diminue en passant des donneurs soufrés aux donneurs séléniés.

Alors que le pouvoir du caractère oxydant des molécules de TCNQ augmente en le substituant par des groupements électroattracteurs<sup>[27-f]</sup>.

Les entités chimiques du donneur (D) et accepteur (A) doivent avoir les caractéristiques suivantes (tableau 5)

| Electron-donneur    | - Molécules riches en électrons                   |                         |
|---------------------|---------------------------------------------------|-------------------------|
| Donneur             | - Potentiel d'ionisation faible                   | Formation des cations   |
| (π- Donneurs)       | - Hétérocycles à π- excessif                      | ou des cations radicaux |
| НОМО                | - <u>Plus Haute O</u> rbitale <u>M</u> oléculaire |                         |
|                     | Occupe en énergie                                 |                         |
| Electron- accepteur | - Molécules pauvres en électrons                  |                         |
| Accepteur           | - Affinité électronique élevée                    | Formation des anions    |
| $\pi$ - accepteur   | - Hétérocycle à $\pi$ - déficient                 | ou des anions radicaux  |
| LUMO                | - <u>Plus Basse O</u> rbitale <u>M</u> oléculaire |                         |
|                     | vacante (Unoccupied) en énergie                   |                         |

Tableau 5: Caractéristiques des entités chimiques

#### I.7. Migration de l'aromaticité

L'un des objectifs des chimistes organiciens, consiste à l'élaboration d'espèces radicalaires thermodynamiquement stables.

Le phénomène de migration d'aromaticité a été attribué par Perlstein et Coll <sup>[28]</sup> lors du passage de la molécule neutre au cation (ou anion) radical dans une même colonne.

Le tétrathiafulvalène TTF présente de nombreuses propriétés :

> Les dérivés du TTF forment facilement des dimères, des empilements très fortement ordonnés ou des feuillets bidimensionnels qui sont stabilisés par des interactions  $\pi - \pi$  et soufre-soufre intermoléculaires.

➢ Le TTF est stable dans de nombreuses conditions expérimentales, à l'exception d'un milieu réactionnel fortement acide ou oxydant.

➤ Une autre et très importante caractéristique est que le TTF peut s'oxyder de manière réversible et successive en radical cation puis en dication à des potentiels accessibles. Ainsi, le TTF présente deux vagues d'oxydation réversibles aux potentiels :  $E_{ox}^{1} = 0.37$  Volt et  $E_{ox}^{2} = 0.62$  Volt. Le radical cation TTF <sup>+ •</sup> et le dication TTF <sup>+2</sup> sont très stable grâce à l'aromaticité du cation 1,3- dithiolium (schéma 1). Les potentiels d'oxydation peuvent être modulés par substitution des hydrogènes éthyléniques par des groupements électrodonneurs ou électroattracteurs.





Schéma 1 : Gain d'aromaticité lors de l'oxydation du TTF

Le caractère oxydant du TCNQ s'explique par une stabilisation mésomère de l'anion radical qui confère au noyau une structure aromatique<sup>[17]</sup> ( schéma 2).


Schéma 2 : Gain d'aromaticité lors du passage du TCNQ au TCNQ.

# **II. ORIENTATION DES RECHERCHES ACTUELLES**

L'augmentation de dimensionnalité des matériaux joue un rôle important sur leurs caractéristiques électrique. Elle est donc au centre des recherches actuelles. Cependant, il faut être conscient, qu'aujourd'hui encore, le chimiste rencontre les plus grandes difficultés à maîtriser l'arrangement structural de ces molécules à l'intérieur du matériau (feuillets, colonnes régulières et séparées, ...etc). Celui-ci ne peut en effet que contrôler les caractéristiques (taille, forme, potentiel d'oxydation, polarisabilité ... etc).

Dans cette optique, de nouvelles stratégies basées sur plusieurs modifications chimiques du motif TTF ont été développées ces dernières années.

La synthèse de nouveaux dérivés du TTF s'est orientée plus particulièrement sur des modifications du squelette TTF, tels que :

- la polychalcogénation du TTF
- · la fonctionnalisation par des groupements générateurs de liens hydrogènes
- l'extension de la conjugaison reliant les deux hétérocycles constitutifs du TTF, ce dernier cas, visant plutôt la limitation des répulsions coulombiennes intrasite.

Toutefois, le souci majeur de ces modifications reste bien l'augmentation de la dimensionnalité des matériaux.

Plus récemment, les investigations se sont orientées vers la production de systèmes impliquant des enchaînements de deux ou plusieurs unités TTF. Dans ce cas, des liens covalents sont utilisés toujours dans l'espoir d'accroître la dimensionnalité du matériau vers l'extension spatiale de la molécule de donneur et la multiplication des interactions.

# II.1. L'utilisation de nouveaux anions et accepteurs

Bien que cette direction de recherche soit moins étudiée que celle des donneurs, depuis plusieurs années, de nombreux sels organiques sont élaborés en utilisant des anions plus au moins complexes et de volumes variables.

La recherche de l'augmentation de la dimensionnalité des sels de TTF, peut non seulement passer par l'utilisation de nouveaux anions, mais aussi par la synthèse de nouveaux donneurs. Dans cette optique, de nouvelles stratégies basées sur plusieurs modifications chimiques du motif TTF ont été développées ces dernières années.

# II.2. Modifications réalisées autour du squelette TTF

#### II.2.1. Remplacement des atomes de soufre par d'autres chalcogènes

Cette tendance, déjà ancienne, est toujours d'actualité étant donné le nombre important de sels bidimensionnels supraconducteurs obtenus par cette voie.

De nos jours, elle porte plus particulièrement sur des dérivés dissymétriquement substitués. En voici quelques exemples <sup>[29,30,31,32]</sup> ( schéma 3):



Schéma 3

#### II.2.2. Introduction d'un système $\pi$ entre les deux hétérocycles constituant le TTF

Cette approche plus récente, consistant à remplacer la double liaison centrale du TTF par des systèmes conjugués plus étendus, fait actuellement l'objet d'une intense activité puisque l'extension spatiale doit permettre à la fois :

- une meilleure stabilisation des états oxydés du cation organique du fait de l'augmentation de la délocalisation de charge(s) positive(s) par résonance
- une diminution des répulsions coulombiennes dans les états polycationiques grâce à des densités de charge atténuées
- une dimensionnalité accrue des matériaux par multiplication des interactions πliantes et le renforcement des contacts inter et intrachaînes.

Parmi les modifications apportées dans cette direction, on trouve l'insertion, entre les deux unités hétérocyclique du TTF d'un espaceur conjugué ou fonctionnalisé.







#### II.2.3. Introduction de substituants fonctionnalisés

Cette orientation vise plus particulièrement à introduire sur le donneur  $\pi$  des groupes fonctionnels susceptibles d'engendrer des liaisons hydrogène intercolonnes favorisant l'augmentation de la dimensionnalité des sels résultants <sup>[39]</sup>. Il s'agit essentiellement de dérivés hydroxylés, aminés <sup>[40,41]</sup> mais également des fonctions esters <sup>[32]</sup>, amides, thioamides <sup>[42]</sup> et des groupes silylés <sup>[43]</sup> (schéma 4).



Cette voix apparaît très prometteuse surtout après la découverte dans deux sels du donneur hydroxylé *A* de structure de type phase kappa (figure 14), comme celles observées dans de nombreux sels supraconducteurs, ainsi que des interactions donneuranion par l'intermédiaire de liaisons hydrogène via les groupes hydroxyle. Cependant la stoechiométrie 1 :1 de ces sels indiquant une oxydation totale des motifs TTF explique leur caractère semi-conducteur.

Chapitre I





*Figure 14* : Structure cristalline <sup>[44]</sup> des sels a) (DHMEDT-TTF) <sub>2</sub>ClO<sub>4</sub> b) (DHMEDT-TTF) <sub>2</sub>ReO<sub>4</sub>

# II.3. Des biTTF aux oligoTTF : enchaînement d'unités TTF liées par covalence

Les oligo TTF sont liés par un ou plusieurs espaceurs, ils peuvent donner lieu à des interactions intramoléculaires entre les diverses unités de TTF liées.

Ce système oligomérique présente un grand intérêt dans le domaine florissant de la chimie supramoléculaire. En effet, l'incorporation de tels composés électroactifs à l'intérieur d'un système macromoléculaire peut lui permettre après oxydation d'agir comme récepteur de composés pauvre en électron.

Des travaux plus au moins approfondis, ont été effectués dans le domaine des oligo TTF. Nous les avons classés comme suit :

# II.3.1. Les oligo TTF mono lien

Ces oligo TTF sont des molécules contenant deux ou plusieurs unités TTF liées les une aux autres par un ou plusieurs liens espaceurs. La nature du groupe espaceur est importante car elle influe sur la structure moléculaire.



Plusieurs types de liens ont été utilisés selon les caractéristiques envisagées pour le donneur : rigidité, flexibilité ...etc. Il en découle deux sous classe de composés :

#### a) Composés à lien conjugué rigide

Dans cette catégorie d'oligo TTF à lien conjugué rigide, mentionnons également les composés de type B, dont quelques exemples sont donnés ci-dessous. Ces composés regroupent à la fois les caractéristiques de l'extension spatiale et celle d'un meilleur recouvrement orbitalaire intra et interchaînes grâce à la multiplication des atomes de soufre <sup>[45]</sup>.



Schéma 5 : molécules de type B

Parmi ces composés citons le résultat intéressant du perchlorate de **B**<sub>1</sub>, de stoechiométrie 1 :1, qui présente une conductivité élevée :  $\sigma = 0,38$  S.cm<sup>-1</sup>. Celle-ci est attribuée à la forme du donneur qui induit à la fois un caractère bidimensionnel marqué et une limitation des répulsions coulombiennes par son système  $\pi$ -etendu.



Figure 15 : Structure cristalline de B<sub>1</sub>ClO<sub>4</sub>

#### b) Composés à lien non conjugué flexible

En contraste avec les TTF précédents, les composés à liens non conjugués sont généralement caractérisés par des structures plus flexibles du fait des changements conformationnels des espaceurs et par conséquent ont l'avantage d'être convertibles en conformère le plus favorable dans la réaction de complexation.

# Lien fonctionnalisé

Bryce et Coll. ont été les premiers à synthétiser des bi et tri-TTF de type C avec des liens contenant des fonctions ester. Par la suite d'autres oligo-TTF du même type ont été également préparés <sup>[46,47]</sup> mais rien concernant les matériaux n'a été décrits.



Schéma 6 : molécules de type C

Plus récemment L. Kaboub<sup>[48]</sup> a été préparé avec le TCNQ un matériau à base d'un bi-TTF (figure16, 17). Malgré que ce composé présente une régularité structurale mais sa conductivité et de l'ordre de 10<sup>6-</sup> S.cm<sup>-1</sup> ( caractère isolant).



*Figure 16* : Représentation d'une molécule **bi-TTF** et d'un TCNQ.

*Figure 17* : Représentation d'une molécule **bi-TTF** TCNQ en projection sur le plan du TCNQ

## II.3.2. Les oligo TTF à double lien

Les bi TTF doublements pontés sont des molécules dans lesquelles chaque unité TTF est reliée par deux liens espaceurs à une autre unité TTF. Selon les points d'attache des deux liens espaceurs sur les cycles TTF, on distingue deux types : « TTF macrocycliques » et « TTF cyclophanes ».

# a) Les TTF macrocycliques

Il faut noter que Misaki et Coll<sup>[49]</sup>, développe une catégorie particulière de bi TTF, et qualifié de bi TTF fusionnés. Dans ces composés, les noyaux TTF sont directement associés l'un l'autre par introduction en leur centre d'un unité tétrathiapentalène (TTP).



Schéma 7 : bi TTF fusionné

# b) Les TTF cyclophanes

Ces cyclophanes sont lus particulièrement destinés au domaine de la chimie supramoléculaire, car ils possèdent une structure à large cavité capable d'accueillir des molécules chargées ou neutres. Il existe deux types de cyclophane qui résultent de l'orientation des unités TTF qui peuvent être parallèle ou orthogonale.







Orthogonale



Généralité Sur Les Matériaux Organiques A Base De Tétrathiafulvalène

# III. DIFFERENTES APPLICATIONS DU NOYAU TTF

Le noyau TTF et ses dérivés, ont conduit grâce à leurs caractéristiques, notamment leur stabilité et leur caractère rédox réversible, à un nombre conséquent d'applications dans la chimie des matériaux. La figure si dessous résume les différents domaines d'application du TTF.



Figure 18 : Différents domaines d'applications de TTF

Bien que le chimiste puisse assez bien contrôler les caractéristiques des donneurs ou des anions qui composent le matériau (taille, forme, potentiel d'oxydation etc..), il faut être conscient qu'il rencontre, aujourd'hui encore, les plus grandes difficultés à maîtriser l'arrangement structural de ces molécules à l'intérieur du matériau.

Ces diverses observations ont permis de mettre en évidence l'incontournable corrélation qui existe entre la dimensionnalité structurale et électronique de ces matériaux et leur caractère métallique voir supraconducteur.

#### Généralité Sur Les Matériaux Organiques A Base De Tétrathiafulvalène

Il apparaît clairement qu'une augmentation de la dimensionnalité :

- peut stabiliser l'état métallique d'un sel conducteur de 300K jusqu'aux plus basses températures, écartant ainsi toute transition métal-isolant
- peut permettre d'accroître la valeur de Tc dans des sels découverts supraconducteurs.

En conclusion, cette rapide étude bibliographique sur les sels à propriétés électriques montre bien que les premières stratégies étudiées basées sur l'usage de donneurs TTF polychalcogénés, dissymétriques et à système  $\pi$  conjugué étendu, L'augmentation de la dimensionnalité des sels et des complexes résultants est dans la plupart des cas effectivement associée à une stabilisation de leur caractère métallique en particulier.

# Bibliographie

- a) D.O. Cowan, F.M. Wlygul, *Chem. Eng. News*, **1986**, 64, 28.
   b)J.S. Miller, *Annals New-York Academy of Sciences*, **1978**, 313, 25.
- a) Ferraris, J. P.; Cowan, D. O., Walatka, V.; Perlstein, J. H.; *J. Am. Chem. Soc.*, 1973, 95, 948. b) L.B. Coleman, M.J. Cohen, D.J. Sandman, F.G. Yamagishi, A.F. Garito, A.J.Heeger, Solid State Commun., 1973, 12, 1125.
- 3. A. F. Garito, A. Heger, J. Acc. Chem. Res., 1974, 7, 232.
- R.Williams, C. Lowe Ma, S. Samson, S.K. Khanna, R.B. Somoano, J. Chem. Phys., 1980, 72, 3781
- D.S. Acker, R.J. Harder, W.R. Hertler, W. Mahler, L.R. Melby, R.E. Benson, W.E. Mochel, *J. Am. Chem.Soc.*, **1960**, 82, 6408.
- L.R. Melby, R.J. Harder, W.R. Hertler, W. Mahler, R.E. Benson, W.E. Mochel, J. Am. Chem. Soc., 1962, 84, 3374.
- a) E.M. Engler, V.V. Patel, J. Am. Chem. Soc., 1974, 96, 7376. b) D. Jérome, A. Mazaud, M. Ribault, K. Bechgaard, *C. R. Acad. Sc. Paris*, **1980**, t 290, B-27.c) D. Jérome, A. Mazaud, M. Ribault, K. Bechgaard, *J. Phys. Lett.*, **1980**, 41, L95. d) Bechgaard, K. ; Carneiro, K. ; Rasmussen, F. B. ; Olsen, M. ; Rindorf, G. ; Jacobsen, C. S. ; Pedersen, H. J. ; Scott, J. C. ; J. Am. Chem. Soc., **1981**, 103, 2440 et références citées.
- a) K. Kikuchi, K. Murata, Y. Honda, T. Namiki, K. Saito, H. Anzai, K. Kobayashi, T. Ishiguro, I. Ikemoto, *J. Phys. Soc. Jpn.*, **1987**, 56, 4241. b) S. S. P. Parkin, E. M. Engler, R. R. Schumaker, R. Lagier, V. Y. Lee, J. C. Jacobsen, H. J. Pedersen, J. C. Scott, Phys. Rev. Lett., **1983**, 50, 270. c) J. M. Williams, A. M. Kini, H. H. Wang, K. D. Carlson, U. Geiser, L. K. Montgomery, G. J. Pyrka, D. M. Watkins, J. M. Kommers, S. J. Boryschuk, A. V. S. Crouch, W. K. Kwok, J. E. Schirber, D. L. Overmyer, D. Jung, M. H. Whangbo, *Inorg. Chem.*, **1990**, 29, 3272. d) A. M. Kini, U. Geiser, K. D. Carlson, J. M. Williams, W. K. Kwok, K. G. Vandervoort, J. E. Thompson, D. L. Stupka, D. Jung, M. H. Whangbo, *Inorg. Chem.*, **1990**, 29, 2555.
- 9. F. Garnier, *La Recherche*, **1987**, 28, 513.
- 10. M. Labes, P. Love, L.F. Nichols, Chemical Reviews, 1979, 79, 3.
- 11. H.S. Nalwa, Applied Organometallic Chem., 1990, 4, 91.

