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Abstract

In this memoir, we study some common fixed point theorems using the concept of
a-admissible pair of mappings generalized by Aydi et al. [3] which are generalizing the
definition of a-admissible mappings. Authors Based on the previous results, defined
generalized a-implicit contractions in the framework of partial metric spaces, then they
contribute some common fixed point results for such contractions. Also gave some
consequences and corollaries from their obtained results. In the end, we present a
synthesis of dynamic programming before show an application involving their theorem,

and some examples are presented making effective the new concepts and results.



Résumé
Dans ce mémoire, nous étudions quelques théorémes de point fixe populaires en utilisant
le concept de paire a-admissible pour les applications généralisées par Aydi et al. [3] qui
généralisent la définition des appellations a-admissibles. Sur la base des résultats
précédents, les auteurs ont défini des contractions a-implicites généralisées sous des
espaces métriques partiels, puis ont contribué & certains résultats de point fixe communs
obtenus a partir de la contraction précédente. Il a également donné quelques résultats et
les résultats obtenus a partir de ses résultats. la fin, nous présentons une syntheése de la
programmation dynamique avant de montrer une application qui inclut sa théorie, et

quelques exemples sont donnés qui rendent ses nouveaux concepts et résultats efficaces
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Introduction

Banach contraction principle is the most important utile in nonlinear analysis which is
proved by Stefan Banach [4] in 1922. His valuable work developed in two ways
generalizing the metric spaces or the contractions conditions by imposing fewer

conditions for example. As a result of those generalizations, so many metric spaces have
been introduced which are uniformly convex Banach spaces, strictly convex Banach
spaces, cone metric spaces, pseudo metric spaces, B-metric spaces, fuzzy metric spaces,
etc.

In this memoir, we consider another generalization of a metric space, called partial
metric space. This notion was introduced by Matthews (see e.g. [21]) to solve some
difficulties in theory field for computer science. After Matthews (1994) enormous works
were done in partial metric spaces. Several authors have demonstrated the existence and
uniqueness of fixed points which also provide applications, see for example Bucatin et al
(2009), Aydi, Karapinar and Shantanawi (2011), Oltra and Valero (2004), Altun, Sola,
and Simsek (2010), Ciric, Samet, Aydi, and Vetro (2011), Pragadeeswarar and Marudai
(2014), Altun and Erduran (2011) and Romaguera (2009).In Pragadeeswarar and
Marudai (2014) they established the fixed point theory of the contraction map which
satisfies the logical expression in partial metric spaces. Common fixed point theory
generally includes conditions on permutation, continuity, completeness, Popa [24, 26]
introduced implicit functions which are proving fruitful due to their unifying power
besides admitting new contraction conditions, from the application of common fixed
point theorem we discuss here dynamic programming which introduced by H.Aydi.
Our memoir consists of three chapters, in the first one, we present some concepts and
preliminaries that we needed in the following chapter.

In the second chapter, we provide the essentials of our memoir where we study and
detail Aydi’s paper.

In the last chapter, we introduce some concepts of dynamic programming and show an

application of the main results studies.



Chapter 1

Notions and preliminaries

1.1 Metric spaces

In this chapter we present some concepts and preliminaries that we need in the following

chapter.
Definition 1.1.1 [32] A metric on a set X is a function d : X x X — R such that

MO0 :0 <d(x,y) for all z,y € X (nonnegativity),

M1: if © = y then d(z,y) = 0 (equality implies indistancy),
M?2: if d(x,y) = 0 then = y (indistancy implies equality),
M3: d(z,y) = d(y,z) (symmetry), and

M4: d(x,z) < d(x,y) + d(y, z) for all x,y, z € X.(triangularity).

Example 1.1.1 [32] Let d(z,y) = |x — y|, (R, d) is a metric space. The first two condi-
tions are obviously satisfied, and the third follows from the ordinary triangle inequality
for real numbers:

d(z,y) = |z =yl =z = 2) + (2 =y)| < |z = 2| + |z —y| = d(z, 2) + d(2,y)

Example 1.1.2 [32] Let d(z,y) = |x —y|, (R",d) is a metric space. The first two condi-
tions are obviously satisfied, and the third follows from the triangle inequality for vectors

the same way as above :

d(z,y) = |z =yl =z = 2) + (2 =y)| < |z = 2| + |z —y| = d(z, 2) + d(z,y)



1.1.1 Sequences and Cauchy sequences

A sequence in a metric space X is an infinite list
T1,T2,T3,...

of points in X. (More formally, a sequence in X can be defined as a function
f N — X but we will not need this point of view here.) Note that the terms in the
sequence do not have to be distinct; in particular, for any z € X we can talk about
the constant sequence

T, T, %, ...

We will use the notation (z,) for the sequence whose n-th term is x,,.

Definition 1.1.2 A sequence (z,) in a metric space (X,d) is said to converge to v € X

if for every e > 0 there exists N € N such that
d(zp,z) <€ for n> N.
Example 1.1.3 In any metric space, a constant sequence x,x,x,... converges to x.

Example 1.1.4 This is a standard elementary example. Consider the sequence (%) mn
R with the standard metric. Intuitively the terms of this sequence are getting closer and

closer to 0~ let us prove that the sequence indeed converges to 0.

Let ¢ > 0. We want to find an index N where for n > N we have

1
— < €.
n

It is the Archimedian Property that tells us what N to choose: pick N € N such
that % < €. Then if n > N we have

< < €.

1
N

S|

We conclude that the sequence (%) converges to 0.

Definition 1.1.3 A sequence{x,} in a metric space (X, d) is said to be a Cauchy sequence

if for every € > 0 there is an integer N such that d(x,,x,,) < € for all n,m > N.



Let E be a nonempty subset of a metric space (X, d), and let S = {d(p,q) : p,q € E}.
The diameter of F is sup S.
If {x,} is a sequence in X and if Ey consists of the points zy, zx41,. .., it is clear

that {z,} is a Cauchy sequence if and only if

lim diamEy =0
N—o00

there is many types of metric spaces for exempes: cone metric spaces, pseudo metric

spaces, B-metric spaces, fuzzy metric spaces,partial metric spaces etc.

1.2 Partial metric spaces

Partial metric spaces, introduced by Matthews [1, 2] ,are a generalization of the notion
of the metric space in which the definition of metric, the condition d(x,z) = 0 is

replaced by the condition d (z,z) < d(z,y) .
Definition 1.2.1 [23]/A partial metric or p-metric is a function p: U > — R such that,

(P1) Va,y € Uz =y < p(z,x) = p(r,y) = p(y, y)
(P2) Vx,y € U p(x,z) < p(z,y)

(P3) Va,y € U, p(z,y) = p(y, x)

(P4) Va,y,2 € U,p(z,z) < p(x,y) + p(y, 2) — p(y, y)

Example 1.2.1 [25] Let a functionp : Rt xRT — R* be defined by p(x,y) = max{z,y}
for any z,y € R*. Then, (RT,p)is a partial metric space where the self-distance for any

point x € RT is its value itself.

