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 ملخص

 باستخدام مشتركةال الثابتة النقطة نظريات بعض ةسادرقمنا ب ، ةالمذكر هذه في

 تعريف تعمم التي. Aydi et al بواسطة لمعممةا الزوجي  alpha_admissible  مفهوم

alpha_admissible .تقلص عرفوا السابقة، النتائج إلى استنادًا المؤلفون 

alpha_𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡    لنقاطا نتائج بعض برهنوا ثم ، الجزئية المترية الفضاءات فيالمعممة 

وتأكد  حققت والمبرهنات التي النتائج بعض واأعط كما. لتقلصاتا هذه لمثل مشتركةال الثابتة

 ناميكيةالدي البرمجة نقدمنا ملخص ع النهاية، في. عليها الحصول تم التي النتائج صحة مدى

 تجعل التي الأمثلة بعض كما طرحنا ،المقال المدروسة نظري يحقق تطبيق عرض قبل

 واضحة. الجديدة والنتائج المفاهيم



Abstract
In this memoir, we study some common �xed point theorems using the concept of

�-admissible pair of mappings generalized by Aydi et al. [3] which are generalizing the

de�nition of �-admissible mappings. Authors Based on the previous results, de�ned

generalized �-implicit contractions in the framework of partial metric spaces, then they

contribute some common �xed point results for such contractions. Also gave some

consequences and corollaries from their obtained results. In the end, we present a

synthesis of dynamic programming before show an application involving their theorem,

and some examples are presented making e¤ective the new concepts and results.



Résumé
Dans ce mémoire, nous étudions quelques théorèmes de point �xe populaires en utilisant

le concept de paire �-admissible pour les applications généralisées par Aydi et al. [3] qui

généralisent la dé�nition des appellations �-admissibles. Sur la base des résultats

précédents, les auteurs ont dé�ni des contractions �-implicites généralisées sous des

espaces métriques partiels, puis ont contribué à certains résultats de point �xe communs

obtenus à partir de la contraction précédente. Il a également donné quelques résultats et

les résultats obtenus à partir de ses résultats. la �n, nous présentons une synthèse de la

programmation dynamique avant de montrer une application qui inclut sa théorie, et

quelques exemples sont donnés qui rendent ses nouveaux concepts et résultats e¢ caces
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Introduction
Banach contraction principle is the most important utile in nonlinear analysis which is

proved by Stefan Banach [4] in 1922. His valuable work developed in two ways

generalizing the metric spaces or the contractions conditions by imposing fewer

conditions for example. As a result of those generalizations, so many metric spaces have

been introduced which are uniformly convex Banach spaces, strictly convex Banach

spaces, cone metric spaces, pseudo metric spaces, B-metric spaces, fuzzy metric spaces,

etc.

In this memoir, we consider another generalization of a metric space, called partial

metric space. This notion was introduced by Matthews (see e.g. [21]) to solve some

di¢ culties in theory �eld for computer science. After Matthews (1994) enormous works

were done in partial metric spaces. Several authors have demonstrated the existence and

uniqueness of �xed points which also provide applications, see for example Bucatin et al

(2009), Aydi, Karapinar and Shantanawi (2011), Oltra and Valero (2004), Altun, Sola,

and Simsek (2010), Ciric, Samet, Aydi, and Vetro (2011), Pragadeeswarar and Marudai

(2014), Altun and Erduran (2011) and Romaguera (2009).In Pragadeeswarar and

Marudai (2014) they established the �xed point theory of the contraction map which

satis�es the logical expression in partial metric spaces. Common �xed point theory

generally includes conditions on permutation, continuity, completeness, Popa [24, 26]

introduced implicit functions which are proving fruitful due to their unifying power

besides admitting new contraction conditions, from the application of common �xed

point theorem we discuss here dynamic programming which introduced by H.Aydi.

Our memoir consists of three chapters, in the �rst one, we present some concepts and

preliminaries that we needed in the following chapter.

In the second chapter, we provide the essentials of our memoir where we study and

detail Aydi�s paper.

In the last chapter, we introduce some concepts of dynamic programming and show an

application of the main results studies.



