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Abstract
The object of this thesis is to study the existence of weak positive solutions to Kirchho¤�s

elliptic problems by using the Sub-supersolution method.

The problem that studied is called nonlocal due to the presence of the Kirchho¤ operator

M(
R



1
p(x)
jrujp(x)dx);whereM is a continuous and increasing function on R+ and its values are

completely positive.This means that the equation is no longer point-identical.This causes some

mathematical di¢ culties that make studying such a problem interesting.

It is for this reason that we have performed con�ning the solution with two weak positive

solutions using the Sub-supersolution method.

Keywords: weak solution,subsolution,supersolution,the Kirchho¤ operator.
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Résumé
L�objet de cette thèse est d�étudier l�existence de solutions faiblement positives aux problèmes

elliptiques de Kirchho¤ par la méthode de sous-supersolution.

Le problème que nous avons étudié est dit non local du fait de la présence de l�opérateur

de Kirchho¤ M(
R



1
p(x)
jrujp(x)dx); o�u M est une fonction continue et croissante sur R+ et

ses valeurs sont complètement positives.Cela signi�e que l�équation n�est plus la même en un

point.Cela conduit à des di¢ cultés mathématiques qui rendent intéressante l�étude d�un tel

problème.

C�est pour cette raison que nous avons réalisé le con�nement de la solution avec deux

solutions faiblement positives en utilisant la méthode de sous-supersolution.

Mots clés: solution faible,sous-solution,supersolution,l�opérateur de Kirchho¤.
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General introduction

The study of nonlinear elliptic equations with quasilinear homogeneous type operators such

as the p-Laplace operator can be performed basing on the theory of standard Sobolev spaces

Wm;p,and thus weak solutions can be found.These spaces are made up of functions which have

weak derivatives and satisfy some integrability conditions.Hence,in the case of nonhomogen-

eous p (x)-Laplace operators,the normal framework for this approach is the use of the so-called

variable exponent Sobolev spaces.The general idea consists of replacing the Lebesgue spaces

Lp (
) by more general spaces Lp(x) (
),called variable exponent Lebesgue spaces.The result-

ing space will be denoted by Wm;p (
) and called a variable exponent Sobolev space if the

role played by Lp (
) in the de�nition of the Sobolev spaces Wm;p(x) (
) is assigned rather

to a variable Lebesgue space Lp(x) (
).Lot of properties of Sobolev spaces were extended to

Orlicz�Sobolev spaces,especially by O�Neill [46] (excellent account of those works can be found

with Adams [3] ).The spaces Lp(x) (
) and Wm;p(x) (
) have been closely studied in the works

published by Edmunds et al ([19];[18]) and the paper of Musielak [44],as well as in Kovacik

and Rkosnk,Mihailescu and Radulescu ([38];[43]],and Samko and Vakulov [50].In the last dec-

ades,Variable Sobolev spaces have been used in several domains to model various phenomena.As

major application,Chen,Levine and Rao [13] have presented a framework for image restora-

tion,which is based on a variable exponent Laplacian.Moreover,modelling of electrorheological

�uids (also referred to as smart �uids) is highly considered as an important application which

adopts nonhomogeneous Laplace operators.In fact,since the middle of the last century,several

experimental studies for di¤erent materials relying on such an advanced theory have been

carried out.We may consider the works of WillisWinslow in 1949 as the most important discov-

ery in electrorheological �uids,showing that their viscosity depends on the electric �eld in the
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�uid,which is an interesting property.Thus,they were able to increase the viscosity by up to �ve

orders of magnitude,and the phenomenon has been known as the Winslow e¤ect.Some more

technical applications are showed by Pfei¤er et al.[49] and a general account of the underlying

physics can be found with Halsey[32].

Our approach to this thesis is based on the method of sub and super-solutions.The concepts

of sub- and super-solution were introduced by Nagumo (Proc Phys�Math Soc Jpnl9 : 861 �

866; 1937) in 1937 who proved,using also the shooting method,the existence of at least one

solution for a class of nonlinear Sturm-Liouville problems.In fact,the premises of the sub and

super-solution method can be traced back to Picard.He applied,in the early 1880s,the method

of successive approximations to argue the existence of solutions for nonlinear elliptic equations

that are suitable perturbations of uniquely solvable linear problems.This is the starting point of

the use of sub-and super-solutions in connection with monotone methods.Picard�s techniques

were applied later by Poincaré (J Math Pures Appl 4:137230,1898) in connection with problems

arising in astrophysics.

Since the structure of the p (x)�Laplace is more complicated than that of the p�Laplace

operator,such as it is nonhomogeneous,the extension from p-Laplace operator to p (x)�Laplace

operator will not be well-worn.Furthermore,many methods for p�Laplacian are not true for the

p (x)�Laplacian; for instance,if 
 is bounded,then the Rayleigh quotient

�p(x)= inf
u2W 1;p(x)

0 (
)=f0g

R



1
p(x)
jrujp(x)dxR



1
p(x)
jujp(x)dx

(0.1)

is zero generally,and as it is shown in [21],�p(x) would be positive only under some special

conditions.In spite of the fact that the �rst eigenvalue and the �rst eigenfunction of the

p (x)�Laplacian may not be existing,having a positive �rst eigenvalue �p and getting the �rst

eigenfunction are very interesting in the study of p�Laplacian problem.Hence,discussing the ex-

istence of solutions of variable exponent problems has more problems.The existence of positive

weak solutions for the following p-Laplacian problem is considered in [31]8>>><>>>:
��pu=�f (v) in 
;

��pv=�g (u) in 
;

u=v= 0 on @
;

(0.2)

where the �rst eigenfunction has been used to construct the subsolution of p�Laplacian prob-
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lem.Under the condition that

lim
u!+1

f
�
M(g (u))

1
p�1

�
up�1

= 0; for all M> 0; (0.3)

the authors gave the existence of positive solutions for problem (0.2) provided that � is large

enough.In [11],the existence and nonexistence of positive weak solutions to the following quasi-

linear elliptic system 8>>><>>>:
��pu=�u

�v in 
;

��qv=�u
�v� in 
;

u=v= 0 on @
;

(0.4)

has been considered where the �rst eigenfunction has been used to construct the subsolution

of problem (0.4) and he obtained the following results:

(i) If �; � � 0;; �> 0;�=(p�1��) (q�1��)��> 0,then the problem (0.4) has a positive

weak solution for each �> 0.

(ii) If �= 0 and p=q (p�1��),then there exists �0> 0 such that for 0 <�<�0,then prob-

lem (0.4) has no nontrivial nonnegative weak solution.For further generalizations of system

(0.4) we refer to [9] and [27].As described previously,among the p (x)�Laplacian problems,the

�rst eigenvalue and the �rst eigenfunction of the p (x)�Laplacian may not be existing even

if there is a �rst eigenfunction of the p (x)�Laplacian.Owing to the nonhomogeneous of the

p (x)�Laplacian,the �rst eigenfunction would not be used in the construction of the subso-

lutions of p (x)�Laplacian problems.Furthermore,some symmetry conditions are imposed in

[4],[53],[54],in order to study the existence of solutions for the problem (0.2).Moreover,the ex-

istence of positive solutions of the system is investigated in [55]8>>><>>>:
��p(x)u=�

p(x)f (v) in 
;

��p(x)v=�
p(x)g (u) in 
;

u=v= 0 on @
;

(0.5)

without any symmetry conditions.Motivated by the ideas introduced in [55] and [30],where the

authors in [55] proved the existence of a positive solution when � is large enough and satis�es

the condition (0.3) and they did not assume any symmetric condition,and did not assume any

sign condition on f(0) and g(0).Also the authors proved the existence of positive solutions with

multiparameter.
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in this thesis,we extend this given system of di¤erential equations,

8>>><>>>:
�M

�
1
p(x)

R


jrujp(x)dx

�
�p(x)u=�

p(x) [�1a (x) f (v)+�1c (x)h (u)] in 
;

�M
�

1
p(x)

R


jrvjp(x)dx

�
�p(x)v=�

p(x) [�2b (x) g (u)+�2d (x) � (v)] in 
;

u=v= 0 on @
;

where 
 � RN is a bounded smooth domain with C2 boundary @
; 1 <p 2 C1
�


�
is a func-

tions with 1 <p�:=inf
p (x) � p+:=sup
p (x)<1; and �p(x)u=div
�
jrujp(x)�2ru

�
is called

p(x)�Laplacian,and M
�R



1
p(x)
jrujp(x)dx

�
is called Kirchho¤ operator where M is a continu-

ous and increasing function on R+ and its values are completely positive.

�; �1; �2; �1;and �2 are positive parameters,and f;g;h;� are monotone functions in [0;+1[

such that

lim
u!+1

f (u)= lim
u!+1

g (u)= lim
u!+1

h (u)= lim
u!+1

� (u)= +1;

and satisfying some natural growth condition at u=1:

An extension of the previous studies and with the same method used in modeling physical

phenomena,we generalized the following Kirchho¤ equation:

�
@2u

@t2
�
 
P0
h
+
E

2L

Z L

0

����@u@x
����2dx

!
@2u

@x2
= 0 (0.6)

presented by Kirchho¤in 1883,see [37] This equation is an extension of the classical d�Alembert�s

wave equation by considering the e¤ect of the changes in the length of the string during the

vibrations.The parameters in (0.6) ;have the following meanings: L is the length of the string,h

is the area of the cross-section,E is the Young modulus of the material,� is the mass density,and

P0 is the initial tension.

In this thesis we have divided it into three chapters as :

Chapter 1 : We present the concepts and theories that where used in the remaining chapters

of the thesis

Chapter 2 : We studied the following system of di¤erential equations8>>><>>>:
�A

�R


jruj2dx

�
�u=�1� (x) f (v)+�1� (x)h (u) in 
;

�B
�R


jrvj2dx

�
�v=�2 (x) g (u)+�2� (x) � (v) in 
;

u=v= 0 on @
;

(0.7)
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where 
 � RN (N � 3) is a bounded smooth domain with C2 boundary @
,andA,B :R+ ! R+

are continuous functions,�; �; ; � 2 C
�


�
,�1; �2; �1,and �2 are nonnegative parameters.

Since the �rst equation in (0.7) contains an integral over 
,it is no longer a pointwise

identity; therefore it is often called nonlocal problem.This problem models several physical and

biological systems,where u describes a process which depends on the average of itself,such as

the population density,

By imposing �ve conditions on the case data,

(A1)
A;B:R+ ! R+ are two continuous and increasing functions and there exists

ai; bi> 0;i= 1; 2,such that a1 � A (t) � a2;b1 � B (t) � b2 for all t 2 R+:

(A2)
�; �; ; � 2 C

�


�
and for all x 2 


� (x) � �0> 0;� (x) � �0> 0; (x) � 0> 0;� (x) � �0> 0:

(A3)

f ,g,h,and � are continuous on [0;+1[,C1 on (0;+1),and increasing functions

such that

8<: limt!+1 f (t)= +1; limt!+1 g (t)= +1;

limt!+1 h (t)= +1; limt!+1 � (t)= +1:

(A4) It holds that limt!+1
f(K(g(t)))

t
= 0; for all K> 0:

(A5) limt!+1
h(t)
t
= limt!+1

�(t)
t
= 0:

we have reached the following main conclusion :

Theorem 0.1 .Assume that the conditions (A1)�(A5) hold,andM is a nonincreasing function

atisfying ( 2.3).Then for �1�0 + �1�0 and �20 + �2�0 are large then problem (0.7) has a large

positive weak solution.

Finally,in Chapter Three,we examined the following Kirchho¤ elliptic system of di¤erential

equations

8>>><>>>:
�M

�
1
p(x)

R


jrujp(x)dx

�
�p(x)u=�

p(x) [�1a (x) f (v)+�1c (x)h (u)] in 
;

�M
�

1
p(x)

R


jrvjp(x)dx

�
�p(x)v=�

p(x) [�2b (x) g (u)+�2d (x) � (v)] in 
;

u=v= 0 on @
;

(0.8)
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where 
 � RN is a bounded smooth domain with C2 boundary @
; 1 <p 2 C1
�


�
is a func-

tions with 1 <p�:=inf
p (x) � p+:=sup
p (x)<1;and �p(x)u=div
�
jrujp(x)�2ru

�
is called

p(x)�Laplacian,and M
�R



1
p(x)
jrujp(x)dx

�
is called Kirchho¤ operator where M is a continu-

ous and increasing function on R+ and its values are completely positive.