Example 1.2.2 [25] Consider a function p : R~ x R™ — R* defined by p(z,y) =
—man(z,y)for any v,y € R™. The pair (R™,p) is a partial metric space for which p
18 called theusual partial metric on R™ and where the self-distance for any point x € R~

18 1ts absolute value.

Definition 1.2.2 [3/ Each partial metric p on X generates a Ty topology T, on X which
has as a base the family of open p-balls {B,(x,¢),x € X,e > 0}, where B,(x,¢) = {y €
X :p(x,y) < plz,z)+¢€} forallz € X ande > 0.



Remark 1.2.1 If p is a partial metric on X, then the function p* : X x X — R™ given
by
p(z,y) = 2p(z,y) — p(z,7) — p(y,y), (1)

s a metric on X

1.2.1 Cauchy sequences and convergent sequences

Definition 1.2.3 A sequence x = {x,} of points in a partial metric space (X,p) is
Cauchy if there exists aw > 0 such that for each € > 0 there exists k such that for all

n,m >k, |p(zn, x,) —al <e.

In other words, z is Cauchy if the numbers p(z,,, x,,) converge to some « as n and m
approach infinity, that is, if lim p(z,,x,) = «. Note that then lim p(z,,z,) = a,
n,m— o0 N—00
and so if (X, p) is a metric space then o = 0.

Lemma 1.2.1 /3] A sequence {x,} is Cauchy in a partial metric space (X,p) if and
only if {x,} is Cauchy in the metric space (X,d,).

Remark 1.2.2 A partial metric space (X, p) is complete if and only if the metric space

(X,d,) is complete. Moreover

lim d,(x,,x) =0 p(zr,z) = im p(x,,z) = Um p(z,, Tm).

n—00 n,m—00

Lemma 1.2.2 [3] Let (X, p) be a partial metric space. Then,

(a) {x.} is a Cauchy sequence in (X, p)if and only if it is a Cauchy sequence in the

metric space (X, p*),

(b) X is complete if and only if the metric space (X,p°)is complete. Furthermore,
lim p*(x,,x) =0 if and only if

n——-+o00

p(z,z) = lim p(zn, ) = lim (T, T

Definition 1.2.4 [3/ A partial metric space (X, d) is said to be complete if every Cauchy

sequences {x,} in X converges to x € X , such that

p(z,x) = lin}r P(Tn, Tm)

10



1.3 Contraction’s concepts

1.3.1 Definition and examples

Definition 1.3.1 [27] (Contraction). Let (X,d) be a complete metric space. A function
f: X — X s called a contraction if there exists k < 1 such that for any x,y € X,

d(f(z), f(y) < kd(z,y).

Ezxzample 1.3.1 [27] Consider the metric space (R,d) where d is the Euclidean distance
metric, i.e. d(z,y) = |v —y| The function f : R — R where f(v) = T +0b is a contraction
if a > 1. In this specific case we can find a fized point. Since a fized means that f(x) = z,

_ . . _ab
we want ¥ = = +b. Solving for x gives us v = .

1.3.2 Applying contractions multiple times

From these examples, we have the reason for assumption that contractions in general

have fixed point. To show that any contraction has a fixed point we will find a point

that should be fixed and prove that point is indeed a fixed point. Let f: X — X be

any contraction. If, for a moment, we believe that all contractions have fixed points,

then f?(x) should have a fixed point since it’s a contraction.

Proposition 1.3.1 [27] Suppose f is contraction. Then f" is also a contraction. Fur-

thermore, if k is the constant for f, k™ s the constant for f ™.

1.3.3 Some types of contractions

Several authors have defined contractual type mappings on a complete metric space X,

which are generalizations of the Banach’s contraction, which have the property that

each such mapping has a unique fixed point. Now we come up with multiple definitions

corresponding to the contractual type.

Definition 1.3.2 /28] Let (X, d) be a complete metric space and T : X — X a mapping.

we say that T is a Rakotch contraction if there is a monotonic and decreasing function

11



a :]0,4+1[— [0, 1] such that, for all z,y € X,z # y;
d(Tz, Ty) < a(d(z,y))d (z,y)

Definition 1.3.3 [18] Let (X,d) be a complete metric space and T : X — X a map-

ping. We say that T is a Kannan contraction if there is a number a, 0 < a < %, such as,

forall x,y € X, x # y;
d(Tz,Ty) < ald(z,Tx) + d(y, Ty)]

Definition 1.3.4 [9] Let (X, d) be a complete metric space and T : X — X a mapping.
we say that T' is a Bianchini contraction if there is a number h,0 < h < 1, such that, for
allz,y € X

d(Tz, Ty) < hmax {d(z,Tx),d(y,Ty)}

Definition 1.3.5 [27] Let (X,d) be a complete metric space and T : X — X a map-
ping. We say that T is a Reich contraction if there are positive numbers a,b,c, satisfy

a+b+c<l,
such that, for all z,y € X,
d(Tz, Ty) < ad(z, Tz) + bd(y, Ty) + cd(z,y)

Definition 1.3.6 [31] Let (X,d) be a complete metric space andT : X — X a mapping.
We say that T is a Sehgal contraction if for all x,y € X ,x # y,

d(Tz,Ty) < mazx{d(z;Tx),d(y,Ty),d(z,y)}

Definition 1.3.7 [13] Let (X, d) be a complete metric space and T : X — X a mapping.

We say that T is a contraction of Zamfirescu if for all x,y € X, v # v,

d(z,Tx) + d(y,Ty) d(z,Ty) + d(y,Tx)
2 ’ 2
Definition 1.3.8 [12] Let A be a self-mapping on a metric space (M,d) and {f;}2_, be

d(Tx, Ty) < mazx {d(% Ty),

a set of Wong (auziliary) functions. We say that A is a Wong type contraction if the
following inequality holds:

d(Ap, Aq) < ard(p, q) + asd(p, Ap) + asd(q, Aq) + asd(p, Aq) + asd(Ap, q)

for any p,q € M with p # ¢ where a; = f;(d(p,q))/d(p, q).

12



1.3.4 Fixed point theorem

We now examine how a familiar theorem from the theory of metric spaces can be

transferred to partial metric spaces.

Definition 1.3.9 [16] For each partial metric space (X,p) a contraction is a function
f:X — X for which there exists a c € [0,1) such that for all x,y in X, p(f(z), f(y)) <
c.p(, y)-

Theorem 1.3.1 (Matthews [11]) For each contraction f over a complete partial metric
space (X, p) there exists a unique x in X such that x = f(x).Also, p(z,x) = 0. Thus the

contraction fixed point theorem is extended to partial metric spaces.

13



Chapter 2

Common fixed point theorem

In this chapter, [3]we examine the work of H. Aydi et al who have provided some
common fixed point theorems regarding generalized a-implicit contractions over partial
metric spaces. As consequences of their obtained ,we show their results that prove five
theorems on partial metric spaces, and give some examples to illustarte their results
and concepts.