Chapter 1

Notions and preliminaries

1.1 Metric spaces

In this chapter we present some concepts and preliminaries that we need in the following

chapter.

De�nition 1.1.1 [32] A metric on a set X is a function d : X �X ! R such that

M0 : 0 � d(x; y) for all x; y 2 X (nonnegativity),

M1: if x = y then d(x; y) = 0 (equality implies indistancy),

M2: if d(x; y) = 0 then x = y (indistancy implies equality),

M3: d(x; y) = d(y; x) (symmetry), and

M4: d(x; z) � d(x; y) + d(y; z) for all x; y; z 2 X.(triangularity).

Example 1.1.1 [32] Let d(x; y) = jx � yj; (R; d) is a metric space. The �rst two condi-
tions are obviously satis�ed, and the third follows from the ordinary triangle inequality

for real numbers:

d(x; y) = jx� yj = j(x� z) + (z � y)j � jx� zj+ jz � yj = d(x; z) + d(z; y)

Example 1.1.2 [32] Let d(x; y) = jx� yj; (Rn; d) is a metric space. The �rst two condi-
tions are obviously satis�ed, and the third follows from the triangle inequality for vectors

the same way as above :

d(x; y) = jx� yj = j(x� z) + (z � y)j � jx� zj+ jz � yj = d(x; z) + d(z; y)

7



1.1.1 Sequences and Cauchy sequences

A sequence in a metric space X is an in�nite list

x1; x2; x3; : : :

of points in X. (More formally, a sequence in X can be de�ned as a function

f : N! X but we will not need this point of view here.) Note that the terms in the

sequence do not have to be distinct; in particular, for any x 2 X we can talk about

the constant sequence

x; x; x; : : :

We will use the notation (xn) for the sequence whose n-th term is xn.

De�nition 1.1.2 A sequence (xn) in a metric space (X; d) is said to converge to x 2 X
if for every � > 0 there exists N 2 N such that

d(xn; x) < � for n � N:

Example 1.1.3 In any metric space, a constant sequence x; x; x; : : : converges to x.

Example 1.1.4 This is a standard elementary example. Consider the sequence
�
1
n

�
in

R with the standard metric. Intuitively the terms of this sequence are getting closer and

closer to 0�let us prove that the sequence indeed converges to 0.

Let � > 0. We want to �nd an index N where for n � N we have

1

n
< �:

It is the Archimedian Property that tells us what N to choose: pick N 2 N such
that 1

N
< � . Then if n � N we have

1

n
� 1

N
< �:

We conclude that the sequence
�
1
n

�
converges to 0.

De�nition 1.1.3 A sequencefxng in a metric space (X; d) is said to be a Cauchy sequence
if for every � > 0 there is an integer N such that d(xn; xm) < � for all n;m � N .

8



LetE be a nonempty subset of a metric space (X; d), and let S = fd(p; q) : p; q 2 Eg.
The diameter of E is sup S:

If fxng is a sequence in X and if EN consists of the points xN ; xN+1; : : : ; it is clear

that fxng is a Cauchy sequence if and only if

lim
N!1

diamEN = 0

there is many types of metric spaces for exempes: cone metric spaces, pseudo metric

spaces, B-metric spaces, fuzzy metric spaces,partial metric spaces etc.

1.2 Partial metric spaces

Partial metric spaces, introduced by Matthews [1; 2] ,are a generalization of the notion

of the metric space in which the de�nition of metric, the condition d (x; x) = 0 is

replaced by the condition d (x; x) � d (x; y) .

De�nition 1.2.1 [23]A partial metric or p-metric is a function p : U 2 ! R such that,

(P1) 8x; y 2 U; x = y , p(x; x) = p(x; y) = p(y; y)

(P2) 8x; y 2 U; p(x; x) � p(x; y)

(P3) 8x; y 2 U; p(x; y) = p(y; x)

(P4) 8x; y; z 2 U; p(x; z) � p(x; y) + p(y; z)� p(y; y)

Example 1.2.1 [25] Let a function p : R+�R+ ! R+ be de�ned by p(x; y) = maxfx; yg
for any x; y 2 R+. Then, (R+; p)is a partial metric space where the self-distance for any
point x 2 R+ is its value itself.