#### Généralité Sur Les Matériaux Organiques A Base De Tétrathiafulvalène

- a) Revue sur le fullerène et ses dérivés : Acc. Chem. Res., 1992, 25(3). b) H.
   Akamatu, H. Inokuchi, J. Chem. Phys., 1950, 18, 810. c) H. Tanaka, Y. Okano, H.
   Kobayashi, W. Suzuki, A. Kobayashi, science, 2001, 219, 285.
- Abdelkrim GOUASMIA, *Thèse de doctorat d'état de l'université de Montpellier II*, 1988.
- 14. N. Benbellat, Mémoire de Magister, Centre Universitaire de Tébessa, 1998.
- 15. D. Chasseau, J. Gaultier, J.M. Fabre, L. Giral, Acta Crysta., 1982, B38, 1632.
- K. Imaeda, T. Mori, C. Nakano, H. Inokuchi, N. Iwazawa, G. Saito, *Bull. Chem. Soc. Jpn.*, **1991**, 64, 2159.
- 17. T.E. Phillips, T.J. Kistenmacher, A.N. Bloch, D.O. Cowan, J.P. ferraris, J. Chem. Soc., Chem. Comm., 1973, 471.
- J. M. Gallas, A. K. Gouasmia, L. Kaboub, L. Ouahab, S. Golhen.; Synthetic Metals, 1977, 86, 1811.
- J. M. Fabre, A. K. Gouasmia, L. Giral, D. Chasseau, *Tetrahedron Lett.*, 1988, 29, 2185..
- A. M. Kini, U. Geiser, K. D. Carlson, J. M. Williams, W. K. Kwork, K. G. Vandervoot, J. E. Thompson, D. I. Stupka, D. Jung, M. H. Whangbo, *Inorg. Chem.*; 1990, 29,3275.
- a) B. A. Scott, S. J. Laplaca, J. B. Torrance, B. D. Silverman, B. Welber, J. Am. Chem. Soc., 1977, 99, 663.
- a) R.E. Peierls, « Quantum theory of Solid », Oxford University Press, London, 1955, 108. S.S. Shaik, H.H. Whangbo, *Inorg. Chem.*, 1986, 25, 1201.
  - b) L. Kaboub, J-P. Legros, B. Donnadieu, A-K. Gouasmia, L. Boudiba and J-M.Fabre *J. Mater. Chem.*, **2004**, 14, 351-356.
- a) L. KABOUB, Mémoire de magistère, Centre Universitaire de Tébessa, 1998.
  b)D.Bouchouk, Mémoire de magistère, Centre Universitaire de Tébessa, 1998.
  c) T. Abbaz, Mémoire de magistère, Centre Universitaire de Tébessa, 1998.
- C. Coulon P. Delhaes, S. Flandrois, R. Lagnier, E. Bonjour, J.M. Fabre, *J. Phys.*, 1982, 43, 1059.
- S. Flandrois, C. Coulon, P. Delhaès, D. Chasseau, C. Hauw, J. Gaultier, J.M. Fabre, L. Giral, *MOL. Cryst. Liq. Cryst.*, **1982**, 79, 307.
- 26. J.M. Williams, K. Carneiro, Adv. In Inorg. Chem. And Radiochem., 1985, 29, 249.

#### Généralité Sur Les Matériaux Organiques A Base De Tétrathiafulvalène

- a) D. Chasseau, K. Prout, J. Gaultier, J.M. Fabre, A.K. Gouasmia, *Materials Sciences*, 1981, 1, 14, b) P. Cava, T. Garnier, B. Gallois, C. Coulon, A.K. Gouasmia, J.M. Fabre, *J. Phys. C : Solid State Phys.*, 1988, 211, 5719-5734. c) J. M. Fabre, A. K. Gouasmia, L. Giral, D. Chasseau, *Tetrahedron Lett.*, 1988, 29, 2185. d) J.M. Fabre, A.K. Gouasmia, L. Giral, M. Galtier, *New J. Chem.*, 1988, 12, 119. e) R. C. Wheland, *J. Amer. Chem. Soc.*, 1976, 39, 26. f) J.M. Fabre, A.K. Gouasmia, L. Giral, D. Chasseau, T. Granier, C. Coulon and P. Cava, *Synth. Met.*, 1990, 35, 57.
- 28. J. H. Perlstein, Angew. Chem., Int. Ed. Engl., 1977, 16, 519.
- a) K. Bechgaard, D.O. Cowan, A.N. Bloch, J. Chem. Soc., Chem. Comm., 1974, 937. b) A. Moradpour, V. Peyrusson, I. Johansen, K. Bechgaard, J. Org. Chem., 1983, 48, 388. c) F. Wuld, E. Aharon-Shalom, J. Am. Chem. Soc., 1982, 104, 1154. d) H. Müllen, Y. Ueba, Bull. Chem. Soc. Jpn., 1993, 66, 1773.
- a) J. Larsen, C. Lenoir, Synthesis, 1989, 134. b) K.S. Varma, A. Burny, N.J. Harris,
   A.E. Underhill, Synthesis, 1987, 837. c) M. Mizuno, A.F. Garito, M.P. Cava, J.
   *Chem. Soc., Chem. Comm.*, 1978, 18. d) M. Sorm, S. Nespurek, O. Ryba, V.
   Kabunek, J. Chem. Comm., Chem. Comm., 1987, 696. d) M. Sorm, S. Nespurek, O.
   Ryba, V. Kabunek, J. Chem. Comm., Chem. Comm., 1987, 696.
- a)Y. Yamashita, M. Tomura, S. Tanaka, J. Chem. Soc., Perkin Trans. 1, 1990, 12, 3358. b) J.P. Morand, L. Brzezinski, C. Manigand, J.Chem. Soc., Chem. Comm., 1986, 1050.
- A.K. Gouasmia, J.M. Fabre, L. Boudiba, L. Kaboub, C. Carcel, *Synth. Met.*, 120, 2001, 809-810.
- A-E. Navaro, F. Moggia, C. Moustrou, A. Heynderickx, F. Fages, P. Leriche, H. Brisset, *Tetrahedron*, 2005, 61, 423, 428.
- H. H. Elandaloussi, P. Frère, J. Roncali, P. Richomme, M. Jubault, A. Gorgues, Adv. Mater., 1995, 7, 390.
- R. Andreu, J. garin, C. Lopez, J. Orduna, E. Levillain, *Tetrahedron Lett.*, 2004, 45, 8211-8214.
- K. Qvortrup, A. S. Andersson, J-P. Mayer, A. S.Jepsen, M. B. Nielsen, *Synlett.*, 2004, 15, 18-2820.
- 37. M. Guerro, D. Lorcy, Tetrahedron Lett., 2005.
- T. Khan, P.J. Skabara, P. Frère, M. Allain, S.J. Coles, M.B. Hursthouse, *Tetrahedron Lett.*, 2004, 45, 2535, 2539.

#### **39.** M.R. Bryce, J. Mat. Chem., **1995**, 5, 1481.

- a) S.Y. Hsu, L.Y. Chiang, Synth. Met., 1988, 27, 651.b) C. Rovira, N. Santalo, J. Veciana, Tetrahedron Lett., 1989, 30, 7249. c) P. Blanchard, M. Sallé, G. Duguay, A. Gorgues, Tetrahedron Lett., 1992, 33, 2685. d) A.J. Moore, M.R. Bryce, J. Chem. Soc., Chem. Commun., 1991, 1638. e) A.J. Moore, M.R. Bryce, G. Cooke, G.J. Marshallsay, P.J. Skabara, A.S. Batsanov, J.A.K. Howard, S.T.A.K. Daley, J. Chem. Soc., Perkin Trans. 1, 1993, 1, 1403. f) J.M. Fabre, J. Garin, S. Uriel, Tetrahedron, 1992, 48, 3983.
- 41. L. Giral, J.M. Fabre, A.K. Gouasmia, *Tetrahedron lett.*, 1986, 27, 36, 43154318.
- a) K. Heuzé, M. Fourmigué, P. Batail, E. Canadell, P. Auban-Sanzier, *Chem. Eur. J.*, 1999, 5, 2971.b) K. Heuzé, M. Fourmigué, P. Batail, *J. Mat. Chem.*, 1999, 9, 2373. c) K. Heuzé, C. Mézière, M. Fourmigué, P. Batail, C. Coulon, E. Canadell, P. Auban-Senzier, D. Jérome, *Chem. Mater.*, 2000, 12, 1898. d) A.S. Batsanov, M.R. Bryce, J.N. Heaton, A.J. Moore, P.J. Skabara, A.K. Howard, E. Orti, P.M. Viruela, R. Viruela, *J. Mat. Chem.*, 1995, 5, 1689. e) A.J. Moore, M.R. Bryce, A.S. Batsanov, J.C. Cole, J.A.K. Howard, *Synthesis*, 1995, 675. f) G. Cooke, V.M. Rotello, A. Radhi, *Tetrahedron Lett.*, 1999, 40, 8611.
- F. Guyon, M.N. Jayaswal, H.N. Peindy, A. Hameau, M. Knorr, N. Avarvari, Synth. Met., 2005.
- P. Blanchard, G. Duguay, J. Cousseau, M. Sallé, M. Jubault, A. Gorgues, K. Boubekeur, P. Batail, *Adv. Mater.*, 1992, 4, 579.
- a) M. Sallé, M. Jubault, A. Gorgues, K. Boubekeur, M. Fourmigué, P. Batail, E. Canadell, *Chem. Mater.*, 1993, 5, 1196. b) A. Gorgues, M. Jubault, A. Belyasmine, M. Sallé, P.Frère, V. Morisson, Y. Gouriou, *Phosphorus, Sulfur and Silicon*, 1994, 95-96, 235. c) M. Sallé, A. Gorgues, M. Jubault, K. Boubekeur, P. Batail, R. Carlier, *Bull. Soc. Chim. Fr.*, 1996, 133, 417.
- **46.** G.J. Marshallsay, T.K. Hansen, A.J. Moore, M.R. Bryce, J. Becher, *Synthesis*, **1994**, 926.
- R. Andreu, J. Garin, J. Orduna, M. Saviron, S. Uriel, *Tetrahedron Lett.*, 1995, 36, 4319.
- 48. L. Kaboub, Thèse De Doctorat Université Farhat Abbas Sétif, 2006.

- 49. a) Y. Misaki, K. Kawakami, H. Fujiwara, T. Miura, T. Kochi, M. Taniguchi, T. Yamabe, T. Mori, H. Mori, S. Tanaka, Mol., Cryst. Liq. Cryst., 1997, 296, 77. b) Y. Misaki, H. Nishikawa, T.Yamabe, T. Mori, H. Inokuchi, H. Mori, S. Tanaka, Chemistry Lett., 1993, 1341. c) Y. Misaki, H. Fujiwara, T. Yamabe, T. Mori, H. Mori, S. Tanaka, Chemistry Lett., 1994, 1653. d) Y. Misaki, H. Nishikawa, K. Kawakami, S. Koyanagi, T. Yamabe, M. Shiro, Chemistry Lett., 1992, 2321. e) T. Mori, H. Inokuchi, Y. Misaki, H. Nishikawa, T. Yamabe, H. Mori, S. Tanaka, Chemistry Letters, 1993, 733. f) Y. Misaki, T. Matsui, K; Kawakami, H. Nishikawa, T. Yamabe, M. Shiro, Chemistry Lett., 1993, 1337. g) Y. Misaki, H. Nhikawa, K. Kawakami, T. Yamabe, T.Mori, H. Inokuchi, H. Mori, S. Tanaka, Chemistry Lett., 1993, 2073. h) T. Mori, H. Inokuchi, Y. Misaki, H. Nishikawa, T. Yamabe, H. Mori, S. Tanaka, Chemistry Lett., 1993, 2085. i) Y. Misaki, K. Kawakami, T. Matsui, T. Yamabe, M. Shiro, J. Chem. Soc., Chem. Comm., 1994, 459. j) Y. Misaki, H. Nishikawa, T. Yamabe, T. Mori, H. Inokuchi, Bull. Chem. Soc. Jpn., 1994, 67, 2368. k) T. Mori, Y. Misaki, H. Fujiwara, T. Yamabe, Bull. Chem. Soc. Jpn., 1994, 67, 2685. 1) T. Mori, Y. Misaki, T. Yamabe, Bull. Chem. Soc. Jpn., 1994, 67, 3187.
- 50. M.B. Nielsen, N. Thorup, J. Becher, J. Chem. Soc., Perkin Trans 1, 1998, 1305.
- J. Tanabe, T. Kudo, M. Okamoto, G. Ono, A. Izuoka, T. Sugawara, *Chem. Lett.*, 1995, 579.
- 52. K.B. Simonsen, N. Svenstrup, J. Lau, N. Thorup, J. Becher, *Angew. Chem. Int. Ed.*,1999, 38, 1417.

Synthèse des donneurs- $\pi$  de type A et de type B



CHAPITRE II : Synthèse Des Donneurs- $\pi$  De Type A

Et De Type B



La maille cristallographique du conducteur organique ( TMTSF) $_2PF_6$ 

# Présentation Des Objectifs

Comme nous l'avons rappelé au cours du premier chapitre, le principal objectif des recherches actuelles dans le domaine du tétrathiafulvalène, vise la stabilisation de l'état métallique du matériau résultant via l'augmentation de leur dimensionnalité.

Dans ce but, de nombreuses pistes ont été développées, passant par la modification judicieuse préalable du squelette du TTF. Parmi ces modifications l'introduction de nouveaux hétéroatomes et modification des substituants au niveau des donneurs.

Dans cette optique, nous avons orienté nos travaux vers la synthèse de deux série de molécules cibles dérivées du TTF visant à produire des matériaux pluridimensionnels hautement conducteurs d'une part et des matériaux conducteur-magnétique basés sur des complexes de coordination de métaux de transition d'autre part.

#### Série A : TTF cibles comme précurseurs de matériaux conducteurs- magnétiques

Cette série de molécules plus particulièrement intéressante pour la préparation de matériaux associant des propriétés électriques et magnétiques. Ces molécules sont des TTF substitués par un groupement éthylènedithio directement lié à un hétérocycle aromatique azoté de type pyridine, aptes à créer des liaisons hydrogènes d'un coté, et faire la complexation avec les métaux de transition, d'un autre coté.

Comme les atomes de sélénium possèdent des orbitales atomiques plus volumineuses et plus diffuses que les atomes de soufre, l'introduction de tels atomes dans le donneur favorise les interactions moléculaires intra et inter-chaines dans le matériau résultant (schéma 1).



Schéma 1: molécules de la série A

#### Série B : TTF cibles comme précurseurs de matériaux conducteurs

Dans cette série, notre choix est basé sur l'extension du système- $\pi$  des donneurs afin d'augmenter la dimensionnalité, diminuer les répulsion coulombiennes intramoléculaires ( dû à l'état polycationique) et stabiliser les états oxydés ( cation organique) ( schéma 2).



Schéma 2: molécules de la série B

Dans la première partie de ce chapitre, nous rappelons les principales méthodes de synthèse des mono TTF. Ceci afin de choisir les stratégies les plus appropriées pour la préparation des molécules cibles.

Nous décrivons ensuite, la préparation des différents précurseurs nécessaire à la synthèse des molécules choisies.

# I. STRATEGIES DE SYNTHESE DES DONNEURS-II DE TYPE TXF

Parmi les stratégies de synthèse décrite dans la littérature, nous avons choisi celles qui nous ont paru les plus accessibles à la préparation de nos molécules cibles.

On note essentiellement trois voies de synthèse que nous allons utiliser ultérieurement :

- > Voie A : à partir des sels de dithiolium
- Voie B : à partir de 2-oxo, 2-thioxo ou 2-sélénoxo-1,3-dithiole.
- > Voie C : à partir de la déprotection-alkylation de thiolates.



Schéma 3

# I. 1. Voie A : à partir des sels de dithiolium

## I. 1. a. Par action d'une base sur un sel de dithiolium

Il s'agit dans ce cas de condenser deux sels de dithiolium, en éliminant un proton dans la dernière étape par l'action d'une base (le plus souvent la triéthylamine  $Et_3N$ ).



L'accès aux dérivés dissymétriques du TTF est possible avec des rendements inévitablement moins bons du fait de la présence des composés symétriques.

#### I. 1. b. Réaction de type Wittig

Cette voie consiste à condenser un sel de dithiolium et un ylure de phosphonium. L'intermédiaire résultant réagit en milieu basique pour conduire au TTF dissymétrique comme le montre le schéma ci-après.





Cette méthode était prometteuse car elle permettait d'après ces auteurs <sup>[1]</sup>, d'obtenir uniquement le dérivé dissymétrique. Il s'est avère par la suite dans une étude réalisée par A. K. Gouasmia <sup>[2]</sup>, que la sélectivité de la réaction n'était pas totale bien que le composé dissymétrique soit néanmoins majoritaire dans le mélange. Cette voie a permis à L. Kaboub <sup>[3]</sup> de préparer une série de TTF fonctionnalisés.