Recently, Samet et al. [30] introduced the concept of a-admissible maps.

2.0.5 Implicit relations

Popa [24,26] proved several fixed point theorems that satisfy appropriate implicit re-
lations. To prove these results, Popa considered i) to be the set of all continuous
functions ¢ (t1,ta, ..., ts) : RS — R satisfyies the following conditions:

(1) is non-increasing in variables 5 and tg,

(14) there exists k € (0, 1) such that foru,v > 0 with

(Vo) (u, v, v, u,u +v,0) <0 or

(Vo) (u,v,u,v,0,u+v) <0 implies u < kv,

(3)(u,u,0,0,u,u) > 0, for all u > 0.
Lemma 2.0.1 /3] Let (X, p) be a partial metric space, F': X — X be a given mapping.
Suppose that F is continuous at xo € X. Then, for all sequence {x,} in X such that

T, — xo, we have Fx, — Fux.

14



Popa considered an implicit contraction type condition rather than the usual explicit
contractive conditions.This direction of research has produced a consistent literature
on fixed point, common fixed point and coincidence point theorems in various ambient
spaces.For more details, see [2,7,14,23,25,30]. Now, denote N the set of positive integers
and the set of functions

[0, 00) — [0, 00) satisfying: (1)1 is nondecreasing, (15) > -, 9" (t) < oo for each
t € R*, where ¢ " isthe nth iterate of v .

Definition 2.0.10 [3] Let be the set of all continuous functions F(ty,...,ts) : R°+ — R
such that (F1): F is nondecreasing in variable t; and nonincreasing in variables ts and
te, (F2): There exists hy € ¥ such that for all u,v > 0, F(u,v,v,u,u+ v,u) < 0 implies
u < hy(v),and F(u,v,u,v,u,u+v) <0 implies u < hy(v).

We give the following examples.

Example 2.0.2 F(ty,...,tg) = t; — aty — bty — cty — dts5 — etg, where a,b,c,d,e > 0 such
thata+b+c+2d+e<landa+b+c+d—+2e<1.

Example 2.0.3 F(ty,...,t5) = t; — kmax{ts, ..., ts}, where k € [0, 3).
Example 2.0.4 F(ty,...,lg) = t1 — kmax{ty, 85} where k € [0, 2).

Example 2.0.5 F(t,...,tg) = t; —amax{ts, t3,t4} — (1 —a)[bts + ctg], where b+ 2c¢ and
¢+ 2b are in [0,1).

Definition 2.0.11 For a nonempty set X, let T : X — X and o : X x X — [0,00) be
mappings. We say that the self-mapping T on X is a-admissible if for all x,y € X, we
have

a(z,y) > 1= o(Tz, Ty) > 1. (2)

Many papers distributed with the above concept have been considered to prove some
(common) fixed point results, for example see [1,16,17,19,21]. H. Aydi et al generalized
definition 2.0.13 by introducing a pair of mappings defined in the following.

15



Definition 2.0.12 For a nonempty set X, let A,B: X — X and a : X x X — [0,00)
be mappings. We say that (A, B) is a generalized a-admissible pair if for all z,y € X, we

have

a(z,y) > 1= a(Az,By) > 1 and o(BAz, ABy) > 1. (3)

Remark 2.0.1 If the operator A is invertible such that A = A~! with B = A in definition
2.0.14,we get definition 2.0.13. So the above class of mappings given in Definition 2.0.1}

18 not empty.

Remark 2.0.2 If A is a-admissible, it is obvious that (A, A) is a generalized a-admissible

pair.
We present the following examples.
Example 2.0.6 Take X = {1,2, %} Consider A= B : X — X given by
1
Ar = Br = —.
x
The mappings A and B are well defined and for all z,y € X,

a(Azx, By) = a(Ax, Ay) and o(BAz, ABy) = a(z,y). (4)

Take o : X x X — [0, 00) defined by

a(1,1) = o(1,2) = a(2,1) = a (1, %) —a (% 1) 1,

and 0 otherwise. It is clear that if a(z,y) = 1, we have a(Ax, Ay) = 1. Thus, by

(4), we can say that (A, B) is a generalized a-admissible pair.

Example 2.0.7 Take X = [0,00). Consider the mappings A, B : X — X given by

1 xe€|0,3],
Az = / 0.3] andB:czg
Lifz >3 4

16



Define the mapping a: X x X — [0,00) by

4if z,y € [0,3)],
oz, y) =

% otherwise

First, let z,y € X such that a(z,y) > 1. This implies that z,y € [0,3]. Thus, for
z,y € [0, 3], we have

a(Az, By) = « (1, 2) =4>1,

and

wwtrm - (5004(2)) < (1) 121

Therefore, (A, B) is a generalized a-admissible pair.

Example 2.0.8 Take X = [0,2] and the mappings A, B : X — X :

Ap_ ) wareld, o) s dfee(0d],

r—1ifze (1,2 22 — 2 if v € (1,2].

Consider the mapping a : X x X — [0, 00) given by

(2.1) lLif z,y €[0,1],
afz,y) =
0 otherwise .

Let z,y € X such that a(x,y) > 1. By definition of «, this implies that z,y € [0, 1].
Thus,for z,y € [0, 1], we have

oz(Ax,By)zoz( * Q):L

x+1"2

and

a(BAz, ABy) = a (B(%H),A (g)) ~a (z(xi 5 i 2) —1

Then, (A, B) is a generalized a-admissible pair.

Now, we introduce the concept of generalized a-implicit contractive mappings in

the setting of partial metric spaces.

17



Definition 2.0.13 Let (X,p) be a partial metric space and A,B : X — X be given

mappings.

We say that (A, B) is a generalized a-implicit contractive pair of mappings if there

exist two functions o : X x X — [0,00) and F € I" such that

Fla(z,y)p(Az, By), p(x,y), p(x, Az), ply, By), p(x, By), p(y, Ax)) <0, ()
for all z,y € X. If we take A = B in (5),

Flo(z,y)p(Az, Ay), p(x, y), p(z, Ax), p(y, Ay), p(x, Ay), p(y, Az)) <0, (6)
then we say that A is a generalized a-implicit contractive mapping.

Theorem 2.0.2 Let (X,p) be a complete partial metric space and A, B : X — X be

generalized a-implicit contractive pair of mappings. Suppose that
(i) (A, B) is a generalized a-admissible pair;
(ii) there exists xg € X such that a(zg, Azg) > 1;
(iii) a(BAxz,Ax) > 1for all x € X;
(iv) A and B are continuous on (X, p).
Then there exists u € X such that
p(u, Au) = p(Au, Au), p(u, Bu) = p(Bu, Bu) and p(u,u) =0 (7)
Assume in addition that

(v) a(z,z) > 1 for all z verifying p(z, Az) = p(Az, Az),p(z,Bz) = p(Bz,Bz) and
p(z,2) = 0;

(vi) F satisfies

18



(F): if F(u,0,v,w,u,u) < 0 for all u,v,w > 0, there exists v € [0,1) such that
u < ymaz{v, w}.