�; �1; �2; �1;and �2 are positive parameters,and f;g;h;� are monotone functions in [0;+1[

such that

lim
u!+1

f (u)= lim
u!+1

g (u)= lim
u!+1

h (u)= lim
u!+1

� (u)= +1;

and satisfying some natural growth condition at u=1:

When certain conditions are met about the data of the problem,

(H1) M : [0;+1)! [m0;1] is a continuous and increasing function with m0> 0:

(H2) p 2 C1
�


�
and 1 <p� � p+:

(H3)

������ f; g; h; � : [0;+1[! R are C1,monotone functions such that

limu!+1 f (u)= limu!+1 g (u)= limu!+1 h (u)= limu!+1 � (u)= +1:

(H4) limu!+1

f

 
L(g(u))

1
p��1

!
up��1

= 0; for all L> 0:

(H5) limu!+1
h(u)

up��1
= 0;limu!+1

�(u)

up��1
= 0:

(H6)

a; b; c; d :
! (0;+1) are continuous functions,such that

a1=minx2
 a (x) ; b1=minx2
 b (x) ; c1=minx2
 c (x) ; d1=minx2
 d (x) ;

a2=maxx2
 a (x) ; b2=maxx2
 b (x) ; c2=maxx2
 c (x) ; d2=maxx2
 d (x) :

We arrive at the main conclusion

Theorem 0.2 Assume that the conditions (H1)� (H6) are satis�ed.Then problem (0.8) has a

positive solution when � is large enough.

At the end of the thesis,we presented some prospects that we aspire to generalize our search

results to wider spaces.
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CHAPTER 1

Concepts about Lebesgue and Sobolev spaces with variable exponents.
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Chapter 1. Concepts about Lebesgue and Sobolev spaces with
variable exponents.

1.1 History of function spaces with variable exponents.

One of the reasons for the huge development of the theory of classical Lebesgue and Sobolev

spaces Lp and W 1;p (where 1 � p � 1) is the description of many phenomena arising in

applied sciences.For instance,many materials can be modeled with su¢ cient accuracy using the

function spaces Lp and W 1;p where p is a �xed constant.For some nonhomogeneous materials,for

instance electrorheological �uids (sometimes referred to as �smart �uids�),this approach is

not adequate,but rather the exponent p should be allowed to vary.This leads us to the study

of variable exponent Lebesgue and Sobolev spaces,Lp(x) and W 1;p(x),where p is a real�valued

function.

Variable exponent Lebesgue spaces appeared in the literature in 1931 in the paper by Orlicz

[47].He was interested in the study of function spaces that contain all measurable functions

u : 
! R such that

�(�u) =

Z



'(� ju (x)j)dx (1.1)

for some � > 0 and ' satisfying some natural assumptions,where 
 is an open set in RN .This

space is denoted by L' and it is now called Orlicz space.

However,we point out that in [47] the case jujp(x) corresponding to variable exponents was not

included.In the 1950�s these problems were systematically studied by Nakano [45],who developed

the theory of modular function spaces.Nakano explicitly mentioned variable exponent Lebesgue

spaces as an example of more general spaces he considered,see Nakano [45, p 284].Later,Polish

mathematicians investigated the modular function spaces,see Musielak [44].Variable exponent

Lebesgue spaces on the real line have been independently developed by Russian researchers.In

that context,we refer to the work of Tsenov [52] and Sharapudinov [51].They were interested

in the minimization of functionals like

Z b

a

ju (x)� v(x)jp(x)dx (1.2)

where u is a given function and v varies over a �nite dimensional subspace of Lp(x)[a; b].Zhikov

[57] started a new direction of investigation,which created the relationship between spaces

with variable exponent and variational integrals with nonstandard growth conditions.We also

point out the contributions of Marcellini [42],who studied minimization problems with (p;q)-

2



Chapter 1. Concepts about Lebesgue and Sobolev spaces with
variable exponents.

growth,namely

inf

Z



F (x; jruj)dx (1.3)

where tp � F (x; t) � tq + 1 for all t � 0.The case corresponding to the variable exponent

corresponds to F (x; t) = tp(x),where p: 
! (1;1) is a bounded function.

In 1991,Kovacik and Rakosnik [38] established several basic properties of spaces Lp (
)

and,W 1;p (
) with variable exponents.Their results were extended by Fan and Zhao [26] in

the framework of Sobolev spacesWm;p (
).Pioneering regularity results for functionals with

nonstandard growth are due to Acerbi and Mingione [1].Density of smooth functions inW k;p (
)

and related Sobolev embedding properties are due to Edmunds and Rakosnik [18].

We also point out the important contributions of the Finnish research group on variable

exponent spaces and image processing,whose main goal was to study nonlinear potential the-

ory in variable exponent Sobolev spaces.The abstract theory of Lebesgue and Sobolev spaces

with variable exponents was developed in the monograph by Diening,Harjulehto,H�ast�o,and

Ruzicka [17].The study of di¤erential equations and variational problems involving p(x)-growth

conditions is a consequence of their applications.In 1920 Bingham was surprised to discover

that some paints do not run like honey.He studied such a behavior and described a strange

phenomenon.There are �uids that �rst �ow,then stop spontaneously (Bingham �uids).Inside

them,the forces that create the �ows reach a threshold.As this threshold is not reached,the �uid

�ow deforms as a solid.Invented in the 17th century,the �Flemish medium�makes painting oil

thixotropic: it �ows under pressure of the brush,but freezes as soon as you leave it to rest.While

the exact composition of the Flemish medium remains unknown,it is known that the bonds form

gradually between its components,which is why the picture freezes in a few minutes.Thanks to

this wonderful medium,Rubens was able to paint La Kermesse in only 24 hours.

Recent systematic study of partial di¤erential equations with variable exponents was motiv-

ated by the description of several relevant models in electrorheological and thermorheological

�uids,image processing,or robotics.In what follows,we give two relevant examples that justify

the mathematical study of models involving variable exponents.The �rst example is due to

Chen,Levine,Rao [12] and it concerns applications to image restoration.Let us consider an in-

put I that corresponds to shades of gray in a domain � R2.

3



Chapter 1. Concepts about Lebesgue and Sobolev spaces with
variable exponents.

1.2 Lebesgue spaces with variable exponents.

We write E = fu : u is a measurable function in 
g.suth that 
 � Rn be a measurable subset

and meas 
 > 0

Elements in E that are equal to each other almost everywhere are considered as one element.

Let p 2 E.In the following discussion we always assume that u 2 E and write

�(x; s) = sp(x);8x 2 
; s � 0 (1.4)

�(u) = �p(x)(u) =

Z



�(x; juj)dx =
Z



ju(x)jp(x)dx (1.5)

Lp(x)(
) = fu 2 E : lim
�!0+

�(�u) = 0g (1.6)

L
p(x)
0 (
) = fu 2 E : �(u) <1g (1.7)

L
p(x)
1 (
) = fu 2 E : 8� > 0; �(�u) <1g (1.8)

L1+ (
) = fu 2 L1(
) : ess inf u � 1g (1.9)

It is easy to see that the function � de�ned above belongs to the class �,which is de�ned in

[22,p.33],i.e.,� satis�es the following two conditions:

1) For all x 2 
,�(x; �) : [0;1)! R is a nondecreasing continuous function with �(x; 0) = 0

and �(x; s) > 0 whenever s > 0;�(x; s)!1 when s!1:

2) For every s � 0,�(:; s) 2 E.Obviously,� is convex in s:

In view of the de�nition in [44],� is a convex modular over E,i.e.,� : E ! [0;1] veri�es the

following properties (a)� (c)

(a) �(u) = 0, u = 0;

(b) �(�u) = �(u);

(c) �(�u+ �v) � ��(u) + ��(v),8u,v 2 E,8�,� � 0,�+ � = 1:

and thus by [44],Lp(x)(
) is a Nakano space,which is a special kind of Musielak-Orlicz

space.Lp(x)0 (
) is a kind of generalized Orlicz class.It is easy to see that Lp(x)(
) is a linear

4



Chapter 1. Concepts about Lebesgue and Sobolev spaces with
variable exponents.

subspace of E,and Lp(x)0 (
) is a convex subset of Lp(x)(
).In general we have

L
p(x)
1 (
) � L

p(x)
0 (
) � Lp(x)(
)

By the properties of �(x; s) we also have

Lp(x)(
) = fu 2 E : 9� > 0; �(�u) <1g:

Theorem 1.1 ([26])The following two conditions are equivalent:

1) p 2 L1+ (
);

2) L
p(x)
1 (
) = Lp(x)(
):

Proof

1) ) 2) is obvious.

2)) 1).If 1) is not true,then we can take a sequence fImg of disjoint subsets of 
 with positive

measure such that p(x) > m for x 2 Im:Choosing an increasing sequence fumg � (0;1) such

that um !1 as m! 1,we can �nd km satisfying the inequalityZ
Im

u
p(x)
km

dx � 1

2m

By the absolute continuity of integral,we can shrink Im to 
m such thatZ

m

u
p(x)
km

dx = 2m

Denote by �
m(x) the characteristic function of 
m,i.e

�
m (x) =

8<: 1 if x 2 
m
0 if x =2 
m

if we write

u0(x) =

Z 1

m=1

ukm�
m(x);

then we have Z



ju0(x)jp(x)dx =
Z 1

n=1

Z

n

u
p(x)
kn

dx =

Z 1

n=1

1

2n
= 1

5
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Z



j2u0(x)jp(x)dx =
Z 1

n=1

Z

n

2p(x)u
p(x)
kn

dx >

Z 1

n=1

2n
Z

n

u
p(x)
kn

dx =1

thus we have u0 2 Lp(x)(
),but u0 =2 L
p(x)
1 (
).This contradicts condition (2),and we complete

the proof.

From now on we only consider the case where p 2 L1+ (
),i.e.,

1 � p� =: ess inf p(x) � ess sup p(x) =: p+ <1 (1.10)

For simplicity we write E� = Lp(x)(
) = L
p(x)
0 (
) = L

p(x)
1 (
),and we call Lp(x)(
) generalized

Lebesgue spaces.By [44],we can introduce the norm k u kLp(x)(
) on E� (denoted by k u k�) as

k u k�= inf f� > 0 : �
�u
�

�
� 1g

and (E�; k : k�) becomes a Banach space.It is not hard to see that under condition (1.10),p

satis�es

(d) �(u+ u) � 2p+(�(u) + �(u));8 u 2 E�:

(e) For u 2 E�,if � > 1,we have

� (u) � �� (u) (� �p
�
� (u) (� � (�u) � �p

+

� (u)

and if 0 < � < 1,we have

�p
+

� (u) � � (�u) � �p
�
� (u) � �� (u) � � (u)

(f) For every �xed u 2 E�nf0g,�(�u) is a continuous convex even function in �,and it increases

strictly when � 2 [0;1)

By property (f) and the de�nition of k u k�,we have

Theorem 1.2 ([26]) Let u 2 E�nf0g; then

k u k�= a if and only if �
�u
a

�
= 1

The norm k u k� is in close relation with the modular �(u).We have

6
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Theorem 1.3 ([26]) Let u 2 E�; then
1) k u k�< 1(= 1;> 1), �(u) < 1(= 1;> 1);

2) If k u k�> 1; then k u kp
�
� � �(u) �k u kp+� ;

3) If k u k�< 1; then k u kp
+

� � �(u) �k u kp�� :

Proof

From (f) and Theorem 1.2 we can obtain 1).We only prove 2) below,as the proof of 3) is

similar.Assume that k u k�= a > 1,by Theorem 1.2,�(u
a
) = 1.Notice that 1

a
< 1,by (e).We have

1

ap+
�(u) � �(

u

a
) = 1 � 1

ap�
�(u)

so we obtain 2).