Schéma 6

# I. 1. c. Réaction de type Wittig-Horner

Cette méthode est basée sur la réaction de Wittig –Horner. Elle permet d'accéder aux composés dissymétriques d'une façon sélective, en faisant réagir un phosphonate et un sel de 1,3-dithiole-2-iminium comme l'illustre le schéma ci-dessous :



Ainsi, Fourmigué <sup>[4,5]</sup> a utilisé cette voie pour préparer l'éthylènedithiotétrathiafulvalène EDT-TTF, avec un rendement de l'ordre de 35% (schéma 8).



## I. 2. Voie B :à partir de 2-oxo, 2-thioxo ou 2-sélénoxo-1,3-dithiole

C'est la méthode de couplage croisé, elle consiste à condenser deux espèces : la 2one, 2-thione ou 2-sélénone-1,3-dithiole (ou 1,3-disélénole) par l'intermédiaire de dérivé de phosphore trivalents tels que le phosphite de triméthyle (P(OMe)  $_3$ ) ou le phosphine triphényle (PPh3), pour conduire avec des rendements variables, aux tétrahétérofulvalènes correspondants. On peut la représenter par le schéma suivant :



L'inconvénient de cette stratégie réside dans la non sélectivité, car elle mène à un mélange comprenant le dérivé dissymétrique accompagné des deux composés symétriques ce qui nécessite une séparation pénible. Malgré ça, cette voie permet la synthèse d'une grande variété de TTF dissymétriquement substitués, les meilleurs rendements sont obtenus avec les phosphites d'alkyle.

## I. 3. Voie C : à partir de la déprotection-alkylation de thiolates

Comme le montre le schéma 10, un autre moyen de réaliser la synthèse de tétrathiafulvalène dissymétriquement substitués, consiste à la déprotection-alkylation de bis (cyanoéthylthio) TTF. Becher et Coll<sup>[6]</sup> ont récemment développé cette stratégie.



Schéma 10

A noter que l'utilisation de l'entité cyanoéthyle comme groupe protecteurs offre plusieurs avantages :

La réaction d'élimination basique (déprotection) est une réaction quantitative.

La monodéprotection sélective des bis (cyanoéthyle) TTF (suivant la base et/ou le nombre d'équivalent utilisée) d'où la possibilité d'introduire d'autres substituants.

A la lumière de cette présentation, nous avons choisi comme principale voie de préparation de TTF, de la série A, la méthode de couplage croisé (voie B). Mais pour l'obtention des TTF, de la série B, nous avons utilisé la voie A.

Pour atteindre nos molécules cibles, il est nécessaire de préparer au préalable les précurseurs indispensables.

# **II. SYNTHESE DES PRECURSEURS**

## II. 1. Préparation des précurseurs de la série A

Compte tenu de la stratégie de synthèse choisie, il nous fallait d'abord préparer les précurseurs appropriés pour accéder ensuite aux molécules cibles de la série A.



Schéma 11

## a. Synthèse de 4,5- (4-pyridylethylenedithio)-1,3-dithiole-2-thione : 3a

Le processus que nous avons employé pour obtenir la 1,3-dithiole-2-thione implique la séquence réactionnelle suivante :



Schéma 12

La réduction du disulfure de carbone sur le sodium dans du DMF anhydre conduit après complexation par le dichlorure de zinc et le bromure de tétrabutylammonium au composé zincique  $1a_1$  qui est traité par l'iode pour donner l'oligomère  $2a_1$ <sup>[7]</sup>. Cet oligomère subit la dépolymérisation thermique pour donner le monomère instable, qui contient 2 liaison  $\pi$  efficace à des additions de Diels-Alder<sup>[8]</sup>.

Ensuite l'oligomère réagi avec le 2-vinylpyridine menant au composé intermédiaire  $3a_1$  avec un rendement de 15-50% après recristallisation (schéma 13).



Schéma 13

# b. Synthèse de 4,5- (4-pyridylethylenedithio)-1,3-dithiole-2-one : 3a<sub>1</sub>'

L'accès à cette dithiolone s'effectue de façon quasi quantitative par conversion <sup>[9]</sup> du groupement thiocarbonyle en carbonyle suite à l'action de l'acétate mercurique dans le chloroforme à température ambiante ( schéma 14).



Schéma 14

## c. Synthèse de 4,5-bis (sélénoalkyl)-1,3-dithiole-2-thione :

La synthèse de ces thiones est basée sur l'alkylation du complexe zincique  $2a_2$ <sup>[10]</sup> par le dérivé halogéné adéquat (schéma 15).



L'action du diisopropylamidure de lithium sur la 1,3-dithiole-2-thione  $1a_2^{[11]}$  dans le THF à -78°C fournit le sel dilithié correspondant qui est ensuite transformé en disélénolate par addition de sélénium élémentaire. Ce disélénolate de lithium, très sensible à l'air, est isolé sous la forme d'un complexe zincique stable  $2a_2$  avec un rendement de 70% par rapport à **1a**. Ce complexe, alkylé par différents composés halogénés dans l'acétonitrile à reflux, conduit aux thiones **3a**<sub>2</sub>, **4a**<sub>2</sub>, et **5a**<sub>2</sub><sup>[12]</sup>.

Les thiones séléniés obtenues sont représentés dans le tableau suivant avec leurs rendements respectifs.

| Thione                                                                                 | RX (Solvant)         | Rdt (%) |
|----------------------------------------------------------------------------------------|----------------------|---------|
| NC $Se$ $Se$ $S$ $Se$ $Se$ $Se$ $Se$ $Se$                                              | 3-bromopropionitrile | 79      |
| 3a <sub>2</sub>                                                                        |                      |         |
| MeSe S S S S                                                                           | Iodure de méthyle    | 60      |
| $\overbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | 1,2-dibromoéthane    | 58      |

<u>Tableau1</u>

# d. Synthèse de 4,5-bis (cyanoéthyleséléno)-1,3-dithiole-2-one : 3 a<sub>2</sub>'

La conversion de la dithiolethione  $3a_2$  en dithiolone  $3a_2$ ' s'effectue avec un rendement appréciable par l'action de l'acétate mercurique dans un mélange de chloroforme et l'acide acétique à température ambiante.



Schéma 16

# e. Couplage croisé de chalcogénones

La synthèse des molécules de la série A a été réalisée par une réaction de couplage croisé des chalcogénones comme indique le schéma ci-dessous.



#### Schéma 17

Les conditions réactionnelles de la réaction sont :

- Un couplage réalisé sous atmosphère d'azote dans un milieu de phosphite de triéthyle fraîchement distillé.
- L'usage de quantités équimolaires des chalcogénones.
- ☑ Un chauffage à 80-90°C du milieu réactionnel pendant 2 heures (jusqu'à la disparition totale du produit de départ).

La réaction est non sélective cela, implique une séparation des produits cibles à partir du mélange formé. Ainsi, les produits dissymétriques ont été, à chaque fois, séparé des produits symétriques par chromatographie sur colonne de silice.

Les résultats, de la synthèse de ces différents TTF, sont récapitulés dans le tableau suivant.

| Réactifs                            | TTF dissymétriques                                                                                                                                                                        | Rdt (%) |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 3a <sub>2</sub> ' + 3a <sub>1</sub> | 4, 5-bis (2-cyanoéthylséléno)-4', 5'-(2-<br>Pyridyléthylènedithio) tétrathiafulvalène<br>V<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S                                              | 20      |
| 4a <sub>2</sub> + 3a <sub>1</sub>   | 4, 5-bis (diméthylséléno)-4', 5'-(2-<br>Pyridyléthylènedithio) tétrathiafulvalène<br>$ \begin{array}{c}                                     $                                             | 33      |
| $5a_2 + 3a_1$                       | 4, 5-bis (Ethylènediséléno)-4', 5'-(2-<br>Pyridyléthylènedithio) tétrathiafulvalène<br>$\overbrace{S}^{N} + \overbrace{S}^{S} + \overbrace{S}^{S} + \overbrace{S}^{Se}$<br>A <sub>3</sub> | 20      |

# Tableau 2

Les caractéristiques des différents tétrathiafulvalènes synthétisés sont regroupées dans le tableau 3

| TTF synthétisés                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rdt<br>(%) | Pf<br>(°C) | m / e | RMN <sup>1</sup> H ( CDCl <sub>3</sub> )<br>( δ ppm)                                                                               |                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-------|------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| A <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20         | Huile      | 635   | 2,90(t, 4H, CH <sub>2</sub> Se) ; 3,11(t<br>CH <sub>2</sub> CN) ; 3,75(m, 2H);<br>(dd,1H); 7,35-8,58 ( m,<br>$C_6H_4N$ ).          | , 4H,<br>5,00<br>4H, |
| A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33         | 122        | 557   | 2,33(s, 6H, CH <sub>3</sub> Se); 3,7<br>2H); 5,00(dd,1H); 7,35-8,53<br>4H, C <sub>6</sub> H <sub>4</sub> N).                       | 75(m,<br>8( m,       |
| $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ | 20         | 124        | 555   | 3,42(s, 4H, CH <sub>2</sub> Se); 3,75(m<br>CH <sub>2</sub> S); 5,00 (dd,1H, CHS);<br>8,58( m, 4H, C <sub>6</sub> H <sub>4</sub> N) | , 2H,<br>7,35-       |

# <u>Tableau 3</u>

Après avoir synthétisé cette série de TTF, nous avons voulu étudier leur pouvoir électrodonneur au travers de leurs caractéristiques électrochimiques dans le chapitre III.

## II. 2. Préparation des précurseurs de la série B

L'analyse rétrosynthétique de ces molécules cibles, fait apparaître comme voie de synthèse possible une réaction classique de Wittig. Une telle réaction peut être réalisée entre deux entités : le sels de phosphonium et la fonction aldéhyde introduite sur une unité TTF. La mise en œuvre de ces synthèses nécessite, cependant, la préparation préalable des molécules clés appropriées.



Schéma 18

# a. Synthèse de 2-formyl-3, 6,7-triméthyles tétrathiafulvalène : 7b

Ce intermédiaire clé a été préparé en deux étapes :

- La première étape consiste à synthétiser le 3, 6,7-triméthyl-tétrathiafulvalène.
- ☑ La deuxième vise la transformation de TriMeTTF en formyl-TTF en utilisant le N-méthyl-N- phenylformamide (schéma 19).



```
Schéma 19
```

## Préparation des précurseurs :

Pour préparer le triméthyle TTF (TriMeTTF), nous avons utilisé une réaction de type Wittig- Horner qui permet d'obtenir ce produit sélectivement <sup>[13]</sup>. La mise en œuvre de ce couplage nécessitait la préparation préalable des sels précurseurs **2b**<sub>2</sub> et **5b**<sub>1</sub>.

# 1. Synthèse des sels de dithiolium

Les sels de dithiolium <sup>[83]</sup>  $4b_1$ ,  $4b_2$  sont obtenus en plusieurs étapes selon la séquence réactionnelle décrite au schéma 20 :



La réaction du disulfure de carbone sur la pipéridine à 0°C permet la formation du pipéridinodithiocarbamate de pipéridinium qui réagit alors sur la chlorocétone approprié dans l'éthanol à reflux pour donner le pipéridinodithiocarbamate **1b**<sub>1</sub>. Ce dernier est ensuite cyclisé par de l'acide sulfurique concentré à 0°C et l'hydrogénosulfate ainsi obtenu est immédiatement transformé en hexafluorophosphate par addition d'acide hexafluorophosphorique. Le sel d'imminium **2b**<sub>1</sub> <sup>[14]</sup> obtenu est alors réduit par le borohydrure de sodium en suspension dans l'éthanol à 0°C. Le composé huileux résultant

 $3b_1$  est ensuite désaminé par de l'acide hexafluorophosphorique en solution dans l'éther à 0°C pour donner le sel de dithiolium  $4b_1 4b_2$ .

Les résultats de ces réactions sont résumés dans le tableau ci-après.

| Intermédiaires obtenus                                               | <b>Rdt</b> (%) |
|----------------------------------------------------------------------|----------------|
| $ \begin{array}{c c} S & R & O \\ N & S & H \\ H \\ 1b \end{array} $ | 88             |
| $R \rightarrow S \rightarrow PF_{6}$                                 | 75             |
| $R \rightarrow S \rightarrow H$                                      | 90             |
| $R \xrightarrow{S} H, PF_6$<br>$R \xrightarrow{S} 4b$                | 80             |

# <u>Tableau 4</u>

# 2. Synthèse de 4,5-diméthyl-2-diméthyloxyphosphoryl-2-yl-1,3-dithiole : 5b<sub>1</sub>

Le phosphonate ester  $5b_1$ , a été préparé selon la séquence réactionnelle connue <sup>[15]</sup> décrite au schéma 21. Le sel dithiolium  $4b_1$  est dans ce cas soumis à une réaction d'Arbuzov en présence de phosphite de triéthyle et l'iodure de sodium dans l'acétonitrile. Le phosphonate résultant, obtenu avec un rendement de 85%, est directement engagé dans l'étape suivante.



#### b. Synthèse de 3, 6,7-triméthyl-tétrathiafulvalène : 6b

L'action de tBuOK sur le phosphonate  $5b_1$  en solution dans le THF refroidi à -78°C donne le carbanion correspondant dont la condensation sur le sel d'imminium  $2b_2$ . Le traitement à température ambiante par un large excès d'acide acétique permet d'obtenir le triméthyl TTF<sup>[16]</sup> **6b** avec 54% de rendement.



Schéma 22

## > Synthèse de TriMe-TTF formylé : 7b

Comme indique le schéma 23, le TTF **6b** traité par 1,2 équivalent de diisopropylamidure de lithium fraîchement préparé à -78°C, réagit avec 1,2 équivalent de N-méthyl-N- phenylformamide pour conduire au TTF formylé avec un rendement de l'ordre de 44% après l'élimination des traces de produit de départ.





## c. Synthèse de sel de phosphonium : 8b

Le sel triphénylphosphonium **8b** est synthétisé en trois étapes à partir de la thione **1c** en adaptant une procédure de la littérature <sup>[17]</sup> (schéma 24).



Schéma 24

Pour réaliser cette synthèse, il nous a tout d'abord fallu préparer la thione 4,5-bis (2-cyanoéthylthio)-1,3-dithiole-2-thione **1c.** 

# > Synthèse de 4,5-bis (2-cyanoéthylthio)-1,3-dithiole-2-thione : 1c

La synthèse de cette thione repose sur l'alkylation du complexe zincique par un dérivé halogéné c'est le 3-bromopropionitrile (schéma 25).



Les résultats obtenus concernant la synthèse de la thione et le sel de phosphonium sont regroupés dans le tableau suivant.

| Intermédiaires obtenus                                                                        | Rdt (%) |
|-----------------------------------------------------------------------------------------------|---------|
| $NC \qquad S \qquad $ | 89      |
| 1c                                                                                            |         |
| NC S S S $\oplus$ SMe, BF <sub>4</sub> $\oplus$ SMe, BF <sub>4</sub> $\oplus$                 | 100     |
| 1c <sub>1</sub>                                                                               |         |
| NC S S H                                                                                      | 75      |
| 1c <sub>2</sub>                                                                               |         |
| NC S S H $\stackrel{\bigoplus}{PPh_3, BF_4}$                                                  | 94      |
| 1b                                                                                            |         |

# <u>Tableau 5</u>

## d. Synthèse de TTF par condensation de type Wittig

La synthèse du TTF  $B_1$  par la réaction de type Wittig consiste à condenser le TTF formylé **7b** sur un ylure phosphoré en utilisant une base, la séquence réactionnelle est décrite au schéma 26.



Schéma 26

## II. 3. Optimisation De La Réaction de Wittig

Pour nous familiariser avec ce type de réaction, nous nous somme tout d'abord attaché à reprendre des donnés opératoires de la littérature pour reproduire la synthèse du TTF de la série **B**.

Nous avons effectué, plusieurs autres tentatives en changeant la nature de la base, et en modifiant également le nombre d'équivalent de la base et du sel de phosphonium, bien que non signalé dans la littérature, nous avons constaté finalement que le TTF cible, est effectivement formé, mais avec un rendement faible.

Nous avons choisi le mélange acétonitrile/ THF comme solvant de la réaction.
Il nous a paru intéressant de réaliser une étude préliminaire afin d'examiner l'influence de la nature de la base d'une part, et l'effet de la température, sur le rendement de la réaction d'autre part. Pour cela quatre essais ont été réalisé en utilisant :  $Et_3N$  à température ambiante, nBuLi à -78°C, et tBuOK à 0°C et à -78°C.

Dans un premier essai, nous avons réalisé la condensation entre le formyl TTF et le sel de phosphonium dans le mélange ACN/THF en présence du triéthyle amine à température ambiante. Après 2 jours d'agitation, nous avons isolé le produit attendu avec un rendement de 20%. Et la présence des produits de départ non réagits.

➢ Le second essai a été réalisé dans les mêmes conditions, mais cette fois ci en utilisant le nBuLi comme base de la réaction à -78°C. Dans ce cas l'utilisation de cette base dans ces conditions a permit a l'obtention du TTF cible avec un rendement de 70%.

Alors que, l'emploi du tBuOK dans les mêmes conditions opératoires a permit d'isoler la molécule cible après une nuit d'agitation avec un rendement de 83%.

Par contre, l'utilisation du tBuOK dans les mêmes conditions opératoires en augmentant la température à 0°C a permit d'isoler le TTF avec un rendement uniquement de 45%.