Then, v is a common fixed point of A and B, that is,u = Au = Bu.

Proof. In the first step of the proof we will prove that (z,) is a cauchy sequence
in (X, p)

By assumption (ii ), there exists a point zo € X such that a(xg, Azg) > 1. Take

r1 = Axg and x5 = Bx;. By induction, we construct a sequence (x,,) such that
Ton = Bxg,_1and o,1 = Az, Vn = 1,2, ... (8)
We have a(xg, 1) > 1 and since (A, B) is a generalized a-admissible pair, so
axy, ) = a(Axy, Bry) > land a(xg, x3) = a(Bxy, Axe) = a(BAzg, ABzy) > 1.
Similar to above, we obtain
(T, Tny1) > 1 for alln =0,1, ... (9)
On the other hand, by (iii), we have
a(xe, 1) = a(BAxy, Axg) > 1.
Applying again (iii)
a(xy,x3) = a(BAxg, Axg) > 1.
Continuing the same process, we obtain
a(Zop, Ton_1) > lfor all n = 1,2, (10)

We claim that (z,,) is a Cauchy sequence in (X, p).From (5), we have

In (5) we put x9,_2 = and y = xs,_1 , with using (8), we have
F(a(zan—2,Ton-1)p(Ax2, — 2, Bxan_1), p(Tan—2, Ton-1), P(Ton—2, ATop—2),

p($2n—1, Bx2n—1)7p(x2n—2; Bl‘2n—1), p($2n—1, AIzn—2)) <0,

that is,

F(a(zon—2, Ton—1)P(Zan—1, Tan), P(Tan—2, Ton—1), P(Ton—2, Tapn_1)
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7p('r2n—la x2n)7 p($2n—2a x?n)ap(xQn—lv x2n—1)) <0.

Using (9) and (p4) in the fifth variable, we get due to (F1) in the first and fifth variables
F(p(zan-1,T2n), P(T2n—2, Tan-1), P(T2n—2; T2n—1), P(T2n—1, T2n), (11)

P(Tan—2, Tan—1) + P(Tan—1, Tan), P(To2n—1, T2n)) < 0.

By (F2), we obtain
P(Ton—1,T2n) < h1(p(T2n—2, Tan_1)). (12)
Similarly, from (5),puting xs, = = and 3, ; =y with using (8), we have
F(a(xon, Tan—1)p(Axan, Bxan—1), p(Tan, Tan—1), P(Tan, ATay),

p(xQn—ly BxQn—1)7p(-r2n7 BmZn—l)ap(xQn—17 Al’gn)) S 07

that is,
F(O{(ﬂfgn, x2n—l)p($2n+17 x2n)7 p($2na x2n—1)7 p(x2n7 x2n+1)7 (13)

P(Ton—1, Ton), P(Ton, Tan), D(T2n—1, Tont1)) < 0,

By (10) and (F1) in the first variable, we get

F(p(zon+1, Tan), D(Ton, Tan—1), D(Tan, Tant1)s P(Tan—1, Tan), P(Tan, Ton), P(Tan—1, Tont1)) < 0,

(14)
By (p2),

p($2n, wzn) < p(@n, $2n+1) and by (p4),p($2n—1, $2n+1) < p($2n—1, iEQn) + P(l“zn, fE2n+1)~

So applying (F1) in the fifth and sixth variables, we find that
F(p($2n+1, I2n),p($2n, x2n—l)7p(x2n> $2n+1),p($2n—1, $2n), (15)

P(Ton, Tant1), P(Tan—1, Tan) + D(T2n, Tant1)) < 0,

By (F2), we obtain

P(Ton, Tans1) < hi(p(T2n-1, Tan)). (16)
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Combining (16) and (12), we obtain

P(Tn, Tpi1) < hi(p(xy_1,2,)) foralln = 1,2, ... (17)
We deduce

(T, Tni1) < AP (p(xo, 1)) for alln =0,1,2, ... (18)
Since h; € ¥ , we get

lim p(xnymn-‘rl) =0. (19)

n—oo

Now, we shall prove that {z,} is a Cauchy sequence in the partial metric space (X, p)

P(Tn, Tngr) < P(Tp, Tog1) + D(Tns1, Tnga) + - + D(Tntk—1, Tntk) (20)
< (Y R 4 BT (p(o, 1))
<

i i (p(xo, 21))-
Since hy € ¥ , the above implies that

P(Tp, k) — 0 as n — oo, for all k. (21)
Since p*(z,y) < 2p(x,y) for all z,y € X, so

lim p*(x,,, k) = 0.

n—oo

It follows that {z,} is a Cauchy sequence in the metric space (X, p®).Since (X,p) is
complete, then from Lemma 1.2.2, (X, p°) is a complete metric space.Therefore, the
sequence {x,} converges to some u € X, that is, lim p*(x,,u) = 0.

From the properties (b) in Lemma 1.2.2, we have

plu,u) = lim p(zy,u) = lim p(zn, Tn)
By (21), we get
p(u,u) = tim p(wn,u) =l p(zn, &m) = 0. (22)
This implies that
Tim p(22n11, 1) = m p(zons2,u) = 0. (23)
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By (8), it means that
lim p(Azg,, u) = lim p(Bxopi1,u) = 0. (24)

n—oo n—oo

We shall prove that u = Au = Bu, that is, u is a common fixed point of A and B.

Using z9,11 — w in (X, p) and p(u,u) = 0 in Lemma 1.2, we have
Tim p(29n11, Au) = p(u, Au). (25)
By continuity of A and zs, — u in (X, p), we have
nll—>r£lo (Toni1, Au) = nh—{%op(A%"’ Au) = p(Au, Au). (26)
From (25) and (26), we obtain
p(u, Au) = p(Au, Au). (27)
Using continuity of B and similarly to (27), we get
p(u, Bu) = p(Bu, Bu). (28)
Thus, from (22), (27) and (28), (7) holds. So by condition (v), we have
a(u,u) > 1.
Applying (5) forz =y =u
F(a(u,u)p(Au, Bu), p(u,u), p(u, Au), p(u, Bu), p(u, Bu), p(u, Au)) <0,
ie,
F(a(u,u)p(Au, Bu),0, p(u, Au), p(u, Bu), p(u, Bu), p(u, Au)) < 0.
Due to the fact that a(u,u) > 1 and by (F1) in the first variable, we get
F(p(Au, Bu), 0, p(u, Au), p(u, Bu), p(u, Bu), p(u, Au)) < 0.