Theorem 1.4 ([26]) Let u,uk 2 Ep,k = 1; 2,: : :Then the following statements are equivalent

to each other
1) limk!1 k uk � u k� = 0;

2) limk!1 �(uk � u) = 0;

3) uk converges to u in 
 in measure and limk!1 �(uk) = �(u):

Proof

The equivalence of 1) and 2) can be obtained from Theorem 1.6 in [44] and the property e) of

� stated above.Now we prove the equiva lence of 2) and 3).If 2) holds,i.e.,

lim
k!1

Z



j uk � ujp(x)dx = 0

then it is easy to see that uk converges to u in 
 in measure; thus jukjp(x) converges to jujp(x)

in measure.Using the inequality

jukjp(x) � 2p
+�1(juk � ujp(x) + jujp(x))

and using the Vitali convergence theorem of integral we deduce that �(uk) ! �(u),so 3 )

holds.On the other hand,if 3) holds,we can deduce that juk � ujp(x) converges to 0 in 
 in

measure.By the inequality

juk � ujp(x) � 2p+�1(jukjp(x) + jujp(x))

7
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and condition �(uk)! �(u),we get lim k!1�(uk � u) = 0.For arbitrary u 2 Lp(x)(
),let

un(x) =

8<: u(x); if ju(x)j � n;

0; if ju(x)j > n:

It is easy to see that lim n!1�(un(x)� u(x)) = 0:

so by Theorem 1.4 we get

Theorem 1.5 ([26])

The set of all bounded measurable functions over 
 is dense in (Lp(x)(
); k : k�).

For every �xed s � 0,under condition (1.10),the function � (.,s) is local integral in 
; thus

by Theorem 7.7 and 7.10 in [44],we get

Theorem 1.6 ([44])The space (Lp(x)(
); k : k�) is separable.

By Theorem 7.6 in [44] we have

Theorem 1.7 ([44])The set S consisting of all simple integral functions over 
 is dense in the

space (Lp(x)(
); k : k�).

When 
 � Rn is an open subset,for every element in S,we can approximate it in the means

of norm k � k� by the elements in C10 (
) through the standard method of molli�ers,so we have

Theorem 1.8 ([44])

If 
 � Rn is an open subset,then C10 (
) is dense in the space (Lp(x)(
); k : k�).

We now discuss the uniform convexity of Lp(x)(
).First we give the following conclusion:

Lemma 1.1 ([26]).Let p(x) > 1 be bounded.Then �(x; s) = sp(x) is strongly convex with respect

to s ; i.e.,for arbitrary a 2 (0; 1),there is �(a) 2 (0; 1) such that for all s � 0 and b 2 [0; a],the

inequality holds.

�

�
x;
1 + b

2
s

�
� (1� � (a))

� (a; s) + � (x; bs)

2
(1.11)

Proof

We rewrite (1.11) as �
1 + b

2

�p(x)
� (1� �(a))

1 + bp(x)

2

8
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It is easy to see that for almost all x 2 
 and b 2 [0; 1),we always have

�
1� b

2

�p(x)
< (1 + bp(x))=2 (1.12)

Let

�x(t) =

�
1 + t

2

�
p(x)=

�
1 + tp(x)

�
=2

It is not hard to prove that for almost all x 2 
,�(t) increases strictly in [0; 1).We only need to

prove that the inequality

�x(a) � 1� �(a)

holds.If this is not so,then we can �nd a sequence fxng of points in 
 such that

lim
n!1

�xn(a) = 1

thus we can choose a convergence subsequence p(xnj) of p(xn) that still veri�es

lim
nj!1

�xnj (a) = 1

Setting

p� = lim
nj!1

p(xnj) 2 [p�; p+]

we get �
1 + a

2

�p�
= (1 + ap

�
)=2nj

which is a contradiction.Thus we must have

supx2
�(a) < 1

i.e.there is �(a) 2 (0; 1) such that for almost all x 2 
,we have

�(a) � 1� �(a)

This completes the proof.

By Lemma 1.1 and Theorem 11.6 in [44],we can get immediately

Theorem 1.9 ([44]).If p� > 1,p+ <1,then Lp(x)(
) is uniform convex and thus is re�exive.

9
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Now we give an imbedding result.

Theorem 1.10 ([26]).Let meas 
 < 1,p1(x),p2(x) 2 E,and let condition (1.10) be satis-

�ed.Then the necessary and su¢ cient condition for Lp2(x)(
) � Lp1(x)(
) is that for almost all

x 2 
 we haue p1(x) � p2(x),and in this case,the imbedding is continuous.

The norm k : k� of Lp(x)(
) de�ned before is usually called the Luxem-bury norm.We can

introduce another norm � as

k u k�� = inf f �
�
1 + �

�u
�

��
; � > 0 g (1.13)

This is called the Amemiya norm.The above two norms are equivalent; they satisfy

k u k��k u k�� � 2 k u k�;8u 2 Lp(x)(
)

A simple calculation shows that if p(x) = p is a constant and we write

k u kLp(
)= (
Z



ju(x)jpdx)1=p

then we have

k u k�=k u kLp(
); k u k�� = 2 k u kLp(
)

If p� > 1,we can also introduce the so-called Orlicz norm as

k u k0�=k u k
0

Lp(
)
= supf

����Z



u (x) v (x) dx

���� : �q(x) (v) � 1; v (x) 2 Lq(x) (
)g
and we have

k u k��k u k
0

�� 2 k u k�;8u 2 Lp(x)(
)

so k u k0� is equivalent to k u k� and u p.For the norm k u k�,we have the Hölder inequality

j
Z



u(x)v(x)dxj �k u k�p(x)k v k
0

�q(x)
;8u(x) 2 Lp(x) (
) ; v(x) 2 Lq(x)(
)

and therefore we have

j
Z



u(x)v(x)dxj � 2 k u k�p(x)k v k�q(x) ;8u(x) 2 L
p(x)(
); v(x) 2 Lq(x)(
)

10
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Where
1

p(x)
+

1

q(x)
= 1

De�nition 1.1 Let u 2 Lp(x)(
),let D � 
 be a measurable subset,and let �D be the char-

acteristic function of E.If limmeas D!0 k u(x) �D(X) k�= 0 then we say that u is absolutely

continuous with respect to norm k : k� :

Theorem 1.11 ([26]) u 2 Lp(x)(
) is absolutely continuous with respect to norm k : k�:

As Lp(x)(
) = fu 2 E : 8� > 0; �(�u) <1g for arbitrary s > 0,we have �(u
"
) <1.Let

un(x) =

8<: u(x); if ju(x)j � n;

0; if ju(x)j > n:

Then by Theorem 1.5,we can take N such that

k u� uN k�
"

2

Because uN(x) is bounded,we can �nd � > 0 such that when meas D < �,we have

k uN(x)�D(x) k�<
"

2
;

and thus we get

k u(x)�D(x) k��k (u� uN(x))�D(x) k� + k uN(x)�D(x) k�< "

Let � 2 E and 0 < a � �(x) � b < 1,where a and b are positive constants.Setting '� :


�R+ ! R+ as

'�(x; s) = �(x)'(x; s) = �(x)sp(x):

Similar to the de�nition of � and E�,let

��(u) =

Z



'�(x; ju(x)j)dx;

and

E�� = fu 2 E : lim
�!0+

��(�u) = 0g:

11



Chapter 1. Concepts about Lebesgue and Sobolev spaces with
variable exponents.

By

a '(x; s) � '�(x; s) � b'(x; s)

And

a �(u) � ��(u) � b�(u)

We have E�� = E� = Lp(x)(
).If we de�ne the norm k : k�� of E� as before,

k u k��= inf f� > 0 : ��(
u

�
) � 1g (1.14)

it is easy to see that k : k�� and k : k� are equivalent norms on E�:

Let us begin to discuss the conjugate space of Lp(x)(
),i.e.,the space (Lp(x)(
))� consisting

of all continuous linear functionals over Lp(x)(
).We suppose that p(x) satis�es condition (1.10)

and p� > 1.By the de�nition in [18,p.33] '(x; s) = sp(x) belongs to the class �,and for x 2 
,'

is convex in s and satis�es

(0) : lim
s!0+

' (x; s)

s
= 0

(1) : lim
s!1

'(x; s)

s
=1

Let 'p(x; s) =
1
p(x)

sp(x).Then 'p also belongs to the class �.Writing

�p(u) =

Z



'p(x; ju(x)j)dx

k u k�p= inf f� > 0 : �p(
u

�
) � 1g

k u k�p is an equivalent norm on Lp(x)(
).Obviously,the Young�s conjuga tive function of 'p is

'�p(x; s) =
1

q(x)
sq(x)

where q(x) is the conjugative function of p(x),i.e., 1
p(x)

+ 1
q(x)

= 1.It is obvious that ('�p)
� =

'p,and q
�,q+ are conjugative numbers of p+,p� respectively.In particular,we have q� > 1 and

q+ <1.Writing

��p(v) =

Z



1

q(x)
jv(x)jq(x)dx =

Z



'�p(x; jv(x)j)dx

12
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E��p = fv 2 Elim�!0+ �
�
p(�v) = 0g;we have

E��p = Lq(x)(
) = L
q(x)
0 (
) = fv 2 E :

Z



jv(x)jq(x)dx <1g

By Corollary 13.14 and Theorem 13.17 in [44].we have

Theorem 1.12 ([44]).(Lp(x)(
))� = Lq(x)(
),i.e

1o) For evey v 2 Lq(x)(
),f de�ned by

f(u) =

Z



u(x)v(x)dx; 8u 2 Lp(x)(
) (1.15)

is a continuous linear functional over Lp(x)(
)

2o) For every continuous linear functional f on Lp(x)(
),there is a unique element u 2

Lq(x)(
) such that f is exactly de�ned by (1.15)

From.Theorem 1.12 we can also deduce that when p� > 1,p+ < 1,the space Lp(x)(
) is

re�exive.We know that for Banach space (X ; k : k) the norm k : k0 on its conjugate space X� is

usually de�ned by the formulation

k x� k0= supf� x�; x �:k x k� 1g (1.16)

where x� 2 X�,� x�; x �= x�(x),and the inequality holds.

j � x�; x � j �k x� k0k x k;8x 2 X; x� 2 X� (1.17)

It is obvious that the norm k : k0.on X� depends on the norm k x k on X.Now we take

X = Lp(x)(
),then X� = Lq(x)(
).For v 2 X� and u 2 X;

� u; v �=
Z



u(x)v(x)dx (1.18)

If we use the norm k : k�p on X,then according to Theorem 13.11 in [44],we have

k v k��p�k v k
0

��p
;8v 2 X� (1.19)

13
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An interesting question we are concerned with is the relation between the prime norm k

: kLq(x)(
) of X� and the norm k : k0� of X� when X is equipped with norm k : k�.It is well

known that when p(x) is a constant p 2 (1;1),the two norms de�ned above are exactly the

same.Here we give

Theorem 1.13 ([44]) Under the aboue assumptions,for arbitrary v 2 Lq(x)(
),we have

k v kLq(x)(
)�k v k
0

��
�
1

p�
+
1

q�

�
k v kLq(x)(
) (1.20)

Proof

For v 2 Lq(x)(
),u 2 Lp(x)(
),setting k v kLq(x)(
)= a,k u kLp(x)(
)= b � 1;

R


u(x)
b

v(x)
a
dx �

R



1
p(x)
ju(x)
b
jp(x)dx+

R



1
q(x)
jv(x)
a
jq(x)dx

� 1
p�

R


ju(x)
b
jp(x)dx+ 1

q�

R


jv(x)
a
jq(x)dx = 1

p� +
1
q�

So we get Z



u(x)v(x)dx �
�
1

p�
+
1

q�

�
ab �

�
1

p�
+
1

q�

�
a;

and then

k v k0��
�
1

p�
+
1

q�

�
k v kLq(x)(
) :

On the other hand,for v 2 Lq(x)(
) with

k v kLq(x)(
)= a; u(x) = jv (x)
a
jq(x)�1sgn u(x):

Thenju(x)jp(x) = jv(x)
a
jq(x)Thus u(x) 2 Lp(x)(
):And k u kLp(x)(
)= 1:SoZ



u(x)v(x)dx =

Z



ajv(x)
a
jq(x)dx = a =k v kLq(x)(
) :

This equality means that k v k0��k v kLq(x)(
).The proof is completed.