En résumé, les conditions que nous avons retenues pour réaliser la réaction de condensation entre l'aldéhyde et le sel de phosphonium, sont les suivantes :

 $\square$  Réactions menées sous atmosphère inerte (N<sub>2</sub>).

Utilisation d'un mélange de : **THF anhydre / ACN anhydre** comme solvant de réaction.

☑ La réaction se fait à **-78°C** en utilisant l'azote liquide.

L'ajout de 2 équivalents de phosphonium pendant 4 heures

la base utilisée : le tBuOK (2équivalents).

## II. 4. Synthèse des TTF cibles

Afin de synthétiser nos molécules cibles, nous avons choisi deux approches : l'une repose sur la double déprotection des fonctions chalcogénates via l'élimination des deux groupes cyanoéthyle des TTF  $B_1$  à l'aide de 2 équivalents d'éthanolate de sodium dans l'éthanol à température ambiante. Les espèces dithiolates réagissent ensuite *in situ* avec l'agent alkylant mono et/ou bi halogéné pour donner le produit souhaité comme l'illustre le schéma 27.



L'autre repose sur la mono déprotection, par un équivalent d'hydroxyde de césium monohydraté, du composé  $B_1$ , suivi par l'action d'un demi équivalent d'agent alkylant mono halogéné sur le mono thiolate obtenu, comme le montre le schéma ci-dessous.



La nature des substituants a été choisie pour les caractéristiques différentes qu'elles confèrent à chacun de ces composés.

A noter que différents substituants ont été introduits sur les unités TTF de ces composés, afin d'en moduler le pouvoir donneur. En effet, l'introduction de groupements méthyles (Me) électrodonneurs d'une part et de groupements thioalkyles (SMe, SCH<sub>2</sub>CH<sub>2</sub>S, S(CH<sub>2</sub>)<sub>3</sub>S) électroattracteurs d'autre part font varier le pouvoir donneur de ces

différents TTF et leur solubilité on milieu organique. On retrouve de plus ces mêmes de substituants respectivement dans le TMTTF, le BEDT-TTF et le BEDS-TTF qui sont tous connus pour donner des sels hautement conducteurs et même supraconducteurs<sup>[18]</sup>.

Les résultats, de la synthèse de ces TTF, sont reportés dans les tableaux 6

| TTF synthétisés                                                                        | TTF synthétisés                                                                          |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 2-(4,5-cyanoéthylthio-1,3-dithiole-2-ylidène)-<br>3, 6,7- trimethyltetrathiafulvalene  | 2-(4,5-propylèndithio-1,3-dithiole-2-ylidène)-3,<br>6,7- trimethyltetrathiafulvalene     |
| Me S S Me S CN                                                                         | Me S S Me                                                                                |
| 1B <sub>1</sub>                                                                        | 1B <sub>4</sub>                                                                          |
| 2-(4,5-diméthylthio-1,3-dithiole-2<br>-ylidène)-3, 6,7-<br>trimethyltetrathiafulvalene | 2-(4,5-méthylèndithio-1,3-dithiole-2-ylidène)-3,<br>6,7- trimethyltetrathiafulvalene     |
| Me S S S Me<br>Me S S Me                                                               | $Me \\ Me \\ S \\ S \\ Me \\ Me \\ S \\ S \\ Me \\ Me$                                   |
| $1B_2$                                                                                 | 1B <sub>5</sub>                                                                          |
| 2-(4,5-éthylènedithio-1,3-dithiole-2-ylidène)-<br>3, 6,7- trimethyltetrathiafulvalene  | 2-(4,5-diméthylènpyridyl-1,3-dithiole-2-<br>ylidène)-3, 6,7- trimethyltetrathiafulvalene |
| Me S S S S S S S S S S S S S S S S S S S                                               | Me S S Me S N                                                                            |
| <b>1B</b> <sub>3</sub>                                                                 | 186                                                                                      |

# <u>Tableau 6</u>

# II. 4. 1 Préparation de bi-TTF à lien espaceur saturé contenant un groupe pyridinique

L'introduction d'un lien motif pyridinique dans des bi-TTF peut, au-delà de l'accès à sels conducteurs pluridimensionnels, permettre de complexer les atomes d'azote pyridinique avec des métaux de transition paramagnétiques et ainsi obtenir des matériaux hybrides conducteurs-magnétiques

Dans ce but, la mono déprotection d'une fonction thiolate du composé  $B_1$  par l'action d'un équivalent d'hydroxyde de césium monohydraté dans le DMF suivie d'une alkylation par un demi équivalent de 2,6-bis (chlorométhyl) pyridine, conduit au bi-TTF (composé  $2B_2$ ) avec un rendement de 59 % (schéma 29).



Schéma 29

Les résultats, de la synthèse par cette voie, sont reportés dans les tableaux 7

<u>Tableau 7</u>



Les caractéristiques des différents tétrathiafulvalènes synthétisés sont regroupées dans le tableaux 8

# <u>Tableau 8</u>

| TTF synthétisés                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rdt<br>( %) | Pf<br>(°C) | m / e | RMN <sup>1</sup> H ( CDCl <sub>3</sub> )<br>( δ ppm)                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$ | 83          | 161        | 530   | 1.25( s, 6H, 2CH <sub>3</sub> ); 1.95( s,<br>3H, CH <sub>3</sub> ); 2.75( t, 4H, CH <sub>2</sub> -<br>CN, J=5Hz); 3.12( t, 4H,<br>SCH <sub>2</sub> , J=6Hz); 7.25( s, 1H).      |
| $Me \xrightarrow{S}_{S} \xrightarrow{S}_{S} \xrightarrow{S}_{Me} \xrightarrow{S}_{SMe}$ $Me \xrightarrow{S}_{S} \xrightarrow{S}_{Me} \xrightarrow{S}_{Me}$ $1B_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 65          | 139        | 452   | 1.30( s, 6H, 2CH <sub>3</sub> ); 2.10( s,<br>3H, CH <sub>3</sub> ); 2.80( s, 3H, SCH <sub>3</sub> );<br>3.10( s, 3H, SCH <sub>3</sub> ); 7.25( s,<br>1H).                       |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ Me \\ \end{array} \\ Me \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ S \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$                                                                                                                                                     | 68          | 138.5      | 450   | 1.25( s, 6H, 2CH <sub>3</sub> ); 2.00( s,<br>3H, CH <sub>3</sub> ); 3.12( t, 4H, 2SCH <sub>2</sub><br>J=6Hz); 7.25( s, 1H).                                                     |
| $Me S S S S S S$ $Me S S S Me$ $1B_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74          | 133        | 464   | 1.25( s, 6H, 2CH <sub>3</sub> ); 1.95( s,<br>3H, CH <sub>3</sub> ); 2.75( m, 4H, CH <sub>2</sub> -<br>CH <sub>2</sub> ); 3.60( t, 2H, SCH <sub>2</sub><br>J=7Hz); 7.25( s, 1H). |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ Me \\ Me \end{array} \\ S \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ S \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$                                                                                                                                                                                                                                                             | 52          | 119.5      | 436   | 1.25( s, 6H, 2CH <sub>3</sub> ); 2.00( s,<br>3H, CH <sub>3</sub> ); 3.6( s, 2H, CH <sub>2</sub> S);<br>7.25( s, 1H).                                                            |

# Chapitre II

Synthèse des donneurs- $\pi$  de type A et de type B

| $ \begin{array}{c} Me \\ Me \\ Me \\ Me \\ S \\ S \\ S \\ Me \\ 1B_6 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48 | 192.5 | 606  | 1.25( s, 6H, 2CH <sub>3</sub> ); 1.95( s,<br>3H, CH <sub>3</sub> ); 3.9( s, 4H, 2SCH <sub>2</sub> -<br>Py); 7.25( s, 1H); 7.75( m, 4H,<br>CH-Py); 8.5( m, 4H, CH-N).                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ Me \\ \end{array} \\ Me \\ \end{array} \\ \end{array} \\ S \\ \end{array} \\ CN \\ \end{array} $ $ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$ | 75 | 133   | 491  | 1.25( s, 6H, 2CH <sub>3</sub> ); 1.95( s,<br>3H, CH <sub>3</sub> ); 2.75( t, 2H, CH <sub>2</sub> -<br>CN, J=5Hz); 2.80( s, 3H,<br>SCH <sub>3</sub> ); 3.12( t, 2H, SCH <sub>2</sub><br>J=6Hz); 7.25( s, 1H).                                            |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59 | 128.5 | 1057 | 1.25( s, 12H, 4CH <sub>3</sub> ); 1.95( s,<br>6H, 2CH <sub>3</sub> ); 2.75( t, 4H, 2CH <sub>2</sub> -<br>CN, J=5Hz); 3.12( t, 4H,<br>2SCH <sub>2</sub> J=6Hz); 4.2( s, 4H,<br>CH <sub>2</sub> Py); 7.25( s, 2H); 7.45( s,<br>1H, py); 7.65( s, 2H, py). |

En conclusion, nous avons présentés au cours de ce chapitre la synthèse de deux séries de donneurs- $\pi$  originaux de type TTF fonctionnalisés. Plusieurs voies de synthèse ont été développées en imposant chaque fois des substituants différents.

#### Chapitre II

Synthèse des donneurs- $\pi$  de type A et de type B

# Bibliographie

- 1. C. Gonnella and M. P. Cava, J. Org. Chem., 1978, 43, 369.
- Abdelkrim GOUASMIA, Thèse de doctorat d'état de l'université de Montpellier II, 1988.
- L. Kaboub, J-P. Legros, B. Donnadieu, A-K.Gouasmia, L. Boudiba and J-M.Fabre J. Mater. Chem., 2004, 14, 351-356.
- 4. M. Fourmigué, F.C. Krebs, J. Larsen, Synthesis, 1993, 509.
- 5. H. Mora, J. M. Fabre, L. Giral, C. Montginoul, *Bulletin de la Société Chimique de Belgique*, **1992**, 101, 137.
- 6. N. Svenstrup, K. M. Rasmussen, T. K. Hansen, J. Becher, *Synthesis.*, 1994, 809.
- L.M. Goldenberg, J.Y. Becher, O.P. Levi, V.Y. Khodorkovsky, L.M. Shaprio, M.R. Bryce, J.P. Cresswell and M.C. Petty, *J. Mater. Chem.*, **1997**, 7, 901.
- 8. N. Svenstrup, and J.Y. Becher, Synthesis., 1995, 215.
- 9. K. Hartke, T. Kissel, J. Quante and R. Matusch, Chem.Ber., 1980, 112, 1898.
- G.C. Papavassiliou, V.C. Kakoussis, J.S. Zambounis, G.A. Mousdis, *Chem. Scripta*, 1989, 29, 123.
- 11. A.J. Moore, M.R. Bryce, Synthesis, 1991, 26.
- 12. P.J. Nigrey, Synth. Met., 1988, 27, B365.
- a) F. Darviche, *Thèse de Doctorat, Université de Montpellier II*, 21 Octobre 1998. b)
  H.J. Cristau, F. Darviche, E. Toreilles, J.M. Fabre, *Tetrahedron Lett.*, 1998, 39, 2103.
- 14. M. Narita, C. U. Pittman, Synthesis., 1976, 489.
- a) K. Ishikawa, K. Akiba, N. Inamoto, *Tetrahedron Lett.*, **1976**, 41, 3695. b) K. Ishikawa, K. Akiba, N. Inamoto, *Bull. Chem. Soc. Jpn.* **1978**, 51, 2674.c) A. J. Moore, M. R. Bryce, *J. Chem. Soc.*, *Perkin Trans.* **1991**, 157. d) J.M. Fabre, D. Serhani, K. Saoud, A. K. Gouasmia, *Bull. Soc. Chem. Belg.*, **1993**, 102, 9, 615-622.
- A. J. Moore, M. R. Bryce, A.S. Batsanov, J.C. Cole, J.A.K. Howard, *Synthesis.*, 1995, 675-682.
- 17. L. Binet, J. M. Fabre, C. Montginoul, K. B. Simonsen, J. Becher, J. Chem. Soc, Perkin Trans. 1., 1996, 783.
- a) E. B. Yagubskii, Mol. Liq. Cryst., 1993, 230, 139. b) J. M. Williams, J. R. Ferraro, R. I. Thorn, K. D. Carlson, U. Geiser, H. H. Wang, A. M. Kini, M. H. Wangbo, Organic Superconductors (including Fullerenes), Synthesis, Structure, Properties and Theory, Prentice Hall, Englewood

Chapitre III

Etude Electrochimique Et Elaboration Des Matériaux



# CHAPITRE III : Etude Electrochimique Et Elaboration

# Des Matériaux



Nous avons décrit et discuté, dans ce qui précède, la synthèse des molécules que nous avons choisies pour leurs caractéristiques susceptibles d'être favorables à la formation de matériaux à propriétés électriques remarquables.

Nous allons, au cours de ce troisième chapitre, décrire la préparation et l'étude des complexes de transfert de charge (CTC) issus de l'association des donneurs- $\pi$  synthétisés avec le TCNQ.

Nous allons étudier, , le comportement électrochimique des nouveaux donneurs- $\pi$  par voltammétrie cyclique pour pouvoir évaluer leur aptitude à s'oxyder.

# I. Généralités

La voltammétrie cyclique donne l'intensité du courant d'électrolyse i en fonction du potentiel appliqué E sur une électrode fixe pour une solution contenant le composé à étudier[ i=f(E)]. Pour les mesures, on utilise une cellule électrochimique à trois électrodes :

- Une électrode de travail ( en platine) sur laquelle s'effectue la réaction d'oxydation ou de réduction.
- Une électrode de référence, en général au calomel saturé ( ECS) par rapport à laquelle on mesure le potentiel de l'électrode de travail.
- Une électrode auxiliaire ( en platine) qui permet de fermer le circuit d'électrolyse.



Cellule pour VC classique

Figure 1 : Cellule utilisée pour les mesures électrochimiques

Le composé dont on veut étudier le comportement électrochimique est dissout dans un solvant approprié contenant un large excès d'électrolyte support assurant la conductibilité de la solution. Les électrolytes sont en général des sels d'ammonium quaternaires tels que  $\mathbf{Bu}_4 \mathbf{N}^+ \mathbf{X}^-$  avec X= ClO<sub>4</sub>, PF<sub>6</sub>, BF<sub>4</sub>, ... etc.

La technique de voltammétrie cyclique consiste à balayer linéairement, vers les potentiels anodiques puis cathodiques (dans le cas des TTF) dans l'intervalle de potentiels ou le produit s'oxyde et se réduit. Des pics liés aux différents stades d'oxydo-réduction sont alors observés. Si l'espèce formée à l'électrode est stable durant l'intervalle de temps d'analyse permettant le balayage aller-retour en tension, le système est réversible.

Par exemple, dans le cas de l'oxydation du TTF <sup>[1]</sup> (Schéma 1, Figure 2) on observe en général deux étapes redox réversibles à un électron correspondant à la formation successive d'un cation radical et d'un dication. Chaque étape est caractérisée par des pics d'oxydation ( $E_{ox}^1$ ,  $E_{ox}^2$ ) et de réduction (réversibilité :  $E_{red}^1$ ,  $E_{red}^2$ ) à partir desquels les potentiels de demi-vague  $E_{1/2}^1$  et  $E_{1/2}^2$  peuvent être déduits (Schéma 1)



Schéma 1



Figure 2: Allure générale d'un voltamogrammes de TTF

# **II. Résultats Et Discussions**

Pour enregistrer les voltamogrammes de tous les nouveaux donneurs préparés, nous avons utilisé les conditions suivantes :

- Solvant :  $CH_2Cl_2$
- $\mathcal{B}$  Electrolyte support : **Bu**<sub>4</sub>**N**<sup>+</sup>**BF**<sub>4</sub><sup>-</sup>
- Electrode de travail en platine
- Electrode de référence : ECS
- $\checkmark$  Vitesse de balayage : 100 mV s<sup>-1</sup>

# II.1. Etude du comportement électrochimique des composés formés

L'étude électrochimique de ces nouveaux donneurs, qui présentent tous un processus réversibles en voltammétrie cyclique comme indiqué sur la figure 3



Figure 3 : Voltamogrammes du composé : B1

Dans le cas des nos TTF ( séria A), les valeurs du potentiels d'oxydation  $E^{1}_{0x}$  et  $E^{2}_{0x}$  obtenus par voltammétrie cyclique sont regroupés dans le tableau 1, ainsi que les valeurs du tétraméthyltétrathiafulvalène (TMTTTF) et du tétrathiafulvalène (TTF) pris comme références.

| Donneur-π                                                           | E <sup>1</sup> <sub>ox</sub> (mV) | $E_{ox}^{2}(mV)$ |
|---------------------------------------------------------------------|-----------------------------------|------------------|
| S S S S CN<br>S S S S S CN<br>S S S S S S S S S S S S S S S S S S S | 635                               | 1045             |
|                                                                     |                                   |                  |
| A2                                                                  | 711                               | 1060             |
| $ \begin{array}{c}                                     $            | 758                               | 1181             |
|                                                                     |                                   |                  |
| TMTTF                                                               | 604                               | 1039             |
| TTF                                                                 | 654                               | 972              |

# <u>Tableau 1</u>

- Comme prévu, le profil d'oxydation de tous les composés, observé par voltammétrie cyclique, montre deux vagues d'oxydation à un électron de chacune ce qui correspond à la formation réversible d'un cation radical (TTF<sup>+\*</sup>) à  $E^1_{ox}$  et d'un dication (TTF<sup>2+</sup>) à  $E^2_{ox}$ .
- Les potentiels d'oxydation de A<sub>2</sub> et A<sub>3</sub> sont les plus anodiques dans la série, cella est dû à la présence des groupements électroattracteurs : SeMe et SeCH<sub>2</sub>CH<sub>2</sub>Se.