Remember that p(u, Bu) = p(Bu, Bu) < p(Au, Bu) and p(u, Au) = p(Au, Au) <
p(Au, Bu), so applying (F1) in the fifth and sixth variables, we obtain

F(p(Au, Bu), 0, p(u, Au), p(u, Bu), p(Au, Bu), p(Au, Bu)) < 0.
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Since F satisfies property (F7), so
p(Au, Bu) < ymaz{p(u, Au), p(u, Bu)} < yp(Au, Bu),

which holds unless p(Au, Bu) = 0. Thus, Au = Bu. We deduce from (27) and (28)
that p(u, Au) = 0 = p(u, Bu) so

u = Au = Bu

.This completes the proof.
If we take A = B in Theorem 2.0.3, we get the following result. =

Corollary 2.0.1 Let (X,p) be a complete partial metric space and A : X — X a given
mapping. Assume there exists F' € I' such that

F(a(z,y)p(Az, Ay), p(z,y), p(x, Az), p(y, Ay), p(z, Ay), py, Az)) <0

for all z,y € X. Suppose that
(i) A is an a-admissible;
(ii) there exists xy € X such that a(zg, Azg) > 1;
(iii) A is continuous on (X, p).

Then there exists u € X such that

p(u, Au) = p(Au, Au),and p(u,u) = 0. (29)

Assume in addition that
(iv) a(z,z) > 1 for all z verifying p(z, Az) = p(Az, Az) and p(z, z) = 0;
(v) F satisfies

(F) if F(u,0,v,w,u,u) < 0 for all u,v,w > 0, there exists v € [0,1) such that
u < ymaz{v, w}.

Then, u is a fixed point of A, that is, u = Au.

Proof. The proof follows from the lines in the proof of Theorem 2.0.3, except that
we do need hypothesis (iii) of Theorem 2.0.3.Considering the metric case in Theorem

2.0.3, we have m
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Corollary 2.0.2 Let (X,d) be a complete metric space and A,B : X — X be given

mappings.
Suppose there exists ' € I' such that
F(a(z,y)d(Az, By), d(x,y), d(x, Az), d(y, By), d(z, By), d(y, Ar)) < 0,
for all x,y € X. Suppose that

(i) (A, B) is a generalized a-admissible pair;

(ii) there exists xy € X such that a(zg, Azg) > 1;

(iii) a(BAx,Ax) > 1for all x € X;

(iv) A and B are continuous on (X, d).

Then there exists © € X such that ©u = Au = Bu.

Proof. Due to conditions (i)—(iv), there exists v € X such that from Corollary
2.0.1, (7) becomes
u = Au = Bu,

that is, u is a common fixed point of A and B. Here, we do not need conditions (v)

and (vi) given in Theorem 2.0.3. =
Corollary 2.0.3 Let (X, d) be a complete metric space and A : X — X a given mapping.
Assume there exists F' € I" such that
Fla(z,y)d(Az, Ay), d(z, y), d(x, Ax), d(y, Ay), d(z, Ay), d(y, Ar)) <0
for all =,y € X. Suppose that
(i) A is an a-admissible mapping;
(ii) there exists xy € X such that a(zg, Azg) > 1;

(iii) A is continuous on (X, d).
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Then there exists © € X such that v = Au.

Proof. Due to conditions (i)—(iii), there exists u € X such that from Theorem

2.0.3, (29) becomes

Au=u

When replacing the continuity of 7" on (X, p) by the continuity of 7" on (X, p®),
the conditions (v) and (vi) of Theorem 2.0.3 are omitted and we naturally state the

following result.

Theorem 2.0.3 Let (X,p) be a complete partial metric space and A, B : X — X be a

generalized a-implicit contractive pair of mappings. Suppose that
(i) (A, B) is a generalized a-admissible pair;

(ii) there exists g € X such that a(zg, Azg) > 1;

(iii) a(BAx,Ax) > 1for all x € X;

(iv) A and B are continuous on (X, p®).

Then there exists u € X such that u is a common fixed point of A and B, that is,
u = Au = Bu.
Analogously, we can derive the following result by letting A = B in Theorem 2.0.4.

Corollary 2.0.4 Let (X,p) be a complete partial metric space and A : X — X a given
mapping. Assume there exists F' € I' such that
Fla(z, y)p(Az, Ay), p(x, y), p(z, Az), p(y, Ay), p(z, Ay), py, Az)) <0
for all x,y € X. Suppose that
(i) A is a a-admissible mapping;
(ii) there exists xy € X such that a(zg, Azg) > 1;

(iii) A is continuous on (X, p*).
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Then there exists u € X such that « is a fixed point of A, that is, u = Au.
Taking the operator F' presented by Example 2.0.4 in Theorem 2.0.4, we have

Corollary 2.0.5 Let (X,p) be a complete partial metric space and A, B : X — X satis-
fying

a(z,y)p(Az, By) < kmax{p(z,y), p(z, Az), ply, By), p(x, By), p(y, Az)}  (30)
where k € [0, 3). Suppose that

(i) (A, B) is a generalized a-admissible pair;

(ii) there exists o € X such that a(zg, Azg) > 1;

(iii) a(BAz,Az) > 1for all x € X;

(iv) A and B are continuous on (X, p®).

Then there exists u € X such that u is a common fixed point of A and B, that is,
u = Au = Bu.
For A = B, we have the following result.

Corollary 2.0.6 Let (X,p) be a complete partial metric space and A : X — X be a
mapping such that

a(z,y)p(Az, Ay) < kmax{p(z,y), p(z, Ax), p(y, Ay), p(z, Ay), p(y, Az)}  (31)

where k € [0, 3). Suppose that

(i) A is a a-admissible mapping;
(ii) there exists xy € X such that a(zg, Azg) > 1;

(iii) A is continuous on (X, p®).
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Then there exists u € X such that v is a fixed point of A and B, that is, u = Au.

Note that in Theorem 2.0.3, the continuity hypothesis of F' is not required. But this
hypothesis is essential for Theorem 2.0.5. In the next result, we drop the continuity
hypothesis of A and B and we replace it by the following:

(H) if {x,} is a sequence in X such that a(z,,x,+1) > 1 and a(x,11,2,) > 1 for
all n and z,, — x € X as n — o0, then there exists a subsequence {x, )} of {z,} such
that a(@pr),z) > 1 and

a(z, zn) > 1 for all k.

Theorem 2.0.4 Let (X,p) be a complete partial metric space and A, B : X — X be

generalized a-implicit contractive pair of mappings. Suppose that
(i) (A, B) is a generalized a-admissible pair;

(ii) there exists xy € X such that a(zg, Azg) > 1;

(iii) a(BAx, Az) > 1 for all z € X

(iv) (H) is satisfied.

Then there exists a u € X such that © = Au = Bu. We also have p(u,u) = 0.

Proof. Following the proof of Theorem 2.0.3, the sequence {x, }defined by (8) is
Cauchy and converges to some u € X in (X, p). Remember that (9) and (10) hold, so
from condition (iv), there exists a subsequence {x, )} of {x,} such that a(za, @), u) > 1
and o(u, Tank)—1) > 1 for all k. We shall show that u = Au = Bu.