This theorem can be regarded as a generalization of conclusion (1.19).The importance of Ne-

mytsky operators from Lp1(
) to Lp2(
) is well known.Here we give the basic properties of

Nemytsky operators from Lp1(x)(
) to Lp2(x)(
).Let p1,p2 2 L1+ (
).We denote by p1,p2 the

modular corresponding to p1 and p2,respectively.Let g(x; u)(x 2 
; u 2 R) be a Caratheodory

function,and G is the Nemytsky operator de�ned by g,i.e.,(Gu)(x) = g(x; u(x)).We have

14
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Theorem 1.14 ([26]).If G maps Lp1(x)(
) into Lp2(x)(
),then G is continuous and bounded,and

there is a constant b � 0 and a nonnegative function a 2 Lp2(x)(
) such that for x 2 
 and

u 2 R,the following inequality holds

g(x; u) � a(x) + bjujp1(x)=p2(x) (1.21)

On the other hand,if g satis�es (1.21),then G maps Lp1(x)(
) into Lp2(x)(
),and thus G is

continuous and bounded.

As an application,we give an example.

Example 1.1 Let 
 be a measurable set in Rn and meas(
) < 1,f : 
 � R ! R is a

Caratheodory function satisfying the condition

f(x; u) � a(x) + bjujp(x);

where p(x) 2 L1+ (
),a(x) 2 L1(
),a(x) � 0,b � 0 is a constant.Then the functional

J(u) =

Z



f(x; u(x))dx

de�ned on Lp(x)(
) is continuous and J is uniformly bounded on a bounded set in Lp(x)(
).

1.3 Sobolev spaces with variable exponents.

In this section we will give some basic results on the generalized Lebesgue-Sobolev space

Wm;p(x)(
),where
 is a bounded domain ofRn,m is a positive integer and p 2 L1+ (
).Wm;p(x)(
)

is de�ned as

Wm;p(x)(
) = fu 2 Lp(x)(
) : D�u 2 Lp(x)(
); j�j � mg

Wm;p(x)(
) is a special class of socalled generalized Orlicz-Sobolev spaces.

For p(x) = 2;we have

Hm(
) =Wm;2(
):

For m = 0;we have

W 0;p(x)(
) = Lp(x)(
):

15
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We de�ne the subspace Wm;p(x)
0 (
) as the closure of C10 (
) in W

m;p(x)(
) :

W
m;p(x)
0 (
) = C10 (
)

Wm;p(x)(
)

We call H1
0 (
) the closure of C

1
0 (
) in H

1(
),which we also note :

H1
0 (
) = C10 (
)

H1(
)
= W 1;2

0 (
)

From [35].we know that Wm;p(x)(
) can be equipped with the norm kukWm;p(x)(
) as Banach

spaces,where

kukWm;p(x)(
) =
X
j�j�m

kD�ukLp(x)(
)

According to [36] and Theorem 1.9 in Section 2,we already have

Theorem 1.15 ([26]).Wm;p(x)(
) is separable and re�exive.

Theorem 1.16 ([44]) When p� > 1,the function spaces W 1;p(x)
0 (
) is re�exive uniformly con-

vex Banach spaces.Moreover,for any measurable bounded exponent p,the spaces W 1;p(x)
0 (
) is

separable

An immediate consequence of Theorem 1.7

Theorem 1.17 ([26]).Assume that p1(x),p2(x) 2 L1+ (
).If p1(x) � p2(x),then Wm;p2(x)(
)

can be imbedded into Wm;p1(x)(
) continuously.

Now let us generalize the well known Sobolev imbedding theorem ofWm;p(
) toWm;p(x)(
).We

have

Theorem 1.18 ([26]).Let p,q 2 C(
) and p,q 2 L1+ (
).Assume that

mp (x) < n; q(x) <
np(x)

n�mp(x)
;8x 2 
:

Then there is a continuous and compact imbedding Wm;p(x)(
)! Lq(x)(
).

Remark 1.1 We do not known whether we have the imbedding

Wm;p(x)(
)! Lp
�(x)(
)
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but if the assumption on p(x) is not satis�ed,we cannot have it.

Example 1.2 Let 
 = fx = (x1; x2) : 0 < x1 < 1; 0 < x2 < 1g � R2,p(x) = 1 + x2,u(x) =

(2 + x2)
1=(1+x2); then we have u(x) 2 W 1;p(x)(
) and p�(x) = 2(1 � x2)=(1 � x2).It is easy to

test that u =2 Lp�(x)(
).

1.4 Maximum principle.

The maximum principle is one of the most useful and best known tools employed in the study of

partial di¤erential equations.The maximum principle enables us to obtain information about the

uniqueness,approximation,boundedness and symmetry of the solution,the bounds for the �rst

eigenvalue,for quantities of physical interest (maximum stress,the torsional sti¤ness,electrostatic

capacity,charge density etc),the necessary conditions of solvability for some boundary value

problems,etc.

The �rst subsection specializes the maximum principle for partial di¤erential equations to

the one variable case.We present the one dimensional classical maximum principle and a new

extension.In subsection two,we present the classical maximum principle of Hopf for elliptic

operators and some possible extensions

1.4.1 The one dimensional case

The one dimensional maximum principle represents a generalization of the following simple

result: Let the smooth function u satisfy the inequality u
00 � 0 in 
 = (�; �).Then the maximum

of u in 
 occurs on @
 = f�; �g (on the boundary of 
),i.e.,

max



u = maxfu(�); u(�)g:

Theorem 1.19 (one dimensional weak maximum principle) ([16]) Let u 2 C2(
)\C0(
)

be a nonconstant function satisfying Lu � u
00
+ b(x)u

0 � 0 in 
,with b bounded in closed subin-

tervals of 
:Then,

max



u = max
@


u:

Drawing the graph of a function u satisfying u
00 � 0 (u

00 6= 0) reveals us the interesting

fact that at a point on @
 (where u attains its maximum),the slope of u is nonzero.More
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precisely,du
dn
> 0 at such a point.Here d

dn
denotes the outward derivative on @
,i.e.,

du

dn
(�) = �u0(�); du

dn
(�) = u

0
(�):

The next theorem is an extension of this result:

Theorem 1.20 (one dimensional strong maximum principle) ([16]).Let u 2 C2(
) \

C0(
) be a nonconstant function satisfying Lu � u
00
+ b(x)u

0
+ c(x)u � 0 in 
,with b and c

bounded in closed subintervals of 
 and c � 0 in 
.Then a nonnegative maximum can occur

only on @
,and du=dn > 0 there.If c � 0 in 
 then,u takes its maximum on @
 and du=dn > 0

there.

The following simple counterexample shows that we have to impose some restrictions to c:

The function u(x) = e�x sin x satis�es

Lu � u
00
+ 2u

0
+ 3u � 0 in 
 = (0; �).

1.4.2 The n dimensional case

In this subection,we treat the n dimensional variants of results presented in section 1,some

possible extensions for nonlinear equations and for equations for higher order as well as their

applications.We consider the linear operator (summation convention is assumed,i.e.,summation

from 1 to n is understood on repeated indices)

Lu = aij(x)uiju+ bi(x)ui + c(x)u; aij(x) = aji(x);

where x = (x1; xn) 2 
,
 is a bounded domain (unless otherwise stated) of Bn,n � 1 and

ui =
@u

@xi
; uij =

@2u

@xi@xj

The operator L is called elliptic at a point x 2 
 if the matrix [aij(x)] is positive,i.e.,if �(x)

and �(x) denote respectively the minimum and maximum eigenvalues of [aij(x)],then

0 < �(x)j�j2 � aij(x)�i�j � �(x)j�j2;

for all � = (�1; �n) 2 Bn � f0g.If � � 0,then L is elliptic in 
,If �=� is bounded in 
,then L is

called uniformly elliptic in 
:

18



Chapter 1. Concepts about Lebesgue and Sobolev spaces with
variable exponents.

Theorem 1.21 (weak maximum principle) ([29],Theorem 3.1).Let L be elliptic in 
.Suppose

that jbij=� < +1 in 
,i = 1,n.If Lu � 0 in 
,c = 0 in 
 and u 2 C2(
) \ C0(
),then the

maximum of u in 
 is achieved on @
,that is:

max



u = max
@


u

Remark 1.2 Theorem 1.20 holds under the weaker hypothesis: the matrix [[aij] is nonnegative

and the ratio jbkj=akk is locally bounded for some k 2 f1; ng:

Theorem 1.22 (the strong maximum principle of E. Hopf ) ([34])Let L be uniformly elliptic,c =

0 and Lu � 0 in 
 (not necessarily bounded),where u 2 C2 Then,if u attains its maximum in the

interior of 
,then u is constant.If c � 0 and c=� is bounded then u cannot attain a nonnegative

maximum in the interior of 
,unless u is constant.

1.5 Eigenvalue problem.

De�nition 1.2 (an eigenvalue) We say that u 2 W 1;p
0 (
) ; u 6= 0,is an eigenfunction of the

operator �4pu if Z



jrujp�2ru:r'dx = �

Z



jujp�2 u:'dx (1.22)

for all ' 2 C10 (
).The corresponding real number � is called eigenvalue.

Let �1 de�ned by

�1 = inf
u2W 1;p

0 (
);u 6=0

Z



jrujp dx

Z



jujp dx
(1.23)

Equivalent

�1 = inf

8<:
Z



jrujp dx;
Z



jujp dx = 1; u 2 W 1;p
0 (
) ; u 6= 0

9=;
�1 is the �rst eigenvalue of the p-Laplacian operator with zero Dirichlet conditions at the

boundary.
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Lemma 1.2 �1 is isolated,then there exists � > 0 such that in an interval (�1; �1 + �),there

does not exist another eigenvalue of (1.22)

Lemma 1.3 a) Let p � 2,then for all �1; �2 2 Rn

j�2j
p � j�1j

p + p j�1j
p�2 h�1; �2 � �1i+ C (p) j�1 � �2j

p ;

b) Let p < 2,then for all �1; �2 2 Rn

j�2j
p � j�1j

p + p j�1j
p�2 h�1; �2 � �1i+ C (p)

j�1 � �2j
p

(j�2j+ j�1j)
2�p ;

where C(p) is a component dependent only on p.

Lemma 1.4 The �rst eigenvalue �1is simple.i.e if u:v are two eigenfunctions associated with

�1,then,there exists k such that: u = kv

Lemma 1.5 Let u be an eigenfunction associated with the eigenvalue �1,then u does not change

sign on 
,moreover if u 2 C1;�,then it does not vanish on 
:
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Chapter 2. Existence of positive weak solutions for a class of
Kirrcho¤ elliptic systems with multiple parameters.

2.1 Introduction.

In this chapter,we consider the following system of di¤erential equations8>>><>>>:
�A

�R


jruj2dx

�
�u=�1� (x) f (v)+�1� (x)h (u) ; in 
;

�B
�R


jrvj2dx

�
�v=�2 (x) g (u)+�2� (x) � (v) ; in 
;

u=v= 0; on @
;

(2.1)

where 
 � RN (N � 3) is a bounded smooth domain with C2 boundary @
.

A,B : R+ ! R+ are continuous functions,�; �; ; � 2 C
�


�
,�1; �2; �1,and �2 are nonnegative

parameters.

Since the �rst equation in (2.1) contains an integral over 
,it is no longer a pointwise

identity; therefore it is often called nonlocal problem.This problem models several physical and

biological systems,where u describes a process which depends on the average of itself,such as

the population density,see [56].