En conclusion ces mesures montrent que les TTF de cette série ( A), sont de bons donneurs d'électrons- $\pi$  donc à priori susceptibles de conduire à des matériaux conducteurs après oxydation.

Les valeurs des potentiels d'oxydation des composés de la série **B**, sont résumés dans le tableau 2.

| Donneur-π                                                                                                                            | $E^{1}_{ox}(mV)$ | $E_{ox}^{2}(mV)$ |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
| Me S S S CN<br>Me S S Me                                                                                                             | 483              | 827              |
| 1B <sub>1</sub>                                                                                                                      |                  |                  |
| Me S S S Me S S Me                                                                                                                   | 526              | 874              |
| $1B_2$                                                                                                                               |                  |                  |
| $Me \xrightarrow{S} \xrightarrow{S} \xrightarrow{S} \xrightarrow{S} \xrightarrow{S} \xrightarrow{S} \xrightarrow{S} \xrightarrow{S}$ | 525              | 944              |
| 1B <sub>3</sub>                                                                                                                      |                  |                  |

Tableau 2



- Par contre en ce qui concerne les composés de la série B, on observe que les potentiels d'oxydation sont moins élevés à cause de la présence des substituants électrodonneur : Me
- La comparaison des valeurs des potentiels d'oxydation de ces nouveaux donneurs (Tableau 2) avec : le TTF ou le TMTTF qui sont à l'origine de très nombreux sels conducteurs et supraconducteurs, ne montre pas de différence notable. Ces composés sont donc à priori aptes eux aussi à former des matériaux conducteurs.

# II. 2. Préparation et étude de complexes de transfert de charge

Dans cette partie nous avons étudier les matériaux solides, nous décrivons la synthèse et la caractérisation de complexes de transfert de charge obtenus à partir des donneurs synthétisés.

Nous avons choisi d'élaborer des complexes de transfert de charge (CTC) en associant nos donneurs- $\pi$  avec l'accepteur : TCNQ (tétracyanoquinodiméthane) qui est à l'origine du premier métal organique TTF-TCNQ <sup>[2,3]</sup>. L'utilisation du TCNQ en tant qu'accepteur tient aux caractéristiques structurales et électroniques de ce composé propices à la formation de CTC conducteurs. Il est tout d'abord un accepteur d'électrons  $\pi$  présentant deux systèmes redox réversibles (Schéma 2) :



Schéma 2

Le caractère oxydant du TCNQ s'explique par l'effet mésomère négatif fort des quatre groupements nitriles. L'anion radical qui se forme par gain d'un premier électron stabilisé par résonance confère au noyau une structure aromatique <sup>[4]</sup> (Schéma 2).

D'autre part, sur le plan structural, le TCNQ est un composé plan faiblement encombré, ce qui permet la formation d'empilements réguliers plan contre plan des molécules. Ce type d'arrangement facilite les recouvrements intermoléculaires des orbitales ce qui est favorable à la délocalisation électronique responsable de la conductivité des solides résultants de type TTF-TCNQ.

### II.2.1. Préparation des CTC

Pour obtenir nos CTC, nous avons utilisé la méthode de synthèse directe d'oxydoréduction en solution. Le précurseur TTF et le TCNQ, sont dissous séparément dans un même solvant à ébullition, puis les deux solutions chaudes sont mélangées. Après refroidissement lent de la solution résultante et évaporation partielle du solvant, nous avons dans certains cas, pu isoler un solide.

Les résultats des quelques essais de formation de CTC réalisés avec les TTF synthétisés sont reportés dans le tableau suivant.

| Donneur-π                                                                                                    | Accepteur<br>(TCNQ) | Solvant | Résultats         |
|--------------------------------------------------------------------------------------------------------------|---------------------|---------|-------------------|
| $Me \\ Me \\ S \\ S \\ Me \\ B \\ S \\ S \\ Me \\ S \\ $             | 1éq                 | MeCN    | Aiguille<br>noire |
| $Me \xrightarrow{S} S \xrightarrow{S} S \xrightarrow{S} Me$ $Me \xrightarrow{S} S \xrightarrow{S} Me$ $1B_2$ | 1éq                 | MeCN    | Poudre noire      |

# <u>Tableau 3</u>

### Chapitre III

# Etude Electrochimique Et Elaboration Des Matériaux

| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ Me \\ \end{array} \\ Me \\ \end{array} \\ \end{array} \\ S \\ \end{array} \\ S \\ \end{array} \\ \begin{array}{c} \end{array} \\ S \\ \end{array} \\ S \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1éq | MeCN             | TTF 1B3<br>+<br>TCNQ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|----------------------|
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ Me \\ \end{array} \\ Me \\ \end{array} \\ S \\ \end{array} \\ S \\ \end{array} \\ S \\ \end{array} \\ S \\ \end{array} \\ \begin{array}{c} \end{array} \\ S \\ \end{array} \\ S \\ \end{array} \\ \begin{array}{c} \end{array} \\ S \\ \end{array} \\ \begin{array}{c} \end{array} \\ S \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1éq | MeCN<br>+<br>THF | TTF 1B4<br>+<br>TCNQ |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ Me \\ Me \\ S \\ Me \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ S \\ S \\ Me \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} \\ \end{array}  } \\ \end{array} | 1éq | MeCN             | Poudre<br>marron     |

On observe que les TTF de cette série ont bien conduit aux complexes visés, malheureusement, pour la plupart des échantillons, sous de forme de poudre.

# II.2.2. Mesure de conductivité électrique à température ambiante

La conductivité électrique  $\sigma$  d'un matériau peut s'exprimer par la relation suivante :

$$\sigma = \frac{1}{\rho} = \frac{1}{R} \cdot \frac{L}{S} = \frac{1}{V} \cdot \frac{L}{S} \quad (S.cm^{-1} \text{ ou } \Omega^{-1}.cm^{-1})$$

avec :

- ✓ ρ: résistivité en (Ω.cm)
- ✓ **R** : résistance du matériau en (Ω)
- ✓ L : Longueur de l'échantillon en (cm)
- ✓ **S** : aire de la section de l'échantillon en  $(cm^2)$
- ✓ I : intensité de courant traversant l'échantillon en Ampère (A)
- ✓ V : tension mesurée au borne de l'échantillon en Volt (V)

On note que toutes les mesures de conductivité des complexes obtenus ont été réalisées sur des pastilles de poudre compactées.

Les différents résultats de conductivités des CTC issus des TTF synthétisés sont rassemblés dans le tableau 4 :

| Donneur-π                                                                             | Accepteur<br>(TCNQ) | Conductivité<br>électrique<br>σ (S.cm <sup>-1</sup> ) |
|---------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------|
| Me S S S CN<br>Me S S S CN                                                            | 1éq                 | 10 <sup>-6</sup>                                      |
| 1B <sub>1</sub>                                                                       |                     |                                                       |
| Me S S S Me S S S Me                                                                  | 1éq                 | 10 <sup>-8</sup>                                      |
| $1B_2$                                                                                |                     |                                                       |
| $Me \xrightarrow{S}_{S} \xrightarrow{S}_{S} \xrightarrow{S}_{Me} \xrightarrow{S}_{S}$ | 1éq                 | 10 <sup>-9</sup>                                      |
| 1B <sub>5</sub>                                                                       |                     |                                                       |

### <u>Tableau 4</u>

On observe que les trois complexes de transfert de charge issus de cette famille présentent une conductivité faibles entre  $10^{-6}$  et  $10^{-9}$  S.cm<sup>-1</sup>, ces valeurs indiquent un comportement semi conducteurs pour ces matériaux. Cela est dû soit à des performances électriques moyennes, soit à un d'empilement structural défavorable (type alterné).

# II.2.3. Relations conductivité électrique et le taux de transfert de charge (estimé par spectroscopie IR)

C'est en comparant un grand nombre de sels par transfert de charge impliquant le TCNQ qu'on a pu mettre en évidence une relation linéaire<sup>[5-6]</sup> entre la fréquence d'absorption des fonctions nitriles de l'accepteur TCNQ( $v_{CN}$ )et le degré de transfert de charge  $\rho$  (charge portée par l'accepteur ou le donneur) (Figure 4, 5 et 6).



Figure 4: Spectre IR de B<sub>1</sub>-TCNQ



*Figure 5:* Spectre IR de **B**<sub>2</sub> -TCNQ



*Figure 6:* Spectre IR de **B**<sub>4</sub> –TCNQ

Les fréquences de vibration  $\upsilon_{CN}$  et les taux de transfert de charge  $\rho$  des produits de références sont regroupés dans le tableau 5 suivant.

| 1 | abl | eau | 5 |
|---|-----|-----|---|
|   |     |     |   |

| Composé                             | $v_{\rm CN}$ (cm <sup>-1</sup> ) | ρ ( é / molécule) |
|-------------------------------------|----------------------------------|-------------------|
| TCNQ                                | 2227                             | 0                 |
| TMTSF-TCNQ                          | 2204                             | 0,57              |
| TTF-TCNQ                            | 2202                             | 0,59              |
| TSF-TCNQ                            | 2197                             | 0,63              |
| HMTTF-TCNQ                          | 2195                             | 0,72              |
| HMTSF-TCNQ                          | 2193                             | 0,74              |
| TCNQ <sup>-</sup> , Na <sup>+</sup> | 2187                             | 1,00              |
| TCNQ <sup>-</sup> , K <sup>+</sup>  | 2183                             | 1,00              |



Figure 7 : Fréquence d'absorption  $v_{CN}$  (cm<sup>-1</sup>) du TCNQ en fonction du degré de transfert de charge  $\rho$ 

A partir des spectres IR (enregistrés dans le KBr) des différents complexes préparés C.T.C, nous avons pu déterminer les valeurs des fréquences d'allongement des groupements nitriles ( $v_{CN}$ ). Ces valeurs, reportées sur la droite tracée précédemment  $v_{CN} = f(\rho)$  (Figure 7), nous ont alors permis d'attribuer à chaque matériau une valeur, approximative, de taux de transfert de charge ( $\rho$ ). Ces résultants sont reportés dans le tableau 6 ci après.

| 1 | Tableau | 6 |
|---|---------|---|
|   |         |   |

| Complexe             | v <sub>CN(</sub> cm <sup>-1</sup> ) | ρ ( é / molécule) |
|----------------------|-------------------------------------|-------------------|
| B <sub>1</sub> -TCNQ | 2215                                | 0,285             |
| B <sub>2</sub> -TCNQ | 2219                                | 0,175             |
| B <sub>5</sub> -TCNQ | 2220                                | 0,162             |
|                      |                                     |                   |

Pour les sels  $B_1$  –TCNQ,  $B_2$  –TCNQ et  $B_5$  –TCNQ la valeur de  $\rho$  observée est inferieurs à 0.3 ( é / molécule) ceci semble indiquer des complexes de type moléculaire ( taux de transfert de charge voisin de 0).

En conclusion, nous avons présenté au cours de ce chapitre une étude électrochimique des composés synthétisés. Aussi, une étude préliminaire des matériaux résultant ( de type CTC), l'analyse de ces matériaux fera l'objectif d'un prochain travail.

# Bibliographie

- Récapitulatif des potentiels d'oxydation du TTF et de ses dérivés : V. Khodorkovsky, O. Neilands, J. Mol. Electron., 1989, 5, 33.
- Ferraris, J. P.; Cowan, D. O., Walatka, V.; Perlstein, J. H.; J. Am. Chem. Soc., 1973, 95, 948.
- **3.** L.B. Coleman, M.J. Cohen, D.J. Sandman, F.G. Yamagishi, A.F. Garito, A.J.Heeger, Solid State Commun., **1973**, 12, 1125.
- 4. J. H. Perlstein, Angew. Chem., Int. Ed. Engl., 1977, 16, 519.
- J. S. Chappell, A. N. Bloch, W. A. Bryden, M. Maxfield, T. O. Poehler, D. O. Cowan, J. Am. Chem. Soc., 1981, 103, 2442.
- J.M. Fabre, A.K. Gouasmia, L. Giral, M. Galtier, New J. Chem., 1988, 18, 2185-2188.

**Conclusion Générale** 

Conclusion Générale

Pendant de nombreuses années, la matière organique était supposée ne présenter aucun intérêt dans le domaine des conducteurs électriques. Aussi, la découverte en 1973 du premier "métal organique" TTF-TCNQ (Tétrathiafulvalène/Tétracyanoquinodiméthane ) eut un important retentissement et ouvrit de nouvelles perspectives.

A partir de cet évènement, plusieurs axes de recherches ont été développés afin d'essayer de trouver les meilleures conditions d'accès et surtout de stabiliser l'état métallique, voir d'atteindre l'état supraconducteur à des températures critiques plus élevées.

Dans ce but, l'augmentation de la dimensionnalité électronique et structurale de ces matériaux semble être un facteur capital. Parmi les orientations actuelles pour y parvenir, plusieurs voies étudiées portent sur la modification structurale des précurseurs dérivés du tétrathiafulvalène (TTF). Les unes consistent à lier entre elles, par covalence, deux ou plusieurs unités TTF pour atteindre les enchaînements structuraux bidimensionnels visés. D'autres consistent à polychalcogéner ces entités et/ou à les fonctionnaliser pour favoriser la formation d'interactions moléculaires notamment via des liens hydrogènes.

C'est dans cette optique, nous avons choisi de synthétiser deux familles de molécules cible :

Une première série de molécules plus particulièrement intéressantes pour la préparation des matériaux associant propriétés électrique et magnétique, concerne des donneurs de type TTF liés directement avec un groupement pyridine bien connu pour leur aptitude à complexer des métaux de transition.



#### **Conclusion Générale**

✓ La deuxième famille de molécules à la fois riche en hétéroatomes, dotée d'une grande extension spatiale sélectionnée comme précurseur potentiel de matériaux de haute dimensionnalité.



Sur le plan synthétique, deux voies de préparation différentes ont été développées afin d'accéder à ces deux série de donneurs TTF.

La mise en œuvre de ces synthèses nécessite, cependant, la préparation préalable des molécules intermédiaires.

↓ La synthèse des molécules de la première série (*A*) a été réalisée par une réaction de couplage croisé des chalcogénones.

4 La synthèse de la deuxième série (**B**) à système-π étendu, repose sur l'emploi de la réaction de Wittig entre deux entités : un sels de phosphonium et une fonction aldéhyde introduite sur une unité TTF (TriMeTTF).

4 Par ailleurs, le processus de déprotection-alkylation de thiolates, nous a permis l'accès à une grande diversité de molécules de la série (B).

- La double déprotection des fonctions chalcogénates via l'élimination des deux groupes cyanoéthyle des TTF
- La mono déprotection via l'élimination d'un seul groupe cyanoéthyle des TTF

L'étude du caractère donneur des molécules des deux série (A, B) ainsi obtenues, présentent un processus d'oxydo-réduction réversible détecté par voltammétrie cyclique. Par comparaison avec le TMTTF, les valeurs des potentiels d'oxydation trouvées indiquent que ces composés sont de bons candidats pour pouvoir donner des matériaux conducteurs.

## **Conclusion Générale**

Pour préparer les complexes de transfert de charge (CTC) à partir des donneurs organiques synthétisés et du TCNQ choisi comme accepteur, nous avons utilisé la méthode de synthèse directe d'oxydo-réduction en solution, malheureusement, on observe que pour la plupart des échantillons sous forme de poudre.

Enfin, les mesures de la conductivité électrique à température ambiante des matériaux obtenus ont été réalisées, sur des pastilles de poudre compactées. Les CTC révèlent des valeurs de conductivités faibles situées entre  $10^{-6}$  et  $10^{-9}$  S.cm<sup>-1</sup>. Ces solides présentent donc, probablement, un comportement électronique défavorable à une bonne délocalisation d'électron et/ou un empilement structural défavorable ( type alterné ).

Notre objectif futur sera donc :

- Refaire les essais de complexation avec le TCNQ et l'élaboration des nouveaux matériaux de type sels d'ions radicaux.
- l'obtention des complexes de transfert de charge sous forme de monocristaux. Ceci permettait le détermination complète de la structure cristalline de ces nouveaux matériaux.
- Etendre notre recherche pour la production des nouveaux précurseurs TTF et bi-TTF à ligands azotés bien connus comme agent de complexation des métaux de transition.

Partie Expérimentale

# Techniques d'analyse

#### Résonance magnétique nucléaire

Les spectres RMN <sup>1</sup>H ont été enregistrés sur un spectromètre BRUKER AC 250 (250 MHz).

Les déplacements chimiques sont exprimés en ppm, le solvant deutéré Chloroforme (CDCl<sub>3</sub>).