Taking © = %,k and y = u in (5)

F(a(z2nk), w)p(ATonw), Bu), p(Tonk), w), P(Tangk) s ATonk)),

p(uv Bu)vp(m%z(k)a BU),p(U, AxQn(k))) S 0.

Having o(22n k), w) > 1, so by (F1) in the first variable, we have
F(p(x2n(k)+17 Bu)ap(xén(k)a U), p($2n(k)7 :UZn(k)—Q—l)?

p(u7 Bu)vp(x?n(k)v Bu),p(u, x2n(k)+1>> < 0.
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Letting k tend to infinity and using continuity of F', we have
F(p(u, Bu),0,0, p(u, Bu), p(u, Bu),0) < 0.
Using (F1) in the sixth variable, we can write
F(p(u, Bu), 0,0, p(u, Bu), p(u, Bu), p(u, Bu)) < 0.

By (F2), it follows that p(u, Bu) < h1(0) = 0, which implies that © = Bu.

Similarly, by taking = u and y = Zanu)—1 in (5), we have
F(a(u, Tongky—1)p(At, Bxonpy-1), p(U, Tan)-1), p(u, Au),
P(Ton(k)y—1, BTonky-1), P(U; BTank)-1), P(Tonmy—1, Au)) < 0.
By (F1) and having o(u, Ton@-1) > 1, we get
F(p(Au, wanr)), P(u; Tan(k)-1), P(t; At), P(Tan(k) -1, Tan(r));
(U, Tan(r)), P(Tan(ry—1, Au)) < 0.
Letting k£ — oo and using continuity of F', we have
F(p(Au,u),0,p(u, Au),0,0, p(u, Au)) < 0.
Using (F1) in the fifth variable, we can write
F(p(Au,u),0,p(u, Au),0, p(u, Au), p(u, Au)) < 0.

By (F2), it follows that p(u, Au) < hy(0) = 0, which implies that u = Au.

Now, consider (H1) if {z,} is a sequence in X such that a(z,,z,1) > 1 for all n
and r, — x € X as n — oo, then there exists a subsequence {,)} of {x,} such that
a(Tppy,r) > 1foral k. m

We state the following corollaries.

Corollary 2.0.7 Let (X,p) be a complete partial metric space and A : X — X a given

mapping. Assume there exists F' € I' such that

F(a(z,y)p(Az, Ay), p(z,y), p(z, Ax), p(y, Ay), p(z, Ay), p(y, Az)) <0
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for all x,y € X. Suppose that
(i) A is an a-admissible mapping;
(ii) there exists g € X such that a(zg, Azg) > 1;
(iv) (H1) is satisfied.

Then there exists a u € X such that u = Au. We also have p(u, u) = 0.
Proof. Taking B = A in Theorem 2.0.5, we get the result. =

Corollary 2.0.8 Let (X,p) be a complete partial metric space and A, B : X — X satis-
fying

a(z,y)p(Az, By) < kmax{p(z,y), p(z, Az), p(y, By), p(x, By), p(y, Az)},
where k € [0, 3). Suppose that

(i) (A,B) is a generalized a-admissible pair;

(ii) there exists g € X such that a(zg, Azg) > 1;

(iii) a(BAx,Ax) > 1for all x € X;

(iv) (H) is satisfied.

Then there exists a u € X such that u = Au = Bu.
Proof. It suffices to consider in Theorem 2.0.5 the operator F' given by Example

204. m

Corollary 2.0.9 Let (X,p) be a complete partial metric space and A : X — X be a
mapping such that

a(z,y)p(Ax, Ay) < kmax{p(z,y), p(z, Az), p(y, Ay), p(x, Ay), p(y, Ar)},

for all z,y € X, where k € [0, %) Suppose that

(i) A is an a-admissible mapping;
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(ii) there exists o € X such that a(zg, Azg) > 1;
(iii) (H1) is satisfied.

Then there exists a u € X such that u = Au.

Proof. It suffices to consider in Corollary 2.0.7 the operator F' given by Example
204 m

The following two corollaries are “ Ciri c [10] type results in the setting of partial

metric spaces.

Corollary 2.0.10 Let (X,p) be a complete partialmetric space and A, B : X — X satis-
fying
p(Az, By) < kmax{p(z,y), p(z, Az), p(y, By), p(z, By), p(y, Az)}

where k € [0, 3). Then there exists a u € X such that u = Au = Bu.

Proof. It suffices to take a(x,y) = 1 in Corollary 2.0.8 =

Corollary 2.0.11 Let (X,p) be a complete partialmetric space and A : X — X be a
mapping such that

p(Az, Ay) < kmax{p(z,y), p(x, Az), p(y, Ay), p(x, Ay), p(y, Ax)}

where k € [0,3). Then there exists a u € X such that u = Au.

Proof. The proof follows easily when taking a(z,y) = 1 in Corollary 2.0.9 m

To prove uniqueness of the common fixed point given in Theorem 2.0.3 (resp. The-
orem 2.0.5),

we need to take the following additional hypotheses.

(U) For all z,y € CF(A, B), we have a(x,y) > 1, where CF(A, B) denotes the set
of common fixed points of A and B,

(F3) : For allt > 0, F(t,t,0,0,t,t) > 0.

Theorem 2.0.5 Adding conditions (U) and (F3) to the hypotheses of Theorem 2.0.3
(resp. Theorem 2.0.5), we obtain that u is the unique common fixed point of A and B.
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Proof. We argue by contradiction, that is, there exist u,v € X such that u = Au =
Bu and v = Av = Bv with u = v. Of course from Theorem 2.0.3 (resp. Theorem

2.0.5), such u and v satisfyp(u,u) = p(v,v) = 0. By (5), we get
ie,
F(a(u, v)p(u, v), p(u, v), p(u, u), p(v, v), p(u, v), p(v,u)) < 0.

Due to the fact that a(u,v) > 1, so by (F1) in the first variable, we get

F<p(u7 U)7p(u7 U)? 07 07p(u7 U>7p(u7 U)) S O'
Since F satisfies property (F3), so it is a contradiction. Hence u =v. =

Theorem 2.0.6 Adding conditions (U) and (F3) to the hypotheses of Corollary 2.0.1
(resp. Corollary 2.0.7), we obtain that u is the unique fixed point of A.

The following two examples illustrate Theorem 2.0.6 where A and B have a unique

common fixed point.

Example 2.0.9 Take X = |0, %] endowed with the complete standard partial metric
p(z,y) = maz{z,y}. Consider the mappings A, B : X — X given by

£ ifxe0,1]

z ifrel0,1
Ar=<{ 3 cand Bx ={ 3 e el

20 — 53 if v € [1,43] r—2ifre[1,2]
Define the mapping a: X x X — [0,00) by

(2.9) Lif z,y € [0,1],
afz,y) =
Ootherwise.

First, let z,y € X such that a(xz,y) > 1. By definition of «, this implies that
z,y € [0,1].
Thus,

a(Az, By) = « <§, §> =1,
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and

a(BAz,ABy) = « (g, %) =1.