In recent years,problems involving Kirchho¤ type operators have been studied in many

papers,we refer to ([4 - 9],in which the authors have used di¤erent methods to get the existence

of solutions for (2.1) in the single equation case.In the papers ([48]; [56]),Z.Zhang et al.studied

the existence of nontrivial singn-changing solutions for system (2.1) where A (t)=B (t)= 1 via

sub-supersolution method.Our work is motivated by the recent results in ([6],[7],[28],[37]).In

the papers [7] (Theorem 2),Azzouz and Bensedik studied the existence of a positive solution

for the nonlocal problem of the form8<: �M
�R


jruj2dx

�
�u=jujp�2u+�f (x) ; in 
;

u= 0; on @
;
(2.2)

where 
 is a bounded smooth domain in RN ; N � 3 and p> 1,i:e.the nonlinear term at in�nity.f

is a sign-changing function.Using the sub-supersolution method combining a comparison prin-

ciple introduced in [6],the authors established the existence of a positive solution for (2.2) where

the parameter �> 0 is small enough.In the present chapter,we consider system (2.1) in the case

when the nonlinearities are � sublinear�at in�nity,see the condition (H3).We are inspired by

the ideas in the interesting paper [28],in which the authors considered system (2.1) in the case

A (t)=B (t)= 1.More precisely,under suitable conditions on f ,g,we shall show that system (2.1)

has a positive solution for �>�� large enough.To our best knowledge,this is a new research topic
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for nonlocal problems,see [37].In current chapter,motivated by previous works in ([7] and [28])

and by using sub-super solutions method,we study the existence of weak positive solution for

a class of Kirrcho¤ elliptic systems in bounded domains with multiple parameters.

2.2 De�nitions and theories

Lemma 2.1 (Comparison principle) [6]Assume that M : R+ ! R+ is a continuous and

increasing function satisfying

M(s) > m0; for all s � s0: (2.3)

Assume that u; v are two non-negative functions such that8<: �M
�R


jruj2dx

�
�u � �M

�R


jrvj2dx

�
�v; in 
;

u = v = 0; on @
:
(2.4)

Then

u � v ,in 


Proof

Suppose further that the function H(t) = tM(t2),t � 0 is an increasing on R+:We follow

along the lines of Alves�work in [6].Multiplying both sides of the inequality by v and u and

integrating,we get
M(k u k2) k u k2

M(k v k2) � (u; v) � M(k v k2) k v k2
M(k u k2)

and so

M(k u k2) k u k�M(k v k2) k v k

i.e

H(k u k) � H(k v k):

Since H is increasing,we obtain

k u k�k v k

Then

M(k u k2) �M(k v k2) (2.5)
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Because M is nonincreasing.On the other hand,by application of the maximum principle to

(2.2),we get

M(k u k2)u �M(k v k2)v:

This with (2.5),yield u � v:This ends the proof

We give the following two de�nitions before we give our main result.

De�nition 2.1 (weak solution) Let (u; v) 2 (H1
0 (
)�H1

0 (
)),(u; v) is said a weak solution

of (2.1) if it satis�es for all (�;  ) 2 (H1
0 (
)�H1

0 (
))8>>>>><>>>>>:
A
�R


jruj2dx

� Z



rur�dx = �1

Z



� (x) f (v)�dx+ �1

Z



� (x)h (u)�dx in 
;

B
�R


jrvj2dx

� Z



rvr dx = �2

Z



 (x) g (u) dx+ �2

Z



� (x) � (v) dx in 
:

De�nition 2.2 (weak subsolution and supersolution) A pair of nonnegative functions (u; v) ; (u; v)

in (H1
0 (
)�H1

0 (
)) are called a weak subsolution and supersolution of (2.1) if they satisfy

(u; v) ; (u; v) = (0; 0) on @
.For all (�;  ) 2 (H1
0 (
)�H1

0 (
)):8>>>>>><>>>>>>:
A

0@Z



jruj2dx

1AZ



rur�dx � �1

Z



� (x) f (v)�dx+ �1

Z



� (x)h (u)�dx in 
;

B

0@Z



jrvj2dx

1AZ



rvr dx � �2

Z



 (x) g (u) dx+ �2

Z



� (x) � (v) dx in 
;

and 8>>>>>><>>>>>>:
A

0@Z



jruj2dx

1AZ



rur�dx � �1

Z



� (x) f (v)�dx+ �1

Z



� (x)h (u)�dx in 
;

B

0@Z



jrvj2dx

1AZ



rvr dx � �2

Z



 (x) g (u) dx+ �2

Z



� (x) � (v) dx in 
:

2.3 Existence of positive weak solutions.

In this section,we shall state and prove the main result of this chapter.Let us assume the

following assumptions
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(H 1 )
A;B : R+ ! R+ are two continuous and increasing functions and there exists

ai; bi> 0; i= 1; 2,such that a1 � A (t) � a2;b1 � B (t) � b2 for all t 2 R+:

(H 2 )
�; �; ; � 2 C

�


�
and for all x 2 


� (x) � �0> 0;� (x) � �0> 0; (x) � 0> 0;� (x) � �0> 0:

(H 3 )

f; g; h; and � are continuous on [0;+1[ ; C1on (0;+1) ; and increasing functions

such that

8<: limt!+1 f (t)= +1; limt!+1 g (t)= +1

limt!+1 h (t)= +1; limt!+1 � (t)= +1

(H 4 ) It holds that limt!+1
f(K(g(t)))

t
= 0; for all K> 0:

(H 5 ) limt!+1
h(t)
t
; limt!+1

�(t)
t
= 0:

Theorem 2.1 ([10])Assume that conditions (H1)� (H5) hold,and M is a nonincreasing func-

tion atisfying (2.3).Then for �1�0 + �1�0 and �20 + �2�0 are large then problem (2.1) has a

large positive weak solution.

Proof

Let � be the �rst eigenvalue of�� with Dirichlet boundary conditions and �1 the corresponding

positive eigenfunction with k�1k= 1:Let k0;m0; �> 0 such that f (t),g (t),h (t) ; � (t) � �k0 for

all t 2 R+ and jr�1j
2���21 � m0 on 
�= fx 2 
:d (x;@
) � �g :For each �1�0+�1�0 and

�20+�2 �0 large,let us de�ne 8<: u=
�
(�1�0+�1�0)k0

2m0a1

�
�21

v=
�
(�20+�2�0)k0

2m0b1

�
�21

;

where a1; b1 are given by the condition (H1).We shall verify that (u; v) is a subsolution of

problem (2.1) for �1�0+�1�0 and �20+�2 �0 large enough.Indeed,let � 2 H1
0 (
) with � � 0
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in 
.By (H1)� (H3),a simple calculation shows that

A
�R


�
jruj2dx

� R

�
ru:r�dx =A

�R

�
jruj2dx

�
(�1�0+�1�0)k0

m0a1

R

�
�1r�1:r�dx

= (�1�0+�1�0)k0
m0a1

A
�R


�
jruj2dx

�
�
nR


�
r�1r (�1�) dx�

R

�
jr�1j

2�dx
o

= (�1�0+�1�0)k0
m0a1

A
�R


�
jruj2dx

� R

�

�
��21�jr�1j

2��dx:
On 
� we have jr�1j

2���21 � m0;then by (H3) : f (v) ; h (u) ; g (u) ; � (v) � k0
m0
that

A
�R


�
jruj2dx

� R

�
rur�dx � (�1�0+�1�0)k0

m0

R

�

�
��21�jr�1j

2��dx
� �1

R

�
� (x) f (v)�dx+�1

R


� (x)h (u)�dx:

(2.6)

Next,on 
n
� we have �1 � r for some r> 0.and therefor by the conditions (H1)� (H3) and

the de�nition of v,it follows that for �1�0+�1�0> 0 large enough.

�1
R


� (x) f (v)�dx+�1

R


� (x)h (u)�dx � (�1�0+�1�0) k0a2m0a1

�
R

n
� �dx

� (�1�0+�1�0) k0
m0a1

A
�R


n
� jruj
2dx
�
:�
R

n
� �dx

� (�1�0+�1�0) k0
m0a1

A
�R


n
� jruj
2dx
�

�
R

n
�

�
��21�jr�1j

2��dx
=A

�R

n
� jruj

2dx
� R


n
� rur�dx

So

�1

Z



� (x) f (v)�dx+�1

Z



� (x)h (u)�dx � A

�Z

n
�

jruj2dx
�Z


n
�
rur�dx (2.7)

Relation (2.6) and (2.7) imply that

A

�Z



jruj2dx
�Z




rur�dx � �1

Z



� (x) f (v)�dx+�1

Z



� (x)h (u)�dx (2.8)

for �1�0+�1�0> 0 large enough and any � 2 H1
0 (
) with � � 0 in 
: Similarly,

B

�Z



jrvj2dx
�Z




rvr dx � �2

Z



 (x) g (u) dx+�2

Z



� (x) � (v) dx (2.9)

for �20+�2�0> 0 large enough and any  2 H1
0 (
) with  � 0 in 
.From (2.8) and (2.9),(u; v)

is a subsolution of problem (2.1).Moreover,we have u> 0 and v> 0 in 
,u! +1 and v ! +1
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as �1�0+�1�0 ! +1 and �20+�2�0 ! +1. Next We shall construct a supersolution of

problem (2.1).Let e be the solution of the following problem8<: ��e= 1 in 


e= 0 on @

(2.10)

Let 8<: u=Ce

v=
�
�2kk1+�2k�k1

b1

�
[g (Ckek1)] e

where e is given by (2.10) and C> 0 is a large positive real number to be chosen later.We shall

verify that (u; v) is a supersolution of problem (2.1) Let � 2 H1
0 (
) with � � 0 in 
.Then we

obtain from (2.10) and the condition (H1) that

A
�R


jruj2dx

� R


ru:r�dx =A

�R


jruj2dx

�
C
R


r!:r�dx

=A
�R


jruj2dx

�
C
R


�dx

� a1C
R


�dx:

By (H4) and (H5),we can choose C large enough so that

a1C � �1k�k1f
�
�2kk1+�2k�k1

b1
g (Ckek1) kek1

�
+�1k�k1h (Ckek1) :

Therefore

A
�R


jruj2dx

� R


ru:r�dx �

h
�1k�k1f

�
�2kk1+�2k�k1

b1
g (Ckek1) kek1

�
+�1k�k1h (Ckek1)

i
�
R


�dx

� �1k�k1
R


f
�h

�2kk1+�2k�k1
b1

i
g (Ckek1) kek1

�
�dx

+�1
R


h (Ckek1)�dx

� �1
R


� (x) f (v)�dx+�1

R


� (x)h (u)�dx:

So

A

�Z



jruj2dx
�Z




ru:r�dx � �1

Z



� (x) f (v)�dx+�1

Z



� (x)h (u)�dx: (2.11)

27



Chapter 2. Existence of positive weak solutions for a class of
Kirrcho¤ elliptic systems with multiple parameters.