Example 1.2.2 [25] Consider a function p : R� � R� ! R+ de�ned by p(x; y) =

�min(x; y)for any x; y 2 R�. The pair (R�; p) is a partial metric space for which p

is called theusual partial metric on R� and where the self-distance for any point x 2 R�

is its absolute value.

De�nition 1.2.2 [3] Each partial metric p on X generates a T0 topology � p on X which

has as a base the family of open p-balls fBp(x; "); x 2 X; " > 0g, where Bp(x; ") = fy 2
X : p(x; y) < p(x; x) + "g for all x 2 X and " > 0.

9



Remark 1.2.1 If p is a partial metric on X, then the function ps : X �X ! R+ given

by

ps(x; y) = 2p(x; y)� p(x; x)� p(y; y); (1)

is a metric on X

1.2.1 Cauchy sequences and convergent sequences

De�nition 1.2.3 A sequence x = fxng of points in a partial metric space (X; p) is
Cauchy if there exists � � 0 such that for each � > 0 there exists k such that for all

n;m > k; jp(xn; xm)� aj < �:

In other words, x is Cauchy if the numbers p(xn; xm) converge to some � as n andm

approach in�nity, that is, if lim
n;m!1

p(xn; xm) = �. Note that then lim
n!1

p(xn; xn) = �,

and so if (X; p) is a metric space then � = 0.

Lemma 1.2.1 [3] A sequence fxng is Cauchy in a partial metric space (X; p) if and
only if fxng is Cauchy in the metric space (X; dp):

Remark 1.2.2 A partial metric space (X; p) is complete if and only if the metric space

(X; dp) is complete. Moreover

lim
n!1

dp(xn; x) = 0, p(x; x) = lim
n!1

p(xn; x) = lim
n;m!1

p(xn; xm):

Lemma 1.2.2 [3] Let (X; p) be a partial metric space. Then,

(a) fxng is a Cauchy sequence in (X; p)if and only if it is a Cauchy sequence in the
metric space (X; ps),

(b) X is complete if and only if the metric space (X; ps)is complete. Furthermore,

lim
n�!+1

ps(xn; x) = 0 if and only if

p(x; x) = lim
n!+1

p(xn; x) = lim
n;m!+1

p(xn; xm)

De�nition 1.2.4 [3] A partial metric space (X; d) is said to be complete if every Cauchy

sequences fxng in X converges to x 2 X , such that

p(x; x) = lim
n;m!+1

p(xn; xm)

10



1.3 Contraction�s concepts

1.3.1 De�nition and examples

De�nition 1.3.1 [27] (Contraction). Let (X; d) be a complete metric space. A function

f : X ! X is called a contraction if there exists k < 1 such that for any x; y 2 X,

d(f(x); f(y) � kd(x; y):

Example 1.3.1 [27] Consider the metric space (R; d) where d is the Euclidean distance

metric, i.e. d(x; y) = jx� yj The function f : R! R where f(x) = x
a
+ b is a contraction

if a > 1. In this speci�c case we can �nd a �xed point. Since a �xed means that f(x) = x,

we want x = x
a
+ b. Solving for x gives us x = ab

a�1 :

1.3.2 Applying contractions multiple times

From these examples, we have the reason for assumption that contractions in general

have �xed point. To show that any contraction has a �xed point we will �nd a point

that should be �xed and prove that point is indeed a �xed point. Let f : X ! X be

any contraction. If, for a moment, we believe that all contractions have �xed points,

then f 2(x) should have a �xed point since it�s a contraction.

Proposition 1.3.1 [27] Suppose f is contraction. Then fn is also a contraction. Fur-

thermore, if k is the constant for f; kn is the constant for f n.

1.3.3 Some types of contractions

Several authors have de�ned contractual type mappings on a complete metric space X,

which are generalizations of the Banach�s contraction, which have the property that

each such mapping has a unique �xed point. Now we come up with multiple de�nitions

corresponding to the contractual type.