Then, (A, B) is a generalized a-admissible pair. For all z € [0, 1], we have

a(BAzx, Ar) = « (g, g) =1

On the other hand, for all z € [1, 3], we have (22 — 2) € [3,1] C [0,1], so

9y — 2
a(BAx,Ax) =« (B 2m—§ ,2x—§ = ’ 3,2&:—? =1.
3 3 3 3

From the two above identities, we get

a(BAz,Az) =1 for all z € X.

If  or y is not in [0,1], a(z,y) = 0, so (30) holds. Now, we restraint to the case
where z,y € [0, 1]. In this case, we have
a(z,y)p(Ar, By) = maX{g, %}

1
= 3 max{z,y} = kp(z,y)

kmax{p(z,y), p(x, Az), p(y, By), p(z, By), p(y, Ax)},

IN

where k = % Then, (30) is satisfied. Moreover, the mappings A and B are
continuous on (X, p®) and there exists o = 0 such that a(zg, Azg) = «(0,0) = 1.
Thus, all hypotheses of Corollary 2.0.5 are verified, so there exists a common fixed
point of A and B. But, since the hypothesis (U) is satisfied, so applying Theorem

2.0.6, the above common fixed point is unique and it is u = 0.
Example 2.0.10 Take X = {0,1,2} and A = B : X — X such that
A0 = B0 =0,Al = Bl =0 and A2 = B2 = 1. (32)
Take o : X x X — [0, 00) defined by

a(0,0) = «(0,1) = a(0,2) = a(1,0) = a(2,0) = 1,
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and 0 otherwise. Clearly, if a(x,y) > 1, so z or y is equal to 0, and then by (32),
in this case we have a(Az, By) = a(Az, Ay) = 1 and

a(BAxz, ABy) = 1.
So (A, B) is a generalized a-admissible pair. Moreover,
a(BAO0, A0) = a(BAL, Al) = a(BA2, A2) = 1.
We have «(0, A0) = 1. Now, we define the partial metric p by

1 1
p(z,y) = ZISC -yl + 5 max{z,y}.

Notice that p(1,1) = 1, so p is not a metric on X. Since p*(z,y) = |z —y|, so (X, p)
is a complete partial metric space.

Going back to Example 1.1, take
F(tl, ceuy t6> = tl — Ct4,

where 0 < ¢ < 1. Therefore the inequality (5) we want to prove becomes

a(z, y)p(Az, By) < cp(y, By). (33)

3

Consider ¢ = s

If z and y are different to 0, we have a(z,y) = 0, so (33) holds. Now, we restraint
to the case where x or y is equal to 0. By symmetry of o and p, it suffices to take the
cases

(x=0,y=1),(x =0,y =2) and (x =y = 0).
Case 1: (x =0,y =1). We have
a(0,1)p(A0, B1) = p(0,0) = 0 < ¢p(1, B1)
Case 2: (x =0,y = 2). We have

0(0,2)p(40, B2) = p(0,1) = § = Jc = ep(2, B2).

33



Case 3: (x =0,y = 0). We have
«(0,0)p(A0, BO) = p(0,0) = 0 = ¢p(0, BO).

Then, (33) is satisfied.
Finally, let {z,} be a sequence in X such that a(x,,z,+1) > 1 and a(z,41,2,) > 1
for all n and z, — x € X as n — o0o. By definition of «, this implies that x,, = 0 or

Tpt1 = 0 for all n, so there exists a subsequence {x,)} such that
a(Tny,x) = 1 and a(z, T,x)) = 1,

that is, the hypothesis (H) is satisfied. Thus, applying Theorem 2.0.5, the mappings
A and B have a common fixed point. Here, the hypothesis (U) also holds. So applying
Theorem 2.0.6,

0 is the unique common fixed point of A and B.
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Chapter 3

Application to dynamic

programming

Dynamic programming [6] is a collection of methods for solving sequential decision
problems. The methods are based on decomposing a multistage problem into a sequence
of interrelated one-stage problems. Fundamental to this decomposition is the principle
of optimality, which was developed by Richard Bellman in the 1950s. Its importance is
that an optimal solution for a multistage problem can be found by solving a functional
equation relating the optimal value for a (t 4+ 1)-stage problem to the optimal value

for a t-stage problem.

3.0.6 Structure of dynamic programming problems

Dynamic programming (DP for short) [8] is the principal method for analysing a large
and diverse class of sequential decision problems. Examples include deterministic and
stochastic optimal control problems with continuous state space, Markov and semi-
Markov decision problems with discrete state space, minimax problems, and sequential
zero-sum games. While the nature of these problems may vary widely, their underlying
structures is very similar. In all cases, there is an underlying mapping that based
on a dynamic system associated with it and the corresponding cost for each stage.
This mapping, the DP operator, provides a compact “mathematical signature” of the

problem. It defines the cost function of policies and the optimal cost function, and it
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provides a convenient shorthand notation for algorithmic description and analysis.

3.0.7 A deterministic optimal control example

To clarify our viewpoint, let us consider the discrete time-specific optimum control

problem described by the system equation

Tki1 :f(xk,uk), k:O,l,.... (11)

Here x; is the state of the system which takes the values in the set X (the state
space), and uy is the control element which takes the values in the set U (the control

space).In stage k, there is a cost

o’ g(we, ur)

incurred when wy, is applied in the case xj , where « is a scalar in (0, 1] that has the
interpretation of the discount factor at v < 1. The controls are chosen as a function
of the current state, subject to a constraint that depends on that state. In particular,
at state x the control is constrained to take values in a given set U(x) C U. Thus we

are interested in optimizing the (nonstationary) set of policies
IT = {pg, g, - Y, € Mk =0,1, ...
where M is the set of functions p : X — U defined by
M = {p|p(z) € U(z),Vz € X.}

The total cost of a policy m = {y, i1, ...} over an infinite number of stages (an
infinite horizon) and starting at an initial state z is the limit superior of the N-step

costs
N-1

Te(xo) = limsup Y~ a¥g (ax, 1y, (1)) , (1.2)

N—)OO
k=0
where the state sequence {x;} is generated by the deterministic system (1.1) under
the policy 7 :
Tpr1 = [ (@, oy (zx)), k=0,1,...
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(We use limit superior rather than limit to cover the case where the limit does not

exist.) The optimal cost function is

J*(x) = infr(x),z € X.

wed

For any policy m = {, i1, .-}, consider the policy m = {uq, ig, ...} and write by
using Eq. (1.2),

‘]ﬂ'(x) =4 (x7MO<$) + OéJm) f<x7ﬂ0(x))'

We have for all z € X

JH(x) = inf {g(z, po(x)) + atm (f (2, po(2))) }

r={j1g.m1 }€TI

= inf {g (x, po(x)) + aﬂilléfnjm (f(z, No(ff)))}

to€M

=l g o) + " (fGo (o)}

The minimization over p, € M can be written as minimization over all u € U(x),

so we can write the preceding equation as

J*(z) = ueu(}fx) {9(z,u) + aJ* (f(z,u))},Vz € X. (1.3)

This equation is an example of Bellman’s equation, which plays a central role in
DP analysis and algorithms. If it can be solved for J*,then a perfect constant policy

{p*, pu*, ...} can be obtained usually by minimizing the right-hand side of each z, i.e.,

p(zr) € argurel}]ia) {9(z,u) + a(J" f(z,u))}, Vo € X. (1.4)

We now note that both Egs. (1.3) and (1.4) can be stated in terms of the expression
H(z,u,J) = g(z,u) + aJf(z,u),z € X,u e U(z).