Pour la description des spectres, les symboles suivants ont été utilisés :

<u>s</u> : singulet, <u>d</u> : doublet, <u>t</u> : triplet, <u>q</u> : quadruplet, <u>qt</u> : quintuplet, <u>m</u> : multiplet, <u>dd</u> : doublet dédoublé, <u>td</u> : triplet dédoublé.

Les constantes de couplage sont exprimées en Hz.

#### Spectrométrie de masse

Les spectres de masse réalisés EI ou FAB+ ont été enregistrés sur un spectromètre TRACE GC 2000/ FINNGAN MAT SSQ7000 .

#### Spectrométrie infrarouge

Les spectres IR ont été enregistrés à l'aide d'un spectromètre JASCO FT/ IR 460 plus (Japon).

# **Chromatographies**

Les réactions ont été suivies par chromatographie sur couche mince (CCM) sur des plaques de gel de silice 60F254 sur aluminium. Les produits synthétisés ont été purifiés par chromatographie colonne sur gel de silice 60 A C-C 70-200µm.

#### Points de fusion :

Les points de fusion ont été mesurés à l'aide d'un appareil BUCHI B-540.

#### Analyse élémentaire (centésimale)

Les microanalyses (AE) ont été effectuées au micro analysis center : ELEMENTAR VARIO EL III, C,H,N,S analyser (Germany).

# Voltammétrie cyclique

Les voltammogrammes ont été enregistrés en utilisant un potentiostat PGZ 301 DYNAMIC-EIS VOLTAMMETRY .

# Obtention des solvants anhydres

 $THF: distillation sur Na/benzophénone \\ CH_2Cl_2: distillation sur P_2O_5 \\ Acétonitrile: distillation sur P_2O_5 \\ DMF: distillation sur CaH_2 puis Na/benzophénone \\ Toluène: distillation sur Na/benzophénone \\ \end{tabular}$ 

#### 1- alkyl -2- alkanoyl pipéridinodithiocarbamate

#### <u>1a<sub>1</sub>, 1b<sub>1</sub> et 1b<sub>2</sub></u>



1a<sub>1</sub>: R = R'= H 1b<sub>1</sub>: R = R'= CH<sub>3</sub> 1b<sub>2</sub>: R = CH<sub>3</sub>, R' = H

Dans un ballon tricol de 1 litre, muni d'un réfrigérant et d'une ampoule à brome, et renfermant 39.5 g (400 mmole) de pipéridine refroidie à O C°, on ajoute goutte a goutte sous agitation 12 ml (200 mmole) de sulfure de carbone. On observe immédiatement la formation de fumée puis d'un précipité blanchâtre de pipéridinodithiocarbamate de pipéridinium. Ce composé est alors dissous dans 300 ml d'éthanol à reflux, puis, à la solution ainsi obtenue, on ajoute goutte à goutte et sous agitation (200 mmole) de chloroacétone appropriée. Le mélange réactionnel est maintenu à 80°C pendant 5 heures environ. L'éthanol est ensuite évaporé sous pression réduite, et le solide orangé ainsi obtenu est repris avec 150 ml de CH<sub>2</sub>Cl<sub>2</sub>. Cette phase organique est lavée à l'eau puis séchée sur sulfate de magnésium anhydre avant d'être évaporée pour conduire aux produits attendus. Après recristallisation dans l'éthanol, les composés sont isolés sous forme de solide beige.

| Composé         | Rdt<br>(%) | Pf<br>(°C) | $RMN^{1}H(CDCl_{3})(\delta ppm)$                     |                                |                                                                    |
|-----------------|------------|------------|------------------------------------------------------|--------------------------------|--------------------------------------------------------------------|
| 1a <sub>1</sub> | 72         | 58         | 1,65 (m, 6H, pipéridine)<br>4,05 (m, 4H, pipéridine) | 4,50 (t, 1H, OCH)              | 2,10 (s, 6H, OCH <sub>3</sub> )<br>2,30 (d, 2H, SCH <sub>2</sub> ) |
| 1b <sub>1</sub> | 86         | 50         | 1,75 (m, 6H, pipéridine)<br>4,10 (m, 4H, pipéridine) | 4,95 (q, 1H, CH)               | 1,40 (d, 3H, CH <sub>3</sub> )<br>2,20 (s, 3H, CH <sub>3</sub> )   |
| 1b <sub>2</sub> | 95         | 68         | 1,75 (m, 6H, pipéridine)<br>4,12 (m, 4H, pipéridine) | 4,28 (s, 2H, CH <sub>2</sub> ) | 2,38 (s, 3H, CH <sub>3</sub> )                                     |

<u>Hexafluorophosphate de 4,5 - dialkyl-1,3- dithiole -2- ylidènepipéridinium 2a<sub>2</sub>, 2b<sub>1</sub> et 2b<sub>2</sub></u>



 $2a_2: R = R' = H$  $2b_1: R = R' = CH_3$  $2b_2: R = CH_3, R' = H$ 

#### Partie Expérimentale

Dans un ballon tricol de 250 ml contenant 50 ml d'acide sulfurique concentré et refroidi à 0° C par un bain de glace, on ajoute par fraction et sous agitation 60 mmole de 1-alkyl-2-alkanoylpipérinodithiocarbamate. A la fin de l'addition, on laisse le mélange réactionnel se réchauffer jusqu'à la température ambiante et l'on maintient l'agitation environ deux heures, de façon à obtenir une huile homogène. Cette huile est ensuite diluée avec 150 ml d'eau glacée puis filtrée. Au filtrat ainsi recueilli et refroidi à 0°C par un bain de glace, on ajoute sous agitation 11 ml (100 mmole) d'une solution aqueuse d'acide hexafluorophosphorique à 75%. Le sel hexafluorophosphate de 4,5-dialkyl-1,3-dithiole-2-ylidènepipéridinium précipite immédiatement. A la suspension réchauffée jusqu'à la température ambiante, on ajoute du dichlorométhane jusqu'à dissolution totale du précipité. La phase organique est alors séparée puis lavée plusieurs fois à l'eau jusqu'à ce que l'eau de lavage retrouve un pH voisin de 7. La solution est alors séchée sur sulfate de magnésium anhydre. Par évaporation sous pression réduite, on obtient une poudre beige clair qui est purifiée, soit par recristallisation dans l'éthanol, soit par dissolution dans un minimum de CH<sub>2</sub>Cl<sub>2</sub> et reprécipitation dans une large quantité d'éther froid.

| Composé         | Rdt<br>(%) | Pf (°C) | $RMN^{1}H(CDCl_{3})(\delta ppm)$                     |                                                     |
|-----------------|------------|---------|------------------------------------------------------|-----------------------------------------------------|
| 2a <sub>2</sub> | 72         | 159     | 1,60 (6H, m, pipéridine)<br>3,80 (4H, m, pipéridine) | 7,65 (s, 2H, =CH)                                   |
| 2b <sub>1</sub> | 78         | 178     | 1,85 (m, 6H, pipéridine)<br>3,85 (4H, m, pipéridine) | 2,35 (s, 6H, 2CH <sub>3</sub> )                     |
| 2b <sub>2</sub> | 75         | 131     | 1,75 (6H, m, pipéridine)<br>3,82 (4H, m, pipéridine) | 2,40 (s, 3H, CH <sub>3</sub> )<br>7,32 (s, 1H, =CH) |

#### 2- pipéridino- 4,5-dialkyl-1,3- dithiole

3b1 et 3b2



```
3b<sub>1</sub> : R = R'= CH<sub>3</sub>
3b<sub>2</sub>: R = CH<sub>3</sub>, R' = H
```

Dans un ballon tricol de 250 ml, on ajoute par petites portions et sous agitation 6g (160 mmole) de borohydrure de sodium à une suspension constituée de 40 mmole d'hexafluorophosphate de 4,5-dialkyl-1,3-dithiole-2-ylidènepipéridinium ou dans 50ml d'éthanol refroidi à 0° C par un bain de glace. Une fois l'addition de borohydrure de sodium est achevée, on enlève le bain de glace et l'on maintient l'agitation pendant 1 heure. L'éthanol est ensuite évaporé sous pression réduite. Le résidu obtenu est alors repris à l'éther et lavé à l'eau. Arès avoir été séché sur sulfate de magnésium anhydre, la phase éthérée est évaporée pour conduire au 2-pipéridino- 4,5- diaikyl-3-dithiole sous forme d'huile jaune directement utilisée pour l'étape suivante.

| Composé         | Rdt<br>(%) | Pf (°C) | RMN <sup>1</sup> H (CDCl <sub>3</sub> ) (δppm)        |                  |                                  |             |
|-----------------|------------|---------|-------------------------------------------------------|------------------|----------------------------------|-------------|
| 3b <sub>1</sub> | 90         | Huile   | 1,50 (6H, m, pipéridine)<br>2,50 (m, 4H, pipéridine)  | 5,85 (s, 1H, CH) | 1,90 (s, 6H, 2C                  | CH3)        |
| 3b <sub>2</sub> | 54         | Huile   | 1,85 (m, 6H, pipéridine)<br>2,65 (m, 4H, pipéridine ) | 5,87 (s, 1H, CH) | 2,70 (m, 1H, C<br>3,11 (m, 3H, C | CH)<br>CH3) |

| Hexafluorophosphate de 4,5-dialkyl-1,3- dithiolium 4b <sub>1</sub> e | et 4b <sub>2</sub> |
|----------------------------------------------------------------------|--------------------|
|----------------------------------------------------------------------|--------------------|



4b<sub>1</sub> : R = R'= CH<sub>3</sub> 4b<sub>2</sub>: R = CH<sub>3</sub>, R' = H

Dans un ballon tricol de 250 ml, on dissout l'huile précédente dans 150 ml d'éther. A cette solution refroidie à 0°C (bain de glace), on ajoute goutte à goutte et sous agitation 5 ml (45 mmole) d'une solution aqueuse d'acide hexafluorophosphorique à 75%, il se forme immédiatement un précipité. A la fin de l'ajout on maintient le milieu réactionnel sous agitation à 0°C pendant 30 minutes. Ensuite, le précipité est isolé par filtration et lavé à l'éther. Le sel d'hexafluorophosphate de 4,5- dialkyl-1,3- dithiolium est obtenu sous forme de poudre.

| Composé         | Rdt (%) | Pf(c°) | RMN <sup>T</sup> E                                 | H (CD <sub>3</sub> CN) (ppm) |
|-----------------|---------|--------|----------------------------------------------------|------------------------------|
| 4b <sub>1</sub> | 80      | 165    | 2,75 (m, 6H, 2 CH <sub>3</sub> )                   | 10,70 (s, 1H, CH)            |
| 4b <sub>2</sub> | 65      | 160    | 2,80 (m, 1H, CH)<br>3,35 (m, 3H, CH <sub>3</sub> ) | 10,80 (s, 1H, CH)            |

#### 1,3-dithiole-2-thione



Aiguilles jaune C<sub>3</sub>H<sub>2</sub>S<sub>3</sub> Pf: 51•C

Un mélange de 6.73g (20.34mmole) du composé  $\underline{2}$  et de 3.35g (2équiv) de NaHS.H<sub>2</sub>O dans 120ml d'un mélange d'AcOH/EtOH (1:1) est agité à température ambiante pendant 20h. Après concentration sous vide, on redissout le produit obtenu dans CH<sub>2</sub>Cl<sub>2</sub> et on neutralise par une solution aqueuse de soude à 10%. La phase organique est ensuite lavée à l'eau, séchée sur MgSO<sub>4</sub>et évaporée. Après recristallisation dans l'hexane, on obtient 1.92g (72%) du composé <u>3</u> attendu sous forme d'aiguilles filiforme jaune.

*RMN* <sup>1</sup>*H* (*CDCl*<sub>3</sub>) ( $\delta$ *ppm*): 7.17(s, 2H)

#### Bis (tétrabutylammonium)-bis (2-thioxo-1.3dithiole-4.5-disélénlate) de zinc 2a<sub>2</sub>



Poudre pourpre Pf: 172-173°C

A une solution de diisopropylamine 1.5g (15mmole) dans 15ml de THF anhydre sous atmosphère d'azote et refroidi à -78°C est ajouté goutte à goutte 6.4ml (16mmole) d'une solution 2.5M de n-butyllithium dans l'hexane. Après une heure d'agitation à -78°C, une solution d'1g (7.54mmole) de thione **1a**<sub>2</sub> dans 10ml de THF anhydre est ajoutée goutte à goutte en 1h. L'agitation est maintenue 3h à -78°C après 1.2g (15mmole) de sélénium en poudre est ajouté d'un trait. Après une heure d'agitation supplémentaire à -78°C, on laisse revenir lentement la solution à température ambiante et l'on maintient l'agitation pendant 16h. On ajoute alors, successivement, 2.6g (8mmole) de n-Bu<sub>4</sub>NBr et 1.2g (9mmole) de ZnCl<sub>2</sub> en solution dans 4ml de méthanol. Après 15min, la solution brune est versée dans 120ml d'eau. Le précipité formé est filtré et lavé à l'eau. Le solide obtenu est repris dans l'acétone (200ml) puis filtré de nouveau pour éliminer le sélénium résiduel. Après

<u>1a</u>2

concentration du filtrat à environ 30ml; on le versé goutte à goutte dans 1 litre d'isopropanol froid ce qui entraîne la précipitation du complexe sélénié de zinc. Après filtration on isole 3g (70%) du complexe  $2a_2$  sous forme d'une poudre de couleur bordeaux.

#### 4,5-bis (2-cyanoéthylséléno)-1,3-dithiole-2-thione



NĆ

NC

Cristaux jaunes C9H8S3Se2N2 Pf : 91°C

<u>3a</u>2

Une solution de 1.2g (1.86mmole) de complexe zincique sélénié  $2a_2$  et de 0.78ml (9.3mmole) 3-bromopropionitrile dans 20ml d'acétonitrile est portée à reflux sous azote pendant 1.5h. Après retour à température ambiante, le solvant est éliminé sous vide et le produit obtenu est chromatographié sur colonne de silice (éluant : CH<sub>2</sub>Cl<sub>2</sub>). Le composé  $3a_2$  est obtenu sous forme des cristaux jaunes1.26g (89%).

# *RMN*<sup>1</sup>*H* (*CDCl*<sub>3</sub>) (*δppm*): 2.80 (t, 4H, CH<sub>2</sub>CN, J=7.0Hz); 3.10 (t, 4H, CH<sub>2</sub>Se, J=7.0Hz)

# 4,5-bis (2-cyanoéthylséléno)-1,3-dithiole-2-one

Solide jaujaune pâle C9H8S3OSe2N2 Pf : 90°C

3a<sub>2</sub>'

Un mélange de thione  $3a_2$  (2.5g, 6.28mmole) et d'acétate mercurique (5.32g, 16.32mmole) dans un mélange chloroforme / acide acétique (1 :1, 120ml) est agité sou azote à température ambiante pendant 16h. Le précipité blanc formé est ensuite filtré sur célite et lavé abondamment avec du chloroforme. Le filtrat est alors lavé à l'eau (2x100ml). Après séchage sur sulfate de magnésium anhydre et concentration sous vide, on obtient 2.26g (95%) du composé  $3a_2$ ' sous forme de solide jaujaune pâle.

**Mis en forme :** Times new romans, Gauche, Retrait : Première ligne : 0 cm

Mis en forme : En-tête, Gauche, Retrait : Première ligne : 0 cm, Interligne : 1,5 ligne *RMN*<sup>1</sup>*H* (*CDCl*<sub>3</sub>) ( $\delta$ *ppm*): 2.80 (t, 4H, CH<sub>2</sub>CN, J=7.0Hz); 3.10 (t, 4H, CH<sub>2</sub>Se, J=7.0Hz)

#### 4.5-diméthylséléno-1.3-dithiole-2-thione



Cristaux verts C<sub>5</sub>H<sub>6</sub>S<sub>3</sub>Se<sub>2</sub> Pf: 104<sup>•</sup>C

La encore, la procédure est identique à celle utilisée pour le dérivé  $3a_2$ , en utilisant 2.1g (1.86mmole) de complexe zincique sélénié et 1.73ml (27.9mmole) d'iodométhane. On obtient 0.33g (77%) de cristaux verts en forme d'aiguilles.

**RMN**<sup>1</sup>H (CDCl<sub>3</sub>) ( $\delta$ ppm) 2.35 (s, 6H, SeCH<sub>3</sub>)

<u>5a</u>2

1b

 $4a_2$ 



Poudre cristalline  $C_5H_4S_3Se_2$  $Pf: 154^{\circ}C$ 

Une solution de complexe zincique (5g, 4.42mmol) dans l'acétonitrile (200ml) est porté à reflux pendant 1h sous azote. Le 1,2-dibromoethane (36g, 190mmol) est ajouté goutte-à-goutte au mélange. Ce dernier est agité est porté a raflux pendant 17 h. après refroidissement à tampérature ambiante le précipité obtenu ainsi est filtré et lavé trois fois avec Et<sub>2</sub>O. après l'élimination du solvant, le produit résultant est alors chromotographié sur colonne de silice (éluant:  $CH_2Cl_2$  / Hexane 1:1). Le composé **5a**<sub>2</sub> est obtenu sous forme de poudre cristalline jaune orongé avec un rendement de 58%.