De�nition 1.3.2 [28] Let (X; d) be a complete metric space and T : X ! X a mapping.

we say that T is a Rakotch contraction if there is a monotonic and decreasing function

11



� :]0;+1[! [0; 1[ such that, for all x; y 2 X; x 6= y;

d(Tx; Ty) � �(d(x; y))d (x; y)

De�nition 1.3.3 [18] Let (X; d) be a complete metric space and T : X ! X a map-

ping.We say that T is a Kannan contraction if there is a number a, 0 < a < 1
2
, such as,

for all x; y 2 X, x 6= y;

d(Tx; Ty) � a[d(x; Tx) + d(y; Ty)]

De�nition 1.3.4 [9] Let (X; d) be a complete metric space and T : X ! X a mapping.

we say that T is a Bianchini contraction if there is a number h; 0 < h < 1, such that, for

all x; y 2 X
d(Tx; Ty) � hmax fd(x; Tx); d(y; Ty)g

De�nition 1.3.5 [27] Let (X; d) be a complete metric space and T : X ! X a map-

ping.We say that T is a Reich contraction if there are positive numbers a; b; c; satisfy

a+ b+ c < 1,

such that, for all x; y 2 X,

d(Tx; Ty) � ad(x; Tx) + bd(y; Ty) + cd(x; y)

De�nition 1.3.6 [31] Let (X; d) be a complete metric space and T : X ! X a mapping.

We say that T is a Sehgal contraction if for all x; y 2 X ,x 6= y,

d(Tx; Ty) < max fd(x;Tx); d(y; Ty); d(x; y)g

De�nition 1.3.7 [13] Let (X; d) be a complete metric space and T : X ! X a mapping.

We say that T is a contraction of Zam�rescu if for all x; y 2 X, x 6= y,

d(Tx; Ty) < max

�
d(x; Ty);

d(x; Tx) + d(y; Ty)

2
;
d(x; Ty) + d(y; Tx)

2

�
De�nition 1.3.8 [12] Let A be a self-mapping on a metric space (M,d) and ffig5i=1 be
a set of Wong (auxiliary) functions. We say that A is a Wong type contraction if the

following inequality holds:

d(Ap;Aq) � a1d(p; q) + a2d(p;Ap) + a3d(q; Aq) + a4d(p;Aq) + a5d(Ap; q)

for any p; q 2M with p 6= q where ai = fi(d(p; q))=d(p; q).

12



1.3.4 Fixed point theorem

We now examine how a familiar theorem from the theory of metric spaces can be

transferred to partial metric spaces.

De�nition 1.3.9 [16] For each partial metric space (X; p) a contraction is a function

f : X ! X for which there exists a c 2 [0; 1) such that for all x; y in X, p(f(x); f(y)) �
c.p(x; y):

Theorem 1.3.1 (Matthews [11]) For each contraction f over a complete partial metric

space (X; p) there exists a unique x in X such that x = f(x).Also, p(x; x) = 0. Thus the

contraction �xed point theorem is extended to partial metric spaces.

13



Chapter 2

Common �xed point theorem

In this chapter, [3]we examine the work of H. Aydi et al who have provided some

common �xed point theorems regarding generalized �-implicit contractions over partial

metric spaces. As consequences of their obtained ,we show their results that prove �ve

theorems on partial metric spaces, and give some examples to illustarte their results

and concepts.

Recently, Samet et al. [30] introduced the concept of �-admissible maps.

2.0.5 Implicit relations

Popa [24,26] proved several �xed point theorems that satisfy appropriate implicit re-

lations. To prove these results, Popa considered  to be the set of all continuous

functions  (t1; t2; : : : ; t6) : R6+ ! R satisfyies the following conditions:

( 1) is non-increasing in variables t5 and t6,

( 2) there exists k 2 (0; 1) such that foru; v � 0 with
( 2a)(u; v; v; u; u+ v; 0) � 0 or
( 2b) (u; v; u; v; 0; u+ v) � 0 implies u � kv,

( 3)(u; u; 0; 0; u; u) > 0, for all u > 0.

Lemma 2.0.1 [3] Let (X; p) be a partial metric space, F : X ! X be a given mapping.

Suppose that F is continuous at x0 2 X. Then, for all sequence fxng in X such that

xn ! x0, we have Fxn ! Fx0.