Also

B
�R


jrvj2dx

� R


rvr dx � (�2kk1+�2k�k1)

R


g (Ckek1) dx

=�2
R


 (x) g (u) dx+�2

R


� (x) g (Ckek1) dx

(2.12)

Again by (H4) and (H5) for C large enough we have

g (Ckek1) � �

�
(�2kk1+�2k�k1)

b1
g (Ckek1) kek1

�
� � (v) : (2.13)

From (2.12) and (2.13),we have

B

�Z



jrvj2dx
�Z




rvr dx � �2

Z



 (x) g (u) dx+�2

Z



� (x) � (v) dx: (2.14)

From (2.11) and (2.14) we have(u; v) is a subsolution of problem (2.1) with u � u and v � v

for C large.To obtain a weak solution of problem (2.1) we shall use the arguments by Azzouz

and Bensedik [7] (observe that f ,g,h,and � does not depend on x).For this purpose,we de�ne

a sequence (un ; vn) 2 (H1
0 (
)�H1

0 (
)) as follows: u0:=u; v0=v and (un; vn) is the unique

solution of the system8>>><>>>:
�A

�R


jrunj2dx

�
�un=�1� (x) f (vn�1)+�1� (x)h (un�1) in 
;

�B
�R


jrvnj2dx

�
�vn=�2 (x) g (un�1)+�2� (x) � (vn�1) in 
;

un=vn= 0 on @
:

(2.15)

Problem (2.15) is (A;B)�linear in the sense that,if (un�1; vn�1) 2 (H1
0 (
)�H1

0 (
)) is a

given,the right hand sides of (2.15) is independent of un; vn:SetA (t)=tA (t2),B (t)=tB (t2).Then

since A (R)=R; B (R)=R,f (vn�1),h (un�1) ; g (un�1),and � (vn�1) 2 L2 (
),we deduce from a

result in [6] that system (2.15) has a unique solution (un; vn) 2 (H1
0 (
)�H1

0 (
)) :By using

(2.15) and the fact that (u0; v0) is a supersolution of (2.1),we have8<: �A
�R


jru0j2dx

�
�u0 � �1� (x) f (v0)+�1� (x)h (u0)= �A

�R


jru1j2dx

�
�u1;

�B
�R


jrv0j2dx

�
�v0 � �2 (x) g (u0)+�2� (x) � (v0)= �B

�R


jrv1j dx

�
�v1;
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and by Lemma 2.1,u0 � u1 and v0 � v1.Also,since u0 � u,v0 � v and the monotonicity of

f ,h,g,and � one has

�A
�R


jru1j2dx

�
�u1 =�1� (x) f (v0)+�1� (x)h (u0)

� �1� (x) f (v)+�1� (x)h (u)

� �A
�R


jruj2dx

�
�u;

�B
�R


jrv1j2dx

�
�v1 =�2 (x) g (u0)+�2� (x) � (v0)

� �2 (x) g (u)+�2� (x) � (v)

� �B
�R


jrvj2dx

�
�v;

from which,according to Lemma 2.1,u1 � u,v1 � v.for u2; v2 we write

�A
�R


jru1j2dx

�
�u1 =�1� (x) f (v0)+�1� (x)h (u0)

� �1� (x) f (v1)+�1� (x)h (u0)

= �A
�R


jru2j2dx

�
�u2;

and
�B

�R


jrv1j dx

�
�v1 =�2 (x) g (u0)+�2� (x) � (v0)

� �1� (x) g (u1)+�2� (x) � (v1)

= �B
�R


jrv2j2dx

�
�v2;

and then u1 � u2,v1 � v2.Similarly,u2 � u and v2 � v because

�A
�R


jru2j2dx

�
�u2 =�1� (x) f (v1)+�1� (x)h (u1)

� �1� (x) f (v)+�1� (x)h (u)

� �A
�R


jruj2dx

�
�u

�B
�R


jrv2j2dx

�
�v2 =�2 (x) g (u1)+�2� (x) � (v1)

� �2 (x) g (u)+�2� (x) � (v)

� �B
�R


jrvj2dx

�
�v

Repeating this argument we get a bounded monotone sequence (un ; vn) 2 (H1
0 (
)�H1

0 (
))

satisfying

u=u0 � u1 � u2 � : : : � un � : : : � u> 0 (2.16)

v=v0 � v1 � v2 � ::: � vn � ::: � v> 0 (2.17)
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Using the continuity of the functions f; h,g,and � and the de�nition of the sequences un ; vn ;there

exist constants Ci> 0,i= 1; :::; 4 independent of n such that

jf (vn�1)j � C1; jh (un�1)j � C2; jg (un�1)j � C3 (2.18)

and j� (un�1)j � C4 for all n:From (2.18),multiplying the �rst equation of (2.15) by un,integrating,using

the H
::
older inequality we can show that

a1
R


jrunj2dx � A

�R


jrunj2dx

� R


jrunj2dx

=�1
R


� (x) f (vn�1)undx+�1

R


� (x)h (un�1)undx

� �1k�k1
R


jf (vn�1)j junj dx+�1k�k1

R


jh (un�1)j junj dx

� C1�1
R


junj dx+C2�1

R


junj dx � C5kunkH1

0 (
)

or

kunkH1
0 (
)

� C5;8n 2 N (2.19)

where C5> 0 is a constant independent of n.Similarly,there exist C6> 0 independent of n such

that

kvnkH1
0 (
)

� C6;8n 2 N: (2.20)

From (2.19) and (2.20),we infer that (un; vn) has a subsequence which weakly converges in

H1
0 (
;R2) to a limit (u; v) with the properties u � u > 0 and v � v > 0.Being monotone

and also using a standard regularity argument,(un; vn) converges itself to (u; v).Now,letting

n ! +1 in (2.17),we deduce that (u; v) is a positive solution of system (2.1).The proof of

theorem is now completed.
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Chapter 3. Existence of positive solutions for nonlocal elliptic
systems.

3.1 Introduction

The study of di¤erential equations and variational problems with nonstandard p(x)�growth

conditions is a new and interesting topic.It arises from nonlinear elasticity theory,electrorheological

�uids,etc.(see [2],[8],[12]).Many existence results have been obtained on this kind of problems.In

[14],[20],[24],[22],[23],X.L.Fan et al.studied the regularity of solutions for di¤erential equations

with nonstandard p(x)-growth conditions.

In this chapter,we are interested in the p(x)-Kirchho¤ systems of the form

8>>><>>>:
�M

�R



1
p(x)
jrujp(x)dx

�
�p(x)u=�

p(x) [�1a (x) f (v)+�1c (x)h (u)] in 
;

�M
�R



1
p(x)
jrvjp(x)dx

�
�p(x)v=�

p(x) [�2b (x) g (u)+�2d (x) � (v)] in 
;

u=v= 0 on@
;

(3.1)

where 
 � RN is a bounded smooth domain with C2 boundary @
; 1 <p 2 C1
�


�
is a func-

tions with 1 <p�:=inf
p (x) � p+:=sup
p (x)<1;and �p(x)u=div
�
jrujp(x)�2ru

�
is called

p(x)�Laplacian,and M
�R



1
p(x)
jrujp(x)dx

�
is called the Kirchho¤ operator where it satis�es

the condition

(H1) M : [0;+1)! [m0;1] is a continuous and increasing function with m0> 0:

�; �1; �2; �1;and �2 are positive parameters,and f;g;h;� are monotone functions in [0;+1[

such that

lim
u!+1

f (u)= lim
u!+1

g (u)= lim
u!+1

h (u)= lim
u!+1

� (u)= +1

and satisfying some natural growth condition at u=1:

In this chapter,motivated by the ideas introduced in ([5]) and the properties of Kirchho¤

type operators in [33],we study the existence of positive solutions for system (3.1) by using

the sub- and super solutions techniques.To our best knowledge,this is a new research topic for

nonlocal problems.The remainder of this chapter is organized as follows.In Section 2,we present

properties of p(x)�Kirchho¤�Laplace operator.In Section 3 is devoted to state and prove the

main result.

3.2 Properties of p(x)�Kirchho¤ �Laplace operator

In this section,we discuss the p(x)�Kirchho¤�Laplace operator
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De�nition 3.1 (di¤erentiable in the Gateaux sense) LetX and Y be two normalized vec-

tor spaces and let fbe a map of an open U of E with values in F .We say that f is di¤erentiable

in the Gateaux sense at point a of U if there exists an continuous linear application L: E �!

F such that,for all v of E

lim
t!0+

1

t
(f (a+ tv)� f(a)) = L (v)

L is then called the Gateaux di¤erential of f at a.

This notion is weaker than the usual notion of di¤erentiability,also called di¤erentiability

in the sense of Fréchet.Indeed,if f is di¤erentiable in a in the sense of Fréchet and if L is its

di¤erential,then

9" : R �! R;
X�!0

" (x) �! 0;8 v 2 E;
����1t (f (a+ tv)� f (a))� L (v)

���� � " (jtj)

If f is di¤erentiable in a in the sense of Gateaux,and if L is its di¤erential,then

8 v 2 E; 9"v : R �! R;
X�!0

"v (x) �! 0;

����1t (f (a+ tv)� f (a))� L (v)

���� � "v (jtj)

This notion of di¤erentiability was introduced by Gateaux in 1913 in order to establish a theory

of integration in in�nite dimension.For each u 2 X,de�ne

�(u) = cM �Z



1

p(x)
jrujp(x)dx

�

where cM (t) =
R t
0
M (s) ds.For simplicity we write X = W 1p(x)(
),denote by un * u and

un ! u the weak convergence and strong convergence of sequence fung in X,respectively.It is

obvious that the functional � is a Gâteaux di¤erentiable whose Gâteaux derivative at the point

u 2 X is the functional �
0
(u) 2 X�,given by

h�0(u); vi =M

�Z



1

p(x)
jrujp(x)dx

�Z



jrujp(x)�2rurv(x)dx:

h.,.i is the duality pairing between X and X�:

Therefore,the p(x) Kirchho¤ Laplace operator is the derivative operator of � in the weak

sense.We have the following properties about the derivative operator of �:
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Lemma 3.1 ([15])

(i) �
0
: X ! X� is a continuous,bounded and strictly monotone operator.

(ii) �
0
is a mapping of type (S+),i.e.if un * u in X and

limn�!1h�
0
(un)� �

0
(u),un � ui � 0,then un ! u in X:

(iii) �
0
(u) : X ! X� is a homeomorphism.

Proof

(i) It is obvious that �
0
is continuous and bounded sinceM is continuous.For any u,v 2 X with

u 6= v,without loss of generality,we may assume that

Z



1

p(x)
jrujp(x)dx �

Z



1

p(x)
jrvjp(x)dx

(otherwise,changing the role of u and v in the following proof).Therefore,we have

M

�Z



1

p(x)
jrujp(x)dx

�
�M

�Z



1

p(x)
jrvjp(x)dx

�
(3.2)

since M(t) is a monotone function.Using Cauchy�s inequality,we have

rurv � jrujjrvj � jruj2 + jrvj2
2

(3.3)

Using (3.3),we can easily obtain that

Z



jrujp(x)dx�
Z



jrujp(x)�2rurvdx �
Z



jrujp(x)�2
2

�
jruj2 � jrvj2

�
dx (3.4)

and Z



jrvjp(x)dx�
Z



jrvjp(x)�2rurvdx �
Z



jrvjp(x)�2
2

�
jrvj2 � jruj2

�
dx (3.5)

Moreover,by Young�s inequality,we obtain

Z



jrujp(x)�2jrvj2dx �
Z



�
p(x)� 2
p(x)

jrujp(x) + 2

p(x)
jrvjp(x)

�
dx (3.6)

and Z



jrvjp(x)�2jruj2dx �
Z



�
p(x)� 2
p(x)

jrvjp(x) + 2

p(x)
jrujp(x)

�
dx (3.7)

34



Chapter 3. Existence of positive solutions for nonlocal elliptic
systems.