**RMN**<sup>1</sup>H (CDCl<sub>3</sub>) ( $\delta$ ppm) 3,47 (s, 4H, SeCH<sub>2</sub>)

## Bis (tétrabutylammonium)-bis (2-thioxo-1,3-dithiole-4,5-dithiolate) de zinc


Poudre pourpre Pf: 172-173°C

A 200 ml de  $CS_2$  sont ajoutés sous atmosphère d'azote, 23 g (1mole) de sodium coupé en petits morceaux suivis de 200 ml de DMF au goutte à goutte lent sur une période de 2 heures. Le mélange est agité pendant 16 heures à température ambiante puis à 40-50°C pendant 6 heures. Après refroidissement par un bain de glace, on ajoute prudemment 600 ml de méthanol et 300 ml d'eau. Ensuite, 20 g de ZnCl<sub>2</sub> dans 500 ml d'une solution aqueuse d'ammoniaque 28% et 450 ml de méthanol sont successivement ajoutés au mélange. Enfin, l'addition d'une solution de 53 g de nBu<sub>4</sub>NBr dans 250 ml d'eau, selon une goutte à goutte assez rapide, conduit, après une nuit d'agitation, à la précipitation du complexe de zinc. Après filtration et lavage du précipité par l'eau, l'isopropanol et l'éther, le composé **1b** est obtenu sous forme de poudre pourpre avec 85% de rendement (106 g).

Synthèse de l'oligomère

 $2a_1$ 

s s s s

Poudre jaune Pf : 172-173°C

Le complexe de zinc **1b** (36g) est dissout dans 250 ml d'acétone dégazé. On refroidit la solution à -50°C et on ajoute au goutte à goutte une solution d'iode (26g) dissout dans 400 ml d'éthanol. Le précipité jaune de l'oligomère apparaît, après refroidissement et filtration, le solide jaune est lavé plusieurs fois à l'éthanol puis avec l'acétone. Après séchage on obtient le composé  $2a_1$  sous forme d'une poudre jaune avec 75% de rendement.





Aiguilles jaunes C<sub>10</sub>H<sub>7</sub>N<sub>1</sub>S<sub>5</sub> Pf: 122-123<sup>•</sup>C

<u>3a</u>1

On porte à reflux ( $75^{\circ}$ C) pendant une demi heure, sus azote, un mélange de composé **2a**<sub>1</sub> (1,7g) et de 2-vinylpyridine (1,05ml)après filtration à chaud, on lave le précipité récupéré avec du CH<sub>2</sub>Cl<sub>2</sub>. puis on traite le filtrat obtenu avec du charbon actif, la

solution résultante est évaporé puis recristallisée dans un mélange  $CH_2Cl_2 / CH_3CN 3:1$  pour donner le composé **3a**<sub>1</sub> sous forme des aiguilles jaune avec un rendement de 75%.

RMN  ${}^{1}H$  (CDCl<sub>3</sub>) ( $\delta$ ppm)3,60-3,95 (2H, m); 4,95(1H, dd); 7,28-8,60(4H, m)SM (FAB+)301[ M<sup>+</sup>]

## 4, 5-(2-pyridylethylènedithio)-1,3-dithiole-2-one

<u>3a1'</u>



*cristaux verte C*<sub>10</sub>*H*<sub>7</sub>*NOS*<sub>4</sub> *Pf* : 102-104<sup>•</sup>*C* 

Un mélange de 0,5 g de thione  $3a_1$  et de 1,5 g d'acétate mercurique dans le 25 ml de Chloroforme CH<sub>3</sub>Cl est agité sous atmosphère d'azote à température ambiante pendant 4 heures. Le précipité blanc est ensuite filtré sur célite et lavé abondamment avec CHCl<sub>3</sub>. Le filtrat est alors lavé plusieurs fois à l'eau, puis avec une solution ammoniacale 2N et de nouveau à l'eau avant d'être séché sur Na<sub>2</sub>SO<sub>4</sub>. Après concentration sous vide, on obtient la thiolone  $3a_1$ ' à 69% sous forme de cristaux verts.

 RMN <sup>1</sup>H (CDCl<sub>3</sub>) (δppm)
 3,60-3,95 (2H, m); 4,95(1H, dd); 7,28-8,60(4H, m)

 SM (FAB+)
 285(M<sup>+</sup>)

4, 5-bis (2-cyanoéthylséléno)-4', 5'-(2-Pyridyléthylènedithio) tétrathiafulvalène A<sub>1</sub>



Huile rouge C<sub>19</sub>H<sub>15</sub>N<sub>3</sub>S<sub>6</sub>Se<sub>2</sub> Un mélange de 0,50g du thione  $3a_1$  et 0,80g du dithiolone  $3a_2$ ' mis en suspension dans 20ml de phosphite de triéthyle fraîchement distillé est agitée et chauffée à 90°C pendant 2 heures sous atmosphère d'azote. Après concentration sous vide, le produit obtenu est chromatographié sur colonne de silice (CH<sub>2</sub>Cl<sub>2</sub>/Hexane : 1/1). Le TTF  $A_I$  est obtenu sous forme d'huile rouge avec un rendement de 20%.

*RMN*<sup>1</sup>*H* (*CDCl*<sub>3</sub>) (*δppm*) 2,90(t, 4H, CH<sub>2</sub>CN) ; 3,11(t, 4H, CH<sub>2</sub>Se) ; 3,75(m, 2H); 5,00 (dd,1H); 7,35-8,58(m, 4H)

*SM* (*FAB*+)  $635(M^+)$ 

4, 5-bis (diméthylséléno)-4', 5'-(2-Pyridyléthylènedithio) tétrathiafulvalène A2





Une suspension de 4,5-diméthylséléno-1,3-dithiole-2-thione  $4a_2$  (1,5g, 24,3 mmole) et de dithilione  $3a_2$ ' (0,5g, 24,3 mmole) dans 20ml de phosphite de triéthyle fraîchement distillé est agitée et chauffée à 90°C pendant 2 heures sous atmosphère d'azote. Le mélange réactionnel est laissé revenir à température ambiante, puis refroidi à 0°C et le précipité formé est filtré, rincé au méthanol froid et séché sous vide. Le brut obtenu est recristallisé plusieurs fois dans un mélange CH<sub>2</sub>Cl<sub>2</sub>/Hexane. Le produit désiré est obtenu sous forme d'une poudre verte avec un rendement de 19%.

RMN  ${}^{1}H$  (CDCl<sub>3</sub>) ( $\delta$ ppm)2,33(s, 6H, CH<sub>3</sub>Se); 3,75(m, 2H); 5,00(dd,1H); 7,35-8,58(m, 4H, C\_6H\_4N)SM (FAB+)557(M<sup>+</sup>)

4, 5-bis (Ethylènediséléno)-4', 5'-(2-Pyridyléthylènedithio) tétrathiafulvalène



*Poudre verte C*<sub>15</sub>*H*<sub>11</sub>*NS*<sub>6</sub>*Se*<sub>2</sub> *Pf* : 124<sup>•</sup>*C*  <u>A</u>3

Une suspension de 4,5-diméthylséléno-1,3-dithiole-2-thione  $5a_2$  (1,5g, 24,3 mmole) et de dithilione  $3a_2$ ' (0,5g, 24,3 mmole) dans 20ml de phosphite de triéthyle fraîchement distillé est agitée et chauffée à 90°C pendant 2 heures sous atmosphère d'azote. Le mélange réactionnel est laissé revenir à température ambiante, puis refroidi à 0°C et le précipité formé est filtré, rincé au méthanol froid et séché sous vide. Le brut obtenu est

recristallisé plusieurs fois dans un mélange  $CH_2Cl_2$ /Hexane. Le produit désiré est obtenu sous forme d'une poudre verte avec un rendement de 19%.

RMN  ${}^{1}H$  (CDCl<sub>3</sub>) ( $\delta$ ppm)3,42(s, 4H, CH<sub>2</sub>Se); 3,75(m, 2H, CH<sub>2</sub>S); 5,00 (dd,1H, CHS);<br/>7,35-8,58(m, 4H, C<sub>6</sub>H<sub>4</sub>N)SM (FAB+)555(M<sup>+</sup>)

#### 4,5-bis(2-cyanoéthylthio)-1,3-dithiole-2-thione

1c

Aiguilles jaunes C9H8N2S5 Pf : 83°C



A une solution de 9,4 g (10mmole) de complexe zincique **1b** dans 120 ml d'acétonitrile est ajouté 6,7 g (50 mmole) de 3-bromopropionitrile. Le mélange est alors porté à reflux pendant 1 heure puis ensuite, après le retour à température ambiante, filtré sur fritté. Le filtrat brun-jaune est alors concentré et le produit résultant, solubilisé dans  $CH_2Cl_2$ , est lavé plusieurs fois à l'eau puis séché sur MgSO<sub>4</sub>. Après évaporation de la moitié du solvant, l'ajout d'hexane permet d'obtenir le composé **1c** sous forme d'aiguilles jaunes avec 87% de rendement (5,3 g).

*RMN*  $^{1}H$  (*CDCl*<sub>3</sub>) ( $\delta$ *ppm*)2,80 (t, 4H, J=6,8 Hz, CH<sub>2</sub>CN); 3,16 (t, 4H, J=6,8 Hz, CH<sub>2</sub>S)*SM* (*FAB*+)304 (M<sup>+</sup>)

Tétrafluoroborate de 4,5-bis (2-cyanoéthylthio)-2-méthylthio-1,3-dithiolium 1c1



NC S S SMe,  $BF_4^-$ NC S S

*Poudre marron C*<sub>10</sub>*H*<sub>11</sub>*BF*<sub>4</sub>*N*<sub>2</sub>*S*<sub>5</sub> *Pf* : 94-95°C

A une solution de 0,5 g (1,65 mmole) de thione 5- dans 10 ml de  $CH_2Cl_2$  anhydre est ajouté 0,34 g (2,1 mmole) de triflate de méthyle. Après une agitation de 4heures sous atmosphère d'azote, 0,5 ml d'une solution d'acide tétrafluoroborique à 54% dans  $Et_2O$  est ajoutée, suivie après 15 min de 50 ml d'éther. On observe la formation d'une huile qui se

transforme en solide en maintenant l'agitation pendant 30 min. Le précipité est alors filtré puis lavé à l'éther pour donner 100% (0,67g) du composé  $1c_1$  sous forme de poudre marron.

# *RMN*<sup>1</sup>*H* (*CDCl*<sub>3</sub>) ( $\delta ppm$ ) 2,92 (t, 4H, J=6,8 Hz, CH<sub>2</sub>CN); 3,18 (s, 3H, SCH<sub>3</sub>); 3,43 (t, 4H, J=6,8 Hz, CH<sub>2</sub>S)

## 4,5-bis(2-cyanoéthylthio)-2-méthylthio-1,3-dithiole

<u>1c</u><sub>2</sub>



*Cristaux orange pâle C*<sub>10</sub>*H*<sub>12</sub>*N*<sub>2</sub>*S*<sub>5</sub> *Pf* : 83-84<sup>•</sup>*C* 

A une solution du sel  $1c_1$  (1,5 g, 3,7 mmole) dans 30 ml d'acétonitrile est ajoutée lentement sous azote à une suspension de borohydrure de sodium (NaBH<sub>4</sub>) (0,17 g, 4,4 mmole) dans l'isopropanol anhydre (1,5 ml). Le mélange est agité pendant 30 min à température ambiante puis versé sur 70 ml d'eau. Le précipité formé est alors filtré, lavé plusieurs fois à l'eau et séché sous vide. Après recristallisation dans un mélange toluène/éther de pétrole, le composé  $1c_2$  est obtenu sous forme de cristaux orange pâle à 75% (0,88 g).

| $RMN^{1}H(CDCl_{3})(\delta ppm)$ | 2,80 (m, 4H, CH <sub>2</sub> CN); 2,90 (s, 3H, CH <sub>3</sub> ) ; 3,20 (m, 4H, CH <sub>2</sub> S); 5,72 (s, 1H, CH). |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| SM (FAB+)                        | 320(M <sup>+</sup> )                                                                                                  |

#### Tétrafluoroborate de 4,5-[bis(2-cyanoéthylthio)-1,3-dithiole-2-yl]triphénylphosphonium 1c<sub>3</sub>



*Poudre rose pâle C*<sub>27</sub>*H*<sub>24</sub>*BF*<sub>4</sub>*N*<sub>2</sub>*PS*<sub>4</sub> *Pf* :130-131<sup>•</sup>*C* 

Une solution de composé  $1c_2$  (1 g, 3,1 mmole) dans 40 ml d'acétonitrile dégazée pendant 10min est traitée par 0,9 g (3,4 mmole) de triphénylphosphine. Après une nuit

d'agitation à température ambiante, 0,5 ml d'une solution d'acide tétrafluoroborique à 54% dans l'éther puis après 15 min d'agitation, 150 ml d'éther sont ajoutés au mélange. Après 5 min. les premiers cristaux commencent à précipiter. Ils sont filtrés, lavés puis purifiés par dissolution dans le minimum d'acétonitrile et précipitation par addition goutte à goutte dans une large quantité d'éther à 0°C. Le composé  $1c_3$  est donc obtenu sous forme de poudre rose pâle avec un rendement de 94% (1,79g).

| RMN <sup>1</sup> H (CDCl <sub>3</sub> ) ( <i>Sppm</i> ) | 2,60 (m, 4H, CH <sub>2</sub> CN); 2,85 (m, 4H, CH <sub>2</sub> S); 7,00 (d, 1H, CH, J=4,1); 7,8-8 (m, 15H, H aromatiques) |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| SM (FAB+)                                               | 535 (cation)                                                                                                              |

#### 4,5-diméthyl- 2-diméthyloxyphosphoryl-2-yl-1,3-dithiole

<u>5b</u>1



Huile rouge C<sub>7</sub>H<sub>13</sub>O<sub>3</sub>PS<sub>2</sub>

A une solution de 4 g (14,49 mmole, 1 éq) de sel de dithiolium  $4b_1$  dans 60 ml de CH<sub>3</sub>CN anhydre sont successivement ajoutés, 2,1ml (17,939 mmole, 1,2 éq) de P(OMe)<sub>3</sub> fraîchement distillé et 2,6g (17,939 mmole, 1,2 éq) de NaI. L'agitation est maintenue pendant une nuit sous azote à température ambiante. Après évaporation du solvant, le résidu est repris par 150 ml d'éther, puis lavé à l'eau (2x50 ml) et séché sur MgSO<sub>4</sub> avant d'être concentré sous pression réduite pour fournir une huile rouge (Rdt = 83 %).

 $RMN^{1}H(CDCl_{3})(\delta ppm)$  1,95(s, 6H, CH\_{3}); 3,88(d, 6H, OCH\_{3}),4,73 (d,1H,J=5,6Hz,CH).

 SM(FAB+) 240(M<sup>+</sup>)

#### 3,6,7-triméthyl-tétrathiafulvalène



Aiguilles orange C<sub>9</sub>H<sub>10</sub>S<sub>4</sub> Pf: 103-105°C

A une solution de 15 g de phosphonate **5b**<sub>1</sub> (62,5 mole, 1 éq.) dans 250 ml de THF anhydre, sous atmosphère d'azote et refroidie à  $-78^{\circ}$ C sont additionnés 8,4 g (75 mole, 1,2 éq.) de t-BuOK sublimés et conservés sous azote. Après une heure d'agitation à basse température, 21,55 g (62,5 moles, 1 éq) de sel d'iminium **2b**<sub>1</sub> sont ajoutés au mélange réactionnel. La réaction est poursuivie 1 h à  $-78^{\circ}$ C, puis laissée revenir à température ambiante pendant toute la nuit. Le mélange réactionnel est dilué avec 250 ml d'éther et l'agitation est maintenue pendant une heure. Après filtration sur célite, le filtrat obtenu est concentré sous pression réduite (50 ml) avant d'être dilué avec 250 ml de toluène. Ensuite 15 ml d'acide acétique sont rajoutés et l'agitation est encore poursuivie pendant une heure. La phase organique est lavée à l'eau (5x 100), séchée sur MgSO<sub>4</sub> puis concentrée sous vide (50 ml) avant d'être filtrée sur colonne de silice pour donner le composé désiré avec un rendement de 60% après recristallisation dans l'acétonitrile.

**RMN**<sup>1</sup>**H** (**CDCl**<sub>3</sub>) (*b* **ppm) 1,95 (s, 6H, CH<sub>3</sub>); 2,06 (s, 3H, CH<sub>3</sub>), 5,83 (s, 1H, =CH)** 

#### 2-formyl-3,6,7-triméthyl tétrathiafulvalène

7b

*Poudre rouge foncée C*<sub>10</sub>*H*<sub>10</sub>*OS*<sub>4</sub> *Pf* : 217-218 °C

<u>6b</u>

| Me | _S  | S_   | _СНО |
|----|-----|------|------|
|    | >=  | =< [ |      |
| Me | ∽s′ | `s   | Me   |

#### Préparation du LDA :

Dans un ballon bicol placé sous azote, on introduit 16 ml de THF anhydre et 0,68 ml(4,87 mmole) de diisopropylamine fraîchement distillée, le mélange réactionnel est refroidi à – 80°C, puis 3,05 ml (4,89 mmole) de nBuli (1,6 M dans l'hexane) sont rajoutés goutte à goutte et le système est laissé revenir à température ambiante.