Defining
(Tpd)(x) = Hx, p(z), J,z € X,

and

(TJ)(z) = inf H(z,u,J)=

inf
uelU(x) neM

(Tpd)(x),x € X,
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we see that Bellman’s equation (1.3) can be written compactly as
J=TJ",

i.e., J* is the fixed point of T" , viewed as a mapping from the set of functions
on X into itself. Moreover, it can be similarly seen that J,, the cost function of the
stationary policy {u, i, ...}, is a fixed point of 7),. In addition, the optimality condition
(1.4) can be stated compactly as

T,..J* =TJ*

We will see later that additional properties, as well as a variety of algorithms for
finding J* can be stated and analyzed using the mappings 1" and 7).

The mappings 7}, can also be used in the context of DP problems with a limited
number of stages (a finite horizon). In particular, for a given policy m = {p, ftq, ...}
and the final cost ayJ(xy) for the state zy at

the end of N stages, consider the N —stage cost function

N-1

Jeon (z0) = aNJ(zy) + Z o g (2, py (1)) - (1.5)
k=0

Then it can be verified by induction that for all initial states xq, we have

J7r7N (Io) == (TMOT,UJ' ce T,uN—lj)(xO)‘ (16)

Here T,0T,1 ... T,~—1 is the composition of the mappings T),0, 1)1, ... Tun—-1 ,i-e., for
all J,
(TMOTM1J>(:E) = T‘/LO(zﬁul‘])(l‘)wr € X,

and more generally
(T - - Tyun—1J) (@) = Tuo(Tpu (- - - (Tyn—1J))) (), x € X,

The finite horizon cost functions J; y of m can be defined in terms of the mappings
Tulct. Eq. (1.6)], and so can the infinite horizon cost function J; :
Jo(x) = limsup(TTp- - - Tun—1J)(z), 2 € X, (1.7)
N—o0

where J is the zero function, J(z) = 0 for allz € X.
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3.0.8 Connection with Fixed Point Methodology

Bellman’s equation (1.3) and the optimality condition (1.4), mentioned in terms of
the mappings T and T, highlight an important point, which is that DP theory is
closely related to the theory of abstract mappings and their fixed points. Analogs of the
Bellman equation, J* = T'J*, optimality conditions, results and other computational
methods are applicable to a large variety of DP models, and can be stated compactly as
described above in terms of the corresponding mappings 7' and 7' . The gains of this
abstraction is greater generality and mathematical vision, as well as a more unified,

economical, and streamlined analysis.

3.0.9 Abstract dynamic programming models
Problem Formulation

In this chapter,H.Aydi et all [3] present an application on dynamic programming.
The existence of solutions of functional equations and system of functional equations
has been studied in dynamic programming using various fixed point theorems. The
reader can refer to [4,5,6] for a more detailed explanation of the background above. In
this chapter, we present their demonstration of the existence of a common solution for
classes of functional equations using Corollary 2.0.10.

Throughout this chapter, we assume that U and V' are Banach spaces,/W C U is a
state space and D C V is a decision space. It is well known that the dynamic program-
ming provides useful tools for mathematical optimization and computer programming
as well.

In particular, we are interested in solving the following two functional equations

arising in dynamic programming:

r(z) = ilelg{g(% y) +G(z,y,r(r(z,y))) —b,x € W, (34)
q(z) = Slelg{g(ﬂf, y) + Q(x,y,q(1(z,y))) —b,x €W, (35)

where b > 0,7 : W x D —-W,g: W xD —-Rand G,Q: W x D xR —R.
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Here,we study the existence of h, € B(W) a common solution of the functional
equations (34) and (35).
Let B(W) denote the set of all the bounded real-valued functions on W. It is well
known that B(W) endowed with the partial metric
pulh, ) = b+ sup|h(x) — K(z)], b, k € BOV). (36)
zeW

is a complete partial metric space.

Now, take the mappings A, B : B(W) — B(W) defined by

A(h)(z) = ilelg{g(x, y) + G(z,y, h(r(z,9))} — bz €W, (37)
and
B(h)(x) = Egg{g(x,y) +Q(z,y, h(r(2,)))} — b,x € W. (38)

Obviously, if the functions g, G and () are bounded then A and B are well-defined.

We will prove the following result.

Theorem 3.0.7 Suppose that there exists k € [0,3) such that for every (z,y) € W x D
and hy, hy € B(W), the inequality

G (2,y, i (7(2,9))) = Qz,y, ha(7 (2, )| < kpp(hi, he)
,holds. Then, A and B have a common fixed point in B(W).

Proof. Let A > 0 be an arbitrary positive real number,x € W and hy, hy € B(W).
Then by (37) and (38), there exist y1,y2 € D such that

A(h)(z) < g(@,y1) + Gz, y1, ha(T(z,91))) — b+ A (39)
B(hs)(z) < g(z,y2) + Q(x, y2, ha(7(2, 42))) — b+ A (40)
A(h1)<I) > g(x,yg) +G(l’,y2,h1(7'($,y2>>) (41)
and
B(h2)(x) = gz, y1) + Qz, y1, ha(T(2, 11)))- (42)
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Then from (39) and (42), it follows easily that

A(hi)(x) = B(hs)()

IN

G(l’, Y1, hl(T(x>y1))) —b+A— Q(wa Y1, hQ(T(x7y1))>
|G(I, Y1, hl(T(x7y1))) - Q(ZL‘, Y1, hQ(T(xa yl)))| + A—1D
S kpb<h1, hg) +A—0b.

IN

Similarly, from (40) and (41), we get
B(ha)(z) — A(h1)(z) < kpy(h1, ha) + A —b.
We deduce from above inequalities that
|A(h1)(z) — B(ha) ()| + b < kpp(hi, he) + A. (43)
Since the inequality (43) is true for anyz € W, then
p(A(h1), B(hs)) < kpp(hi, ha) + A (44)
Again A > 0 is arbitrary, so

po(A(R1), B(h)) < kpy(ha, he) < kmax{py(h1, ha), pp(h1, A1), po(ha, Bha), py(hi, Bha), py(ha, Ahy)}.
(45)
So Corollary 2.0.10 is applicable. Consequently, the mappings A and B have a common
fixed point, that is, the functional equations (34) and (35) has a common solution

h. € B(W). m
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