From (3.6) and (3.7),we can see that

Z



jrujp(x)�2jrvj2dx+
Z



jrvjp(x)�2jruj2dx �
Z



�
jrujp(x) + jrvjp(x)

�
dx (3.8)

Therefore,using (3.2),(3.4),(3.5) and (3.8),we obtain

h�0(u)� �
0
(v); u� vi = h�0(u); ui � h�0(u); vi � h�0(v); ui+ h�0(v); vi

=M
�R



1
p(x)
jrujp(x)dx

� R


jrujp(x)dx

�M
�R



1
p(x)
jrujp(x)dx

� R


jrujp(x)�2rurvdx

�M
�R



1
p(x)
jrvjp(x)dx

� R


jrvjp(x)�2rurvdx

+M
�R



1
p(x)
jrvjp(x)dx

� R


jrvjp(x)dx

�M
�R



1
p(x)
jrujp(x)dx

� R


jrujp(x)�2

2
(jruj2 � jrvj2) dx

�M
�R



1
p(x)
jrvp(x)dx

� R


jrvjp(x)�2

2
(jruj2 � jrvj2) dx

�M
�R



1
p(x)
jrvjp(x)dx

� R


jrujp(x)�2

2
(jruj2 � jrvj2) dx

�M
�R



1
p(x)
jrvjp(x)dx

� R


jrvjp(x)�2

2
(jruj2 � jrvj2) dx

�M
�R



1
p(x)
jrvjp(x)dx

�
�
�R


1
2

�
jrujp(x)�2 � jrvjp(x)�2

�
(jruj2 � jrvj2) dx

�
� 0

(3.9)

i.e.�
0
is monotone.We claim that �

0
is strictly monotone.Indeed,if

h�0 (u)� �
0
(v) ; u� vi = 0

then we have Z



�
jrujp(x)�2 � jrvjp(x)�2

� �
jruj2 � jrvj2

�
dx = 0

so jruj = jrvj.Thus,we obtain

h�0(u)� �
0
(v); u� vi = h�0(u); u� vi � h�0(v); u� vi

=M
�R



1
p(x)
(jrujp(x)dx

� �R


jrujp(x)�2 (ru�rv)2dx)

�
= 0

i.e.u � v is a constant.In view of u = v = 0 on @
,we have u � v,which is contrary with

u 6= v.Therefore,h�0(u)� �
0
(v); u� vi > 0.It follows that �0

is a strictly monotone operator in

X:
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(ii) From (i),if un ! u and limn!+1h�
0
(un)� �

0
(u); un � ui � 0 then

lim n!+1h�
0
(un)� �

0
(u); un � ui = 0

In view of (3.9),run converges in measure to ru in 
,so we get a subsequence (which we

still denote by un) satisfying run(x)! u(x),a:e.x 2 
.By Fatou lemma we get

limn!+1

Z



1

p(x)
jrunjp(x)dx �

Z



1

p(x)
jrujp(x)dx (3.10)

From un ! u we havelimn!+1h�
0
(un); un � ui = limn!+1h�

0
(un)� �

0
(u); un � ui =

0 On the other hand,we also have

h�0(un); un � ui =M
�R



1
p(x)
jrunjp(x)dx

� �R


jrunjp(x)dx�

R


jrunjp(x)�2runrudx

�
�M

�R



1
p(x)
jrunjp(x)dx

� �R


jrunjp(x)dx�

R


jrunjp(x)�1rudx

�
�M

�R



1
p(x)
jrunjp(x)dx

� R


jrunjp(x)dx

�M
�R



1
p(x)
jrunjp(x)dx

� R



�
p(x)�1
p(x)

jrunjp(x) + 1
p(x)
jrujp(x)

�
dx

�M
�R



1
p(x)
jrunjp(x)dx

��R



1
p(x)
jrunjp(x)dx�

R



1
p(x)
jrujp(x)dx

�
� m0

�R



1
p(x)
jrunjp(x)dx�

R



1
p(x)
jrujp(x)dx

�
(3.11)

According to (3.10)-(3.11) we obtain

lim
n!+1

Z



1

p(x)
jrunjp(x)dx =

Z



1

p(x)
jrujp(x)dx:

Using the similar method in [25],we have

lim
n!+1

Z



j run �rujp(x)dx = 0 (3.12)

From Theorem 1.4 (See Chapter 1) and (3.12) un ! u,i.e.�
0
is of type (S+).

(iii) It is clear that �
0
is an injection since �

0
is a strictly monotone operator in X:Since

lim
kuk!+1

h�0(u); ui
k u k � lim

kuk!+1

m0

R


jrujp(x)dx
jju k = +1

�
0
is coercive,thus �

0
is a surjection in view of Minty-Browder theorem [49,Theorem

26A].Hence �
0
has an inverse mapping 	 := (�

0
)�1 : X� ! X.Therefore,the continuity
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of 	 is su¢ cient to ensure �
0
to be a homeomorphism.If fn,f 2 X�.fn ! f ,let un =

	(fn),u = 	(f),then �
0
(un) = fn,�

0
(u) = f .So fung is bounded in X.Without loss of

generality,we can assume that un * u.Since fn ! f ,then

lim
n!+1

h�0(un); un � ui = lim
n!+1

hfn; un � ui = 0

Since �
0
is of type (S+),un ! u,so 	 is continuous

Now we give a useful de�nition of the principle of comparison

De�nition 3.2 If u; v 2 W 1;p(x)
0 (
),We say that

�M (I0 (u))�p(x)u � �M (I0 (v))�p(x)v

if for all ' 2 W 1;p(x)
0 (
) with ' � 0

M(I0 (u))

Z



jrujp(x)�2ru:r'dx �M(I0 (v))

Z



jrvjp(x)�2rv:r'dx

Where I0 (u) =
R



1
p(x)

jrujp(x) dx

we give a general principle of sub-supersolution method for the problem (3.1) based on the

regularity results and the comparison principle

Lemma 3.2 (Comparison principle) Let u; v 2 W 1;p(x) (
) and (H1) holds.If

�M(I0 (u))�p(x)u � �M(I0 (v))�p(x)v (3.13)

and (u� v)+ 2 W 1;p(x)
0 (
) then u � v in 


Proof

Taking � = 0 in the proof of Theorem 3.2 of [40].

Lemma 3.3 ([33]).Let (H1) hold.M > 0 and let u be the unique solution of the problem

8<: �M(t) div
�
jrujp(x)�2ru

�
=M in 


u = 0 on @

(3.14)
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Set h = m0p�

2j
j
1
N C0

:whenM � h then juj1 � C�M
1

p��1 and whenM < h then juj1 � C�M
1

p+�1 ,where

C� and C�are positive constants depending p+; p�; N; j
j ; C0 and m0:

Proof

Let u be the solution of (3.14),Lemma 3.2 implies u � 0.For k � 0,set Ak = fx 2 
 : u(x) >

kg.Taking (u� k)+ as a test function in (3.14) and using the Young inequality,we have

R
Ak
jrujp(x) dx = M

M(t)

R
Ak
(u� k)dx � Mj
j

1
N C0

m0p�

R
Ak
"p(x)jrujp(x)dx

+MjAkj1=NC0
m0(p+)

0

R
Ak
"�p

0
(x)dx

(3.15)

WhenM� h,taking

" =

�
m0p

�

2Mj
j1=NC0

�1=p�
=

�
h

M

�1=p�
;

then " � 1 and

Mj
j1=N C0
m0p�

Z
Ak

"p(x)jrujp(x)dx � Mj
j1=N C0
m0p�

"p
�
Z
Ak

jrujp(x) dx = 1

2

Z
Ak

jrujp(x) dx:

Consequently,from this and (3.15),it follows that

Z
Ak

jrujp(x) dx � 2MjAkj1=N C0
m0(p+)

Z
Ak

"�p
0
(x)dx � 2MC0"

�(p�)0

m0(p+)
jAkj1+1=N (3.16)

From (3.15) and (3.16),we have

Z
Ak

(u� k)dx =
M(t)

M

Z
Ak

jrujp(x)dx �M

 
2MMC0"

�(p�)0

p�m0(p+)
0 j
j1+1=N

!
2C0"

�(p�)0

m0(p+)
0 jAkj1+1=N

(3.17)

By Lemma 5.1 in( [39],Chapter 2) and (3.17) implies that

juj1 �  (N + 1) j
j1=N (3.18)

Where

 =M

 
2MC0"

�(p�)0

p�m0(p+)
j
j1+1=N

!
2C0"

�(p�)0

m0(p+)

From (3.17) and (3.18),we obtain

juj1 � C�M1=(p��1)
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Where

C� =
(N + 1)(2C0)

(p�)
0

(p+)0m
(p�)
0

0�)(p�)=p�
j
j(p�)

0
=NM

 
(2MC0)

(p�)
0

p�(p+)m
(p�)
0

0�)(p�)
0=p�

j
j(p�)
0
=N

!

WhenM < h,taking

" =

�
m0p

�

2Mj
j1=NC0

�1=p+
=

�
h

M

�1=p+
(noting that in this case " > 1) and using arguments similar to those above,we can obtain

juj1 � C�M1=(p+�1)

Where

C� =
(N + 1)(2C0)

(p+)
0

(p+)0m
(p+)
0

0�)(p+)=p+
j
j(p+)

0
=NM

 
(2MC0)

(p+)
0

p�(p+)m
(p+)
0

0�)(p+)
0=p+

j
j(p+)
0
=N

!
:

The proof is complete.

Before going to the next lemma,we will use the notation d (x;@
) to denote the distance of

x 2 
 to the boundary of 
:Denote d (x)=d (x; @
) and

@
"= fx 2 
:d (x;@
)<":g

From Lemma 14.16 in [29],Since @
 is C2 regularly,there exists a constant � 2 (0; 1) such that

d (x) 2 C2
�
@
3�

�
and jrd (x)j= 1:Denote

v1 (x) =

8>>>><>>>>:
d (x) if d (x)<�;

�+
R d(x)
�


�
2��t
�

� 2
p��1 (�1a1+�1c1)

2
p��1

dt if � � d (x)< 2�;

�+
R 2�
�

�
2��t
�

� 2
p��1 (�1b1+�1d1)

2
p��1

dt if 2� � d (x) :

And

v2 (x) =

8>>>><>>>>:
d (x) if d (x)<�;

�+
R d(x)
�


�
2��t
�

� 2
p��1 (�2a2+�2c2)

2
p��1

dt if � � d (x)< 2�;

� +
R 2�
�

�
2��t
�

� 2
p��1 (�2b2+�2d2)

2
p��1

dt if 2� � d (x) :
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Obviously,0 � v1(x); v2 (x) 2 C1
�


�
:Considering

8<: �M
�R



1
p(x)
jrujp(x)dx

�
�p(x)! (x)=� in 
;

!= 0 on @
:
(3.19)

we have the following result

Lemma 3.4 ([15]).If positive parameter � is large enough and ! is the unique solution of

(3.19).then we have

(i) For any � 2 (0; 1) there exists a positive constant C1 such that C1�
1

p+�1+� � maxx2
 ! (x)

(ii) There exists a positive constant C2 such that maxx2
 ! (x) � C2�
1

p��1 :

3.3 Main Result

Throughout the section,we will assume that:

(H1) M : [0;+1)! [m0;1] is a continuous and increasing function with m0> 0:

(H2) p 2 C1
�


�
and 1 <p� � p+:

(H3)
f; g; h; � : [0;+1[! R are C1,monotone functions such that

limu!+1 f (u)= limu!+1 g (u)= limu!+1 h (u)= limu!+1 � (u)= +1:

(H4) limu!+1

f

 
L(g(u))

1
p��1

!
up��1

= 0; for all L> 0:

(H5) limu!+1
h(u)

up
��1= 0;and limu!+1

�(u)

up
��1= 0:

(H6)

a; b; c; d :
! (0;+1) are continuous functions,such that

a1=minx2
 a (x) ; b1=minx2
 b (x) ; c1=minx2
 c (x) ; d1=minx2
 d (x) ;

a2=maxx2
 a (x) ; b2=maxx2
 b (x) ; c2=maxx2
 c (x) ; d2=maxx2
d (x) :

Before we give the main result,we provide some basic de�nitions as follows

De�nition 3.3 (a weak solution) If u; v 2 W
1;p(x)
0 (
),(u; v) is called a weak solution of

(3:1) if it satis�es for all ' 2 W 1;p(x)
0 (
) :' � 0:8>>>>><>>>>>:

M(I0 (u))

Z



jrujp(x)�2ru:r'dx =
Z



�p(x) [�1a (x) f (v) + �1c (x)h (u)]'dx

M(I0 (v))

Z



jrujp(x)�2rv:r'dx =
Z



�p(x) [�2b (x) g (u) + �2d (x) � (v)]'dx
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De�nition 3.4 (a subsolution and supersolution) We say that (u; v) is called a sub solu-

tion (respectively a super solution) of problem (3.1) if for all ' 2 W 1;p(x)
0 (
) :' � 0:8>>>>><>>>>>:

M(I0 (u))

Z



jrujp(x)�2ru:r'dx � (resp �)
Z



�p(x) [�1a (x) f (v) + �1c (x)h (u)]'dx

M(I0 (v))

Z



jrujp(x)�2rv:r'dx � (resp �)
Z



�p(x) [�2b (x) g (u) + �2d (x) � (v)]'dx

Theorem 3.1 ([41]) Assume that the conditions (H1)� (H6) are satis�ed.Then problem (3.1)

has a positive solution when � is large enough.

Proof

We shall establish Theorem 3.1 by constructing a positive subsolution (�1; �2) and supersolution

(z1; z2) of (3.1).such that �1 � z1 and �2 � z2:that is,(�1; �2) and (z1; z2) satis�es8>>>>><>>>>>:
M(I0 (�1))

Z



jr�1j
p(x)�2r�1:rqdx �

Z



�p(x) [�1a (x) f (�2)+�1c (x)h (�1)] qdx;

M(I0 (�2))

Z



jr�2j
p(x)�2r�2:rqdx �

Z



�p(x) [�2b (x) g (�1)+�2d (x) � (�2)] qdx

and 8>>>>><>>>>>:
M(I0 (z1))

Z



jrz1jp(x)�2rz1:rqdx �
Z



�p(x) [�1a (x) f (z2)+�1c (x)h (z1)] qdx;

M(I0 (z2))

Z



jrz2jp(x)�2rz2:rqdx �
Z



�p(x) [�2b (x) g (z1)+�2d (x) � (z2)] qdx;

for all q 2 W 1;p(x)
0 (
) with q � 0:According to the sub-super solution method for p (x)-Kirchho¤

type equations (see [33]),then problem (3.1) has a positive solution.

Step 1.We will construct a subsolution of ( 3.1).Let � 2 (0;�) is small enough.Denote

�1 (x) =

8>>>><>>>>:
ekd(x)�1 ,d (x)<�

ek��1+
R d(x)
�

kek�
�
2��t
2���

� 2
p��1 (�1a1+�1c1)

2
p��1

dt ;� � d (x)< 2�

ek��1+
R 2�
�
kek�

�
2��t
2���

� 2
p��1 (�1a1+�1c1)

2
p��1

dt ; 2� � d (x)
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�2 (x) =

8>>>><>>>>:
ekd(x)�1 ,d (x)<�

ek��1+
R d(x)
�

kek�
�
2��t
2���

� 2
p��1 (�2b1+�2d1)

2
p��1

dt ;� � d (x)< 2�

ek��1+
R 2�
�
kek�

�
2��t
2���

� 2
p��1 (�2b1+�2d1)

2
p��1

dt ; 2� � d (x)

It is easy to see that �1; �2 2 C1
�


�
;Denote

�= min
n

infp(x)�1
4(supjrp(x)j+1) ; 1

o
�= min f�1f (0)+�1h (0) ; �2g (0)+�2� (0) ;�1g

By some simple computations we can obtain

��p(x)�1

8>>>>>><>>>>>>:

�k
�
ekd(x)

�p(x)�1 �
(p (x)�1)+

�
d (x)+ lnk

k

�
rprd+�d

k

�
,d (x)<�8<:

h
1

2���
2(p(x)�1)
p��1 �

�
2��d
2���

� h�
lnkek�

� �
2��d
2���

� 2
p��1rprd+�d

ii
�
�
Kek�

�p(x)�1� 2��d
2���

� 2(p(x)�1)
p��1 �1

(�1a1+�1c1)
;� � d (x)< 2�

0 ; 2� � d (x)

��p(x)�2

8>>>>>><>>>>>>:

�k
�
ekd(x)

�p(x)�1 �
(p (x)�1)+

�
d (x)+ lnk

k

�
rprd+�d

k

�
,d (x)<�8<:

h
1

2���
2(p(x)�1)
p��1 �

�
2��d
2���

� h�
lnkek�

� �
2��d
2���

� 2
p��1rprd+�d

ii
�
�
Kek�

�p(x)�1� 2��d
2���

� 2(p(x)�1)
p��1 �1

(�2b1+�2d1)
;� � d (x)< 2�

0 ; 2� � d (x)

from (H4) there exists a positive constant L> 1 such that

f (L�1) � 1;g (L�1) � 1;h (L�1) � 1;� (L�1) � 1:

Let �= 1
k
lnL,then

�k= lnL (3.20)

If k is su¢ ciently large,from (3.20),we have

��p(x)�1 � �kp(x)�;d (x)<� (3.21)

Let ��
m0
=k�;then

�kp(x)� � ��p(x) �
m0

:
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From(3.21),we have

�M (I0 (�1))�p(x)� �M (I0 (�1))�
p(x) �

m0

� �p(x)� � �p(x) (�1a1f (0)+�1c1h (0))

� �p(x) (�1a (x) f (�2)+�1c (x)h (�1))

; d (x)<� (3.22)

Since d (x) 2 C2
�
@
3�

�
,there exists a positive constant C3 such that

�M (I0 (�1))�p(x)�1 � m0

�
Kek�

�p(x)�1� 2��d
2���

� 2(p(x)�1)
p��1 �1

(�1+�1)

�
�

1
2���

2(p(x)�1)
p��1 �

�
2��d
2���

� h�
lnkek�

� �
2��d
2���

� 2
p��1rprd+�d

i�
� C3m0

�
Kek�

�p(x)�1
(�1a1+�1c1) lnk

; � � d (x)< 2�

If k is su¢ ciently large,let ��
m0
=k�,then we have

C3m0

�
Kek�

�p(x)�1
(�1a1+�1c1) lnk =C3m0(KL)

p(x)�1 (�1a1+�1c1) lnk

� �p(x) (�1a1+�1c1)

Then

�M (I0 (�1))�p(x)�1 � �p(x) (�1a1+�1c1) ,� � d (x)< 2� (3.23)

Since �1 (x) ; �2 (x) and f; h are monotone,when � is large enough we have

�M
�R



1
p(x)
jrujp(x)dx

�
�p(x)�1 � �p(x) (�1a (x) f (�2)+�1c (x)h (�1)) ,� � d (x)< 2�

�M (I0 (�1))�p(x)�1= 0 � �p(x) (�1a1+�1c1)

� �p(x) (�1a (x) f (�2)+�1c (x)h (�1))
; 2� � d (x) (3.24)

Combining (3.22),(3.23) and (3.24),we can conclude that

�M (I0 (�1))�p(x)�1 � �p(x) (�1a (x) f (�2)+�1c (x)h (�1)) ; a:e:on 
 (3.25)

Similarly

�M (I0 (�2))�p(x)�2 � �p(x) (�2b (x) g (�1)+�2d (x) � (�2)) ; a:e:on 
 (3.26)

From (3.25) and (3.26),we can see that (�1; �2) is a subsolution of problem (3.1)

43



Chapter 3. Existence of positive solutions for nonlocal elliptic
systems.

Step 2.We will construct a supersolution of problem (3.1).We consider

8>>><>>>:
�M (I0 (z1))�p(x)z1=

�p
+

m0
(�1a2+�1c2)� in 


�M (I0 (z2))�p(x)z2=
�p
+

m0
(�2b2+�2d2) g

�
�
�
�p

+

(�1a2+�1c2)�
��

in 


z1=z2= 0 on @


where

�=�
�
�p

+

(�1a2+�1c2)�
�
=max

x2

z1 (x) :

We shall prove that (z1; z2) is a supersolution of problem (3.1).

For q 2 W 1;p(x)
0 (
) with q � 0,it is easy to see that

M(I0 (z2))
jrz2j
p(x)�2rz2:rqdx = 1

m0
M(I0 (z2))

Z



�
p+

(�2b2+�2d2)

� g
�
�
�
�
p+

(�1a2+�1c2)�
��

�
Z



�
p+

�2b (x) g (z1) qdx

+

Z



�
p+

�2d (x) g (� (� p+ (�1+�1)�))qdx

(3.27)

By (H6),for � large enough,using Lemma 3.4,we have

g
�
�
�
�
p+

(�1a2+�1c2)�
��

� �

�
C2

h
�
p+

(�2b2+�2d2) g
�
�
�
�
p+

(�1a2+�1c2)�
��i 1

p��1
�

� � (z2)

(3.28)

Hence

M(I0 (z2))

Z



jrz2jp(x)�2rz2:rqdx�
Z



�
p+

�2b (x) g (z1) qdx+

Z



�
p+

�2d (x) � (z2) qdx (3.29)

Also

M(I0 (z1))

Z



jrz1j
p(x)�2

rz1:rqdx = 1
m0
M(I0 (z1))

Z



�
p+

(�1a2+�1c2)�qdx

�
Z



�
p+

(�1a2+�1c2)�qdx:
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By (H4); (H5) and Lemma 3.4,when � is su¢ ciently large,we have

(�1a2+�1c2)� � 1

�
p+

h
1
C2
�
�
�
p+

(�1a2+�1c2)�
�ip��1

� �1h
�
�
�
�
p+

(�1a2+�1c2)�
��

+�1f

�
C2

h
�
p+

(�2b2+�2d2) g
�
�
�
�
p+

(�1a2+�1c2)�
��i 1

p��1
�
:

Then

M(I0 (z1))

Z



jrz1jp(x)�2rz1:rqdx�
Z



�
p+

�1a (x) f (z2) qdx+

Z



�
p+

�1c (x)h (z1) qdx (3.30)

According to (3.29) and (3.30),we can conclude that (z1; z2) is a supersolution of problem (3.1)

It only remains to prove that �1 � z1 and �2 � z2:

In the de�nition of v1 (x),let

=
2

�

�
max



�1 (x)+max


jr�1j (x)

�
:

We claim that

�1 (x) � v1 (x) ;8x 2 
: (3.31)

From the de�nition of v1,it is easy to see that

�1 (x) � 2max



�1 (x) � v1 (x) ;when d (x)=�

and

�1 (x) � 2max



�1 (x) � v1 (x) ;when d (x) � �:

�1 (x) � v1 (x) ;when d (x)<�:

Since v1��1 2 C1
�
@
�

�
;there exists a point x0 2 @
� such that

v1 (x0)��1 (x0)= min
x02@
�

(v1 (x0)��1 (x0)) :

If v1 (x0)��1 (x0)< 0;it is easy to see that 0 < d (x)<� and then

rv1 (x0)�r�1 (x0)= 0:
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From the de�nition of v1,we have

jrv1 (x0)j==
2

�

�
max



�1 (x0)+max


jr�1j (x0)

�
> jr�1j (x0) :

It is a contradiction to

rv1 (x0)�r�1 (x0)= 0:

Thus (3.31) is valid.

Obviously,there exists a positive constant C3 such that

 � C3�:

Since d (x) 2 C2
�
@
3�

�
,according to the proof of Lemma 3.4,there exists a positive constant

C4 such that

M (I0 (v1))��p(x)v1 (x) � C�
p(x)�1+� � C4�

p(x)�1+�:a:e in 
;where � 2 (0; 1) :

When � � �p
+

is large enough,we have

��p(x)v1 (x) � �:

According to the comparison principle,we have

v1 (x) � ! (x) ;8x 2 
: (3.32)

From (3.31) and (3.32) when � � �p
+

and � � 1 is su¢ ciently large,we have

�1 (x) � v1 (x) � ! (x) ;8x 2 
: (3.33)

According to the comparison principle,when � is large enough,we have

v1 (x) � ! (x) � z1 (x) ;8x 2 
:
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Combining the de�nition of v1 (x) and (3.33),it is easy to see that

�1 (x) � v1 (x) � ! (x) � z1 (x) ;8x 2 
;

when � � 1 and � is large enough.

from Lemma 3.4 we can see that � (� p+ (�1a2+�1c2)�) is large enough,then

�p+

m0

(�2b2+�2d2) g (� (�p
+ (�1a2+�1c2)�))

is large enough.Similarly,we have �2 � z2.This completes the proof of Theorem 3.1
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Conclusion

The sub-supersolution method has allowed us to prove that there is at least one weak solu-

tion,but the uniqueness of the solution remains an open problem
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Prospect

Fractional Sobolev spaces are well known since the beginning of the last century,especially in

the framework of harmonic analysis.More recently,a large amount of papers were written on

problems involving the fractional di¤usion (� M)s,0 < s < 1

the authors tried to see which results �survive� when the Laplacian is replaced by the

fractional Laplacian.Then,they introduced a suitable functional space to study an equation in

which a fractional variable exponent operator is present

In the future,we will,in our turn,generalize the results obtained in our research into Sobolev

Fractional Spaces,especially depending on the reference
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