14



Popa considered an implicit contraction type condition rather than the usual explicit

contractive conditions.This direction of research has produced a consistent literature

on �xed point, common �xed point and coincidence point theorems in various ambient

spaces.For more details, see [2,7,14,23,25,30]. Now, denote N the set of positive integers

and the set of functions

 [0;1)! [0;1) satisfying: ( 1) is nondecreasing, ( 2)
P1

n=1  
n(t) <1 for each

t 2 R+, where  n isthe nth iterate of  .

De�nition 2.0.10 [3] Let be the set of all continuous functions F (t1; :::; t6) : R6+ ! R

such that (F1): F is nondecreasing in variable t1 and nonincreasing in variables t5 and

t6, (F2): There exists h1 2 	 such that for all u; v � 0; F (u; v; v; u; u + v; u) � 0 implies
u � h1(v);and F (u; v; u; v; u; u+ v) � 0 implies u � h1(v).

We give the following examples.

Example 2.0.2 F (t1; :::; t6) = t1 � at2 � bt3 � ct4 � dt5 � et6; where a; b; c; d; e � 0 such
that a+ b+ c+ 2d+ e < 1 and a+ b+ c+ d+ 2e < 1.

Example 2.0.3 F (t1; :::; t6) = t1 � kmaxft2; :::; t6g; where k 2 [0; 12).

Example 2.0.4 F (t1; :::; t6) = t1 � kmaxft2; t3+t42
t5+t6
2
g, where k 2 [0; 2

3
):

Example 2.0.5 F (t1; :::; t6) = t1� amaxft2; t3; t4g� (1� a)[bt5+ ct6]; where b+2c and
c+ 2b are in [0; 1):

De�nition 2.0.11 For a nonempty set X, let T : X ! X and � : X � X ! [0;1) be
mappings.We say that the self-mapping T on X is �-admissible if for all x; y 2 X, we

have

�(x; y) � 1) �(Tx; Ty) � 1: (2)

Many papers distributed with the above concept have been considered to prove some

(common) �xed point results, for example see [1,16,17,19,21]. H. Aydi et al generalized

de�nition 2.0.13 by introducing a pair of mappings de�ned in the following.

15



De�nition 2.0.12 For a nonempty set X, let A;B : X ! X and � : X � X ! [0;1)
be mappings.We say that (A;B) is a generalized �-admissible pair if for all x; y 2 X, we
have

�(x; y) � 1) �(Ax;By) � 1 and �(BAx;ABy) � 1: (3)

Remark 2.0.1 If the operator A is invertible such that A = A�1 with B = A in de�nition

2.0.14,we get de�nition 2.0.13. So the above class of mappings given in De�nition 2.0.14

is not empty.

Remark 2.0.2 If A is �-admissible, it is obvious that (A;A) is a generalized �-admissible

pair.

We present the following examples.

Example 2.0.6 Take X = f1; 2; 1
2
g. Consider A = B : X ! X given by

Ax = Bx =
1

x
:

The mappings A and B are well de�ned and for all x; y 2 X;

�(Ax;By) = �(Ax;Ay) and �(BAx;ABy) = �(x; y): (4)

Take � : X �X ! [0;1) de�ned by

�(1; 1) = �(1; 2) = �(2; 1) = �

�
1;
1

2

�
= �

�
1

2
; 1

�
= 1;

and 0 otherwise. It is clear that if �(x; y) = 1, we have �(Ax;Ay) = 1. Thus, by

(4), we can say that (A;B) is a generalized �-admissible pair.

Example 2.0.7 Take X = [0;1). Consider the mappings A;B : X ! X given by

Ax =

8<: 1 if x 2 [0; 3];
1
2
if x > 3

and Bx =
3

4
:
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De�ne the mapping � : X �X ! [0;1) by

�(x; y) =

8<: 4 if x; y 2 [0; 3];
1
3
otherwise

.

First, let x; y 2 X such that �(x; y) � 1. This implies that x; y 2 [0; 3]. Thus, for
x; y 2 [0; 3], we have

�(Ax;By) = �

�
1;
3

4

�
= 4 � 1;

and

�(BAx;ABy) = �

�
B(1); A

�
3

4

��
= �

�
3

4
; 1

�
= 4 � 1:

Therefore, (A;B) is a generalized �-admissible pair.

Example 2.0.8 Take X = [0; 2] and the mappings A;B : X ! X :

Ax =

8<: x
x+1

if x 2 [0; 1];
x� 1

2
if x 2 (1; 2]

and Bx =

8<: x
2
if x 2 [0; 1];

2x� 2 if x 2 (1; 2]:

Consider the mapping � : X �X ! [0;1) given by

�(x; y) =

8<: 1 if x; y 2 [0; 1];
0 otherwise :

Let x; y 2 X such that �(x; y) � 1. By de�nition of �, this implies that x; y 2 [0; 1].
Thus,for x; y 2 [0; 1], we have

�(Ax;By) = �

�
x

x+ 1
;
y

2

�
= 1;

and

�(BAx;ABy) = �

�
B(

x

x+ 1
); A

�y
2

��
= �

�
x

2(x+ 1)
;

y

y + 2

�
= 1:

Then, (A;B) is a generalized �-admissible pair.

Now, we introduce the concept of generalized �-implicit contractive mappings in

the setting of partial metric spaces.
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De�nition 2.0.13 Let (X; p) be a partial metric space and A;B : X ! X be given

mappings.

We say that (A;B) is a generalized �-implicit contractive pair of mappings if there

exist two functions � : X �X ! [0;1) and F 2 � such that

F (�(x; y)p(Ax;By); p(x; y); p(x;Ax); p(y;By); p(x;By); p(y; Ax)) � 0; (5)

for all x; y 2 X. If we take A = B in (5),

F (�(x; y)p(Ax;Ay); p(x; y); p(x;Ax); p(y; Ay); p(x;Ay); p(y; Ax)) � 0; (6)

then we say that A is a generalized �-implicit contractive mapping.

Theorem 2.0.2 Let (X; p) be a complete partial metric space and A;B : X ! X be

generalized �-implicit contractive pair of mappings. Suppose that

(i) (A;B) is a generalized �-admissible pair;

(ii) there exists x0 2 X such that �(x0; Ax0) � 1;

(iii) �(BAx;Ax) � 1 for all x 2 X;

(iv) A and B are continuous on (X; p).

Then there exists u 2 X such that

p(u;Au) = p(Au;Au); p(u;Bu) = p(Bu;Bu) and p(u; u) = 0 (7)

Assume in addition that

(v) �(z; z) � 1 for all z verifying p(z; Az) = p(Az;Az); p(z; Bz) = p(Bz;Bz) and

p(z; z) = 0;

(vi) F satis�es
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(F
): if F (u; 0; v; w; u; u) � 0 for all u; v; w � 0, there exists 
 2 [0; 1) such that
u � 
maxfv; wg.
Then, u is a common �xed point of A and B, that is,u = Au = Bu:

Proof. In the �rst step of the proof we will prove that (xn) is a cauchy sequence

in (X; p)

By assumption (ii ), there exists a point x0 2 X such that �(x0; Ax0) � 1. Take

x1 = Ax0 and x2 = Bx1. By induction, we construct a sequence (xn) such that

x2n = Bx2n�1and x2n+1 = Ax2n8n = 1; 2; ::: (8)

We have �(x0; x1) � 1 and since (A;B) is a generalized �-admissible pair, so

�(x1; x2) = �(Ax0; Bx1) � 1and �(x2; x3) = �(Bx1; Ax2) = �(BAx0; ABx1) � 1:

Similar to above, we obtain

�(xn; xn+1) � 1; for all n = 0; 1; :::: (9)

On the other hand, by (iii), we have

�(x2; x1) = �(BAx0; Ax0) � 1:

Applying again (iii)

�(x4; x3) = �(BAx2; Ax2) � 1:

Continuing the same process, we obtain

�(x2n; x2n�1) � 1for all n = 1; 2; (10)

We claim that (xn) is a Cauchy sequence in (X; p).From (5), we have

In (5) we put x2n�2 = x and y = x2n�1 , with using (8), we have

F (�(x2n�2; x2n�1)p(Ax2n � 2; Bx2n�1); p(x2n�2; x2n�1); p(x2n�2; Ax2n�2);

p(x2n�1; Bx2n�1); p(x2n�2; Bx2n�1); p(x2n�1; Ax2n�2)) � 0;

that is,

F (�(x2n�2; x2n�1)p(x2n�1; x2n); p(x2n�2; x2n�1); p(x2n�2; x2n�1)
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; p(x2n�1; x2n); p(x2n�2; x2n); p(x2n�1; x2n�1)) � 0:

Using (9) and (p4) in the �fth variable, we get due to (F1) in the �rst and �fth variables

F (p(x2n�1; x2n); p(x2n�2; x2n�1); p(x2n�2; x2n�1); p(x2n�1; x2n); (11)

p(x2n�2; x2n�1) + p(x2n�1; x2n); p(x2n�1; x2n)) � 0:

By (F2), we obtain

p(x2n�1; x2n) � h1(p(x2n�2; x2n�1)): (12)

Similarly, from (5),puting x2n = x and x2n�1 = y with using (8), we have

F (�(x2n; x2n�1)p(Ax2n; Bx2n�1); p(x2n; x2n�1); p(x2n; Ax2n);

p(x2n�1; Bx2n�1); p(x2n; Bx2n�1); p(x2n�1; Ax2n)) � 0;

that is,

F (�(x2n; x2n�1)p(x2n+1; x2n); p(x2n; x2n�1); p(x2n; x2n+1); (13)

p(x2n�1; x2n); p(x2n; x2n); p(x2n�1; x2n+1)) � 0;

By (10) and (F1) in the �rst variable, we get

F (p(x2n+1; x2n); p(x2n; x2n�1); p(x2n; x2n+1); p(x2n�1; x2n); p(x2n; x2n); p(x2n�1; x2n+1)) � 0;
(14)

By (p2),

p(x2n; x2n) � p(x2n; x2n+1) and by (p4); p(x2n�1; x2n+1) � p(x2n�1; x2n) + p(x2n; x2n+1):

So applying (F1) in the �fth and sixth variables, we �nd that

F (p(x2n+1; x2n); p(x2n; x2n�1); p(x2n; x2n+1); p(x2n�1; x2n); (15)

p(x2n; x2n+1); p(x2n�1; x2n) + p(x2n; x2n+1)) � 0;

By (F2), we obtain

p(x2n; x2n+1) � h1(p(x2n�1; x2n)): (16)
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Combining (16) and (12), we obtain

p(xn; xn+1) � h1(p(xn�1; xn)) for all n = 1; 2; ::: (17)

We deduce

p(xn; xn+1) � hn1 (p(x0; x1)) for all n = 0; 1; 2; :::: (18)

Since h1 2 	 , we get
lim
n!1

p(xn; xn+1) = 0: (19)

Now, we shall prove that fxng is a Cauchy sequence in the partial metric space (X; p)

p(xn; xn+k) � p(xn; xn+1) + p(xn+1; xn+2) + ���+ p(xn+k�1; xn+k) (20)

� (hn1 + hn+11 + ���+ hn+k�11 )(p(x0; x1))

�
1X
m=n

hm1 (p(x0; x1)):

Since h1 2 	 , the above implies that

p(xn; xn+k)! 0 as n!1; for all k: (21)

Since ps(x; y) � 2p(x; y) for all x; y 2 X, so

lim
n!1

ps(xn; xn+k) = 0:

It follows that fxng is a Cauchy sequence in the metric space (X; ps).Since (X; p) is
complete, then from Lemma 1.2.2, (X; ps) is a complete metric space.Therefore, the

sequence fxng converges to some u 2 X, that is, lim
n!1

ps(xn; u) = 0:

From the properties (b) in Lemma 1.2.2, we have

p(u; u) = lim
n!1

p(xn; u) = lim
m�n!1

p(xn; xm)

By (21), we get

p(u; u) = lim
n�!1

p(xn; u) = lim
m�n�!1

p(xn; xm) = 0: (22)

This implies that

lim
n!1

p(x2n+1; u) = lim
n!1

p(x2n+2; u) = 0: (23)
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By (8), it means that

lim
n!1

p(Ax2n; u) = lim
n!1

p(Bx2n+1; u) = 0: (24)

We shall prove that u = Au = Bu, that is, u is a common �xed point of A and B.

Using x2n+1 ! u in (X; p) and p(u; u) = 0 in Lemma 1.2, we have

lim
n!1

p(x2n+1; Au) = p(u;Au): (25)

By continuity of A and x2n ! u in (X; p), we have

lim
n!1

p(x2n+1; Au) = lim
n!1

p(Ax2n; Au) = p(Au;Au): (26)

From (25) and (26), we obtain

p(u;Au) = p(Au;Au): (27)

Using continuity of B and similarly to (27), we get

p(u;Bu) = p(Bu;Bu): (28)

Thus, from (22), (27) and (28), (7) holds. So by condition (v), we have

�(u; u) � 1:

Applying (5) for x = y = u

F (�(u; u)p(Au;Bu); p(u; u); p(u;Au); p(u;Bu); p(u;Bu); p(u;Au)) � 0;

i.e,

F (�(u; u)p(Au;Bu); 0; p(u;Au); p(u;Bu); p(u;Bu); p(u;Au)) � 0:

Due to the fact that �(u; u) � 1 and by (F1) in the �rst variable, we get

F (p(Au;Bu); 0; p(u;Au); p(u;Bu); p(u;Bu); p(u;Au)) � 0:

Remember that p(u;Bu) = p(Bu;Bu) � p(Au;Bu) and p(u;Au) = p(Au;Au) �
p(Au;Bu); so applying (F1) in the �fth and sixth variables, we obtain

F (p(Au;Bu); 0; p(u;Au); p(u;Bu); p(Au;Bu); p(Au;Bu)) � 0:
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Since F satis�es property (F
), so

p(Au;Bu) � 
maxfp(u;Au); p(u;Bu)g � 
p(Au;Bu);

which holds unless p(Au;Bu) = 0. Thus, Au = Bu. We deduce from (27) and (28)

that p(u;Au) = 0 = p(u;Bu) so

u = Au = Bu

.This completes the proof.

If we take A = B in Theorem 2.0.3, we get the following result.

Corollary 2.0.1 Let (X; p) be a complete partial metric space and A : X ! X a given

mapping. Assume there exists F 2 � such that

F (�(x; y)p(Ax;Ay); p(x; y); p(x;Ax); p(y; Ay); p(x;Ay); p(y; Ax)) � 0

for all x; y 2 X. Suppose that

(i) A is an �-admissible;

(ii) there exists x0 2 X such that �(x0; Ax0) � 1;

(iii) A is continuous on (X; p).

Then there exists u 2 X such that

p(u;Au) = p(Au;Au); and p(u; u) = 0: (29)

Assume in addition that

(iv) �(z; z) � 1 for all z verifying p(z; Az) = p(Az;Az) and p(z; z) = 0;

(v) F satis�es

(F
) if F (u; 0; v; w; u; u) � 0 for all u; v; w � 0, there exists 
 2 [0; 1) such that
u � 
maxfv; wg:
Then, u is a �xed point of A, that is, u = Au.

Proof. The proof follows from the lines in the proof of Theorem 2.0.3, except that

we do need hypothesis (iii) of Theorem 2.0.3.Considering the metric case in Theorem

2.0.3, we have
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Corollary 2.0.2 Let (X; d) be a complete metric space and A;B : X ! X be given

mappings.

Suppose there exists F 2 � such that

F (�(x; y)d(Ax;By); d(x; y); d(x;Ax); d(y;By); d(x;By); d(y; Ax)) � 0;

for all x; y 2 X. Suppose that

(i) (A;B) is a generalized �-admissible pair;

(ii) there exists x0 2 X such that �(x0; Ax0) � 1;

(iii) �(BAx;Ax) � 1 for all x 2 X;

(iv) A and B are continuous on (X; d).

Then there exists u 2 X such that u = Au = Bu.

Proof. Due to conditions (i)�(iv), there exists u 2 X such that from Corollary

2.0.1, (7) becomes

u = Au = Bu;

that is, u is a common �xed point of A and B. Here, we do not need conditions (v)

and (vi) given in Theorem 2.0.3.

Corollary 2.0.3 Let (X; d) be a complete metric space and A : X ! X a given mapping.

Assume there exists F 2 � such that

F (�(x; y)d(Ax;Ay); d(x; y); d(x;Ax); d