A une solution de 1 g (4,06 mmole, 1éq.) de TrMTTF **6b** dans 60 ml de THF anhydre, refroidi à  $-78^{\circ}$ C et placée sous atmosphère d'azote, est ajouté par goutte à goutte lent (4,87 mmole, 1,2 éq.) de diisopropylamidure de lithium (LDA) fraîchement préparé. Le mélange est laissé sous agitation à  $-78^{\circ}$ C pendant 1h30 avant d'additionner 0,90 ml (7,38 mmole, 1,8 éq.) de Ph(Me)NCHO. Après une nouvelle heure à  $-78^{\circ}$ C, on laisse remonter le mélange à température ambiante sur une période de 12 heures. On ajoute alors 24 ml d'eau et le mélange réactionnel est acidifié par l'addition de 8 ml d'HCl (2 N). La phase aqueuse est extraite plusieurs fois par du dichlorométhane. Les phases organiques réunies sont lavées à l'eau, séchées sur MgSO<sub>4</sub> et concentrées sous vide. Une chromatographie sur colonne de silice (toluène/hexane : 1/1 puis toluène) permet d'isoler le composé **7b** sous forme de poudre rouge foncée (44%).

*RMN*<sup>1</sup>*H* (*CDCl*<sub>3</sub>) (*δppm*)
 1,93 (s, 6H, CH<sub>3</sub>); 2,04 (s, 1H, CH<sub>3</sub>); 9,46 (s, 1H, CHO)

 *SM* (*FAB*+)
 275 (M<sup>+</sup>+1)

## 2-(4,5-cyanoéthylthio-1,3-dithiole-2-ylidène)-3, 6,7- trimethyltetrathiafulvalene 1B1



*Poudre rouge C*<sub>19</sub>*H*<sub>18</sub>*N*<sub>2</sub>*S*<sub>8</sub> *Pf* : 161 •*C* 

le sel de phosphonium  $1c_3$  (0,35g, 0,56mmol) est dissout dans 50ml d'ACN anhydre, puis maintient sous azote et refroidi à -78°C, 60mg (0,56mmol) de tBuOK est ajouté à cette température. Après 30 min d'agitation on ajout le formyl TTF **7b** (100mg, 0,25mmol, dissout dans 10ml de THF anhydre) on laisse rementé à température ambiante pendand une nuit, aprés évaporation du solvant, le résidu est chromatographié sur gel de silice ( éluant:  $CH_2Cl_2$ / Hexane 2:1). Le composé est isolé sous forme d'une poudre orangé avec un rendement de 83%.

| $RMN^{1}H(CDCl_{3})(\delta ppm)$ | 1.25( s, 6H, 2CH <sub>3</sub> ); 1.95( s, 3H, CH <sub>3</sub> ); 2.75( t, 4H, CH <sub>2</sub> -CN, |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------|--|--|
|                                  | J=5Hz); 3.12( t, 4H, SCH <sub>2</sub> , J=6Hz); 7.25( s, 1H).                                      |  |  |
| SM (FAB+)                        | 530(M <sup>+</sup> )                                                                               |  |  |
| AE calculée%<br>trouvée%         | C 43.02; N 5,28<br>C 43.51; N 5,78                                                                 |  |  |

2-(4,5-diméthylthio-1,3-dithiole-2-ylidène)-3, 6,7- trimethyltetrathiafulvalene 1B<sub>2</sub>



Poudre rouge foncée C<sub>15</sub>H<sub>16</sub>S<sub>8</sub> Pf : 139 °C

Le TTF  $1B_1$  ( 100mg, 0,18 mmol) est mise en suspension sous azote dans 10ml d'éthanol anhydre préalablement dégazé et une solution de sodium ( 21 mg, 18 mmol) dans 4 ml d'éthanol et ajoutée goutte à goutte. Après 4 heures d'agitation à température ambiante, l'iodure de méthyle ( 3 éq) est additionné au mélange. On laisse agiter pendant une nuit, le produit résultant, solubilisé dans CH<sub>2</sub>Cl<sub>2</sub>, est lavé plusieurs fois à l'eau puis séché sur MgSO<sub>4</sub>. Après évaporation du solvant, le résidu obtenu est chromatographié sur colonne de silice (CH<sub>2</sub>Cl<sub>2</sub> / Hexane : 2/1). le composé **1B**<sub>2</sub> est obtenu sous forme d'une poudre marron noire avec un rendement 65%.

 RMN <sup>1</sup>H (CDCl<sub>3</sub>) (δppm)
 1.30( s, 6H, 2CH<sub>3</sub>); 2.10( s, 3H, CH<sub>3</sub>); 2.80( s, 3H, SCH<sub>3</sub>);

 3.10( s, 3H, SCH<sub>3</sub>); 7.25( s, 1H).

 SM (FAB+)
 452(M<sup>+</sup>)

2-(4,5-éthylènedithio-1,3-dithiole-2-ylidène)-3, 6,7- trimethyltetrathiafulvalene 1B<sub>3</sub>



*Poudre marron C*<sub>15</sub>*H*<sub>14</sub>*S*<sub>8</sub> *Pf* : 138.5 °C

Mode opératoire identique à celui du composé  $1B_2$ , à partir de 100 mg (0,18 mmol) de  $1B_1$ , 48,69 mg (3 éq) de dibromoéthane. Le composé  $1B_3$  est obtenu sous forme de poudre marron avec un rendement 68%.

| $RMN^{1}H(CDCl_{3})(\delta ppm)$ | 1.25( s, 6H, 2CH <sub>3</sub> ); 2.00( s, 3H, CH <sub>3</sub> ); 3.12( t, 4H, 2SCH <sub>2</sub> |
|----------------------------------|-------------------------------------------------------------------------------------------------|
|                                  | J=6Hz); 7.25( s, 1H).                                                                           |
| SM (FAB+)                        | 450(M <sup>+</sup> )                                                                            |
| AE calculée%<br>trouvée%         | <b>C</b> 40.45 ; <b>H</b> 3.11<br><b>C</b> 41.67 ; <b>H</b> 3.83                                |

## 2-(4,5-propylèndithio-1,3-dithiole-2-ylidène)-3, 6,7- trimethyltetrathiafulvalene 1B<sub>4</sub>



Poudre marron claire C<sub>16</sub>H<sub>16</sub>S<sub>8</sub> Pf: 133 °C

Même mode opératoire que pour  $1B_2$  sur 0,20g (0,36 mmol) de TTF  $1B_1$  dans 20ml d'éthanol en utilisant 0,021g (3,6mmol) de sodium et 42,5mg (3.5 éq) de dibromopropane. Seule modification : l'éluant utilisé pour la chromatographie sur colonne est CH<sub>2</sub>Cl<sub>2</sub>. on obtient le composé  $1B_4$  sous forme de poudre marron claire avec un rendement de 74%.

| $RMN^{1}H(CDCl_{3})(\delta ppm)$ | 1.25( s, 6H, 2CH <sub>3</sub> ); 1.95( s, 3H, CH <sub>3</sub> ); 2.75( m, 4H, CH <sub>2</sub> -CH <sub>2</sub> ); |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                                  | 3.60( t, 2H, SCH <sub>2</sub> J=7Hz); 7.25( s, 1H).                                                               |
| SM (FAB+)                        | 464(M <sup>+</sup> )                                                                                              |
| AE calculée%<br>trouvée%         | C 40.39 ; H 3.44<br>C 40.03 ; H 3.83                                                                              |

2-(4,5-méthylèndithio-1,3-dithiole-2-ylidène)-3, 6,7- trimethyltetrathiafulvalene 1B5



Même mode opératoire que pour  $1B_2$  sur 0,20g (0,36 mmol) de TTF  $1B_1$  dans 20ml d'éthanol en utilisant 0,021g (3,6mmol) de sodium et 44mg (3,5 éq) de dibromométhane. Seule modification : l'éluant utilisé pour la chromatographie sur colonne est CH<sub>2</sub>Cl<sub>2</sub>. on obtient le composé  $1B_5$  sous forme de poudre marron avec un rendement de 52%.

| $RMN^{1}H(CDCl_{3})(\delta ppm)$ | 1.25( s, 6H, 2CH <sub>3</sub> ); 2.00( s, 3H, CH <sub>3</sub> ); 3.6( s, 2H, CH <sub>2</sub> S); |
|----------------------------------|--------------------------------------------------------------------------------------------------|
|                                  | 7.25( s, 1H).                                                                                    |
| SM (FAB+)                        | 436(M <sup>+</sup> )                                                                             |

| 2-(4,5-diméthyl | enpyridyl-1,3-dithiole-2 | -ylidène)-3, 6,7- | TriMeTTF | <u>1B</u> 6 |
|-----------------|--------------------------|-------------------|----------|-------------|
|                 |                          |                   |          |             |



*Poudre noire C*<sub>25</sub>*H*<sub>22</sub>*N*<sub>2</sub>*S*<sub>8</sub> *Pf*: 192.5 •C

Même mode opératoire que pour  $\mathbf{B}_2$  sur 0,20g (0,36 mmol) de TTF  $\mathbf{B}_1$  dans 20ml d'éthanol en utilisant 0,021g (3,6mmol) de sodium et 62mg (4 éq) de 2-chlorure de méthylpyridine. Une recristallisation dans un mélange  $CH_2Cl_2/$  Hexane, permet d'isoler le composé  $\mathbf{1B}_6$  sous forme de poudre noire avec un rendement de 48%.

| $RMN^{1}H(CDCl_{3})(\delta ppm)$ | 1.25( s, 6H, 2CH <sub>3</sub> ); 1.95( s, 3H, CH <sub>3</sub> ); 3.9( s, 4H, 2SCH <sub>2</sub> - |
|----------------------------------|--------------------------------------------------------------------------------------------------|
|                                  | Py); 7.25( s, 1H); 7.75( m, 4H, CH-Py); 8.5( m, 4H, CH-N).                                       |
| SM (FAB+)                        | 606(M <sup>+</sup> )                                                                             |

2-(4-cyanéthylthio-5-méthylthio-1,3-dithiole-2-ylidène)-3, 6,7- TriMeTTF 2B<sub>1</sub>



Le TTF **B**<sub>1</sub> (200mg, 0,36mmol) est dissout dans 25ml de DMF préalablement séché sur tamis moléculaire et le mélange est dégazé à l'azote pendant 30 min. Une solution de CsOH.H<sub>2</sub>O (0,100g, 1.1éq) dans 5ml de méthanol sec et dégazé est ajoutée goutte à goutte ( addition en  $\frac{1}{2}$  h). Après 30 min, d'agitation supplémentaire à température ambiante 28 mg d'iodure de méthyle est additionné en une fois. Le milieu réactionnel est alors agité pendant 30 min. Le solvant est ensuite éliminé sous vide et le résidu obtenu est chromatographié sur colonne de silice ( éluant : CH<sub>2</sub>Cl<sub>2</sub>). le composé **1B**<sub>2</sub> est obtenu sous forme de poudre marron noire avec un rendement de 75%.

2,6-bis[3,6,7-triméthyltétrathiafulvalèn-2-yl)(2-cyanoéthylthio-1,3-dithiole-2-ylidène)ylidène)2,6-diméthyl]pyridine2B2



Le TTF **B**<sub>1</sub> (100mg, 0,18mmol) est dissout dans 15ml de DMF préalablement séché sur tamis moléculaire et le mélange est dégazé à l'azote pendant 30 min. une solution de CsOH.H<sub>2</sub>O ( 0,050g, 1.1éq) dans 3ml de méthanol sec et dégazé est ajoutée goutte à goutte ( addition en  $\frac{1}{2}$  h). Après 30 min, d'agitation supplémentaire à température ambiante 0,030 g dichlorure de 2,6-diméthylpyridine est additionné en une fois. Le milieu réactionnel est alors agité pendant 30 min, puis à nouveau dégazé à l'azote. Le solvant est ensuite éliminé sous vide et le résidu obtenu est chromatographié sur colonne de silice ( éluant : CH<sub>2</sub>Cl<sub>2</sub>) le composé **2B**<sub>2</sub> est obtenu sous forme de poudre marron avec un rendement de 59%.

| $RMN^{1}H(CDCl_{3})(\delta ppm)$ | 1.25( s, 12H, 4CH <sub>3</sub> ); 1.95( s, 6H, 2CH <sub>3</sub> ); 2.75( t, 4H, 2CH <sub>2</sub> - |
|----------------------------------|----------------------------------------------------------------------------------------------------|
|                                  | CN, J=5Hz); 3.12( t, 4H, 2SCH <sub>2</sub> J=6Hz); 4.2( s, 4H, CH <sub>2</sub> Py);                |
|                                  | 7.25( s, 2H); 7.45( s, 1H, py); 7.65( s, 2H, py).                                                  |
| SM (FAB+)                        | 1057(M <sup>+</sup> )                                                                              |



Résumé

L'observation d'un état métallique et même supraconducteur dans les composés organiques a poussé les chimistes à rechercher de nouveaux précurseurs pour synthétiser des matériaux possédant ces propriétés. Dans ce but l'augmentation de la dimensionnalité électronique et structurale de ces solides organiques semble un facteur capital. Afin d'atteindre ces objectifs, deux familles de précurseurs originaux dérivés du TTF ont été développées.

Une première série de molécules plus particulièrement intéressante pour la préparation des matériaux associant des propriétés électrique et magnétique, concerne des donneurs de type TTF liés directement avec un groupement pyridine, bien connus pour leur aptitude à complexer des métaux de transition.

La deuxième famille de molécules riche en hétéroatomes et dotés d'une grande extension spatiale sélectionnée comme précurseurs potentiels de matériaux de haute dimensionnalité.

Pour l'obtention de nos molécules cibles, nous avons employé, selon le cas considéré, les stratégies de synthèse suivantes : couplage croisé, condensation de type Wittig et déprotection-alkylation.

Le caractère donneur de l'ensemble des précurseurs obtenus, ainsi que la stabilité de leurs états oxydés sont vérifiés par voltammétrie cyclique.

Enfin, ces nouveaux donneurs ont été utilisés pour préparer des matériaux de type complexes de transfert de charge. Les mesures de la conductivité de ces solides ont été réalisées.

Ahstract

The observation of a metallic state and even superconductor in organic compound pushed the chemists to search new precursors to synthesis materials having these properties. In this aim, the increase of the electronic and structural dimensionality of these organic solids seems an essential factor. In order to achieve these objectives, two families of original precursors derived from TTF have been developed.

The first series of molecule more interested for preparing materials associating of electronic and magnetic properties, concerns donors of TTF type, directly binding with a pyridine group well-known for their aptitude to complex a transition metals.

The second one of molecules rich in heteroatom's and provided of a large spatial extension selected as a potential precursors of materials of high dimensionality.

For obtaining our targeted molecules, we have used the following strategies of synthesis: cross coupling, condensation of the Wittig type and deprotection-alkylation.

The donor character of the whole of obtained precursors and the stability of their oxidized states are checked by cyclic voltametry.

Finally, these new donors have been used for the preparation of materials from the type charge transfer complexes. The measurements of the conductivity of these solids have been realized.

ملخص

إن ظهور الناقلية الكهربائية و كذا فوق الناقلية في المواد العضوية يعد أحد الأسباب التي دفعت بالكيميائي إلى تخليق الجزيئات و تحويلها إلى مواد عضوية. و من أجل جعلها ناقلة للكهرباء يكون هدف الزيادة في البعد الالكتروني و البنيوي لهاته المواد العضوية، يبدو عامل جوهري.

بناءا على ذلك، قمنا في هذا البحث بتخليق مجموعتين من الجزيئات الجديدة المشتقة من رباعي الثيا فلفلان( TTF ) و المانحة للإلكترونات –π.

- المجموعة الأولى من الجزيئات تمزج بين الخاصية الكهربائية و الخاصية المغناطيسية،
   فهي متصلة مباشرة مع مجموعة البيريدين المعروفة بقدرتها على خلق معقدات مع المعادن
   الانتقالية.
- فيما يخص المجموعة الثانية، فهي جزيئات غنية بذرات الكبريت مميزة ببنية فراغية تشجع على رفع الأبعاد البنيوية و بالتالي تعمل على تحسين الناقلية الكهربائية للمواد العضوية الناتجة.

و للحصول على جميع هذه الجزيئات قمنا باستعمال عدة طرق منها: التزاوج المختلط، التزاوج من نوع فيتيق و طريقة الحماية و نزع الحماية- الألكلة-

بعد دراسة الخاصية المانحة للالكترونات لهذه الجزيئات و التأكد من استقرار حالتها المؤكسدة بواسطة التقنيات الكهروكيميائية، كالفولتمتري الحلقي، تم تحويلها إلى مواد عضوية من نوع معقدات تحويل الشحنة (CTC).

في الأخير، قمنا بقياس الناقلية الكهربائية في درجة حرارة عادية للمواد العضوية المتحصل عليها، ولتفسير هذه الناقلية لجأنا إلى التحليل المطيافي ما تحت الحمراء (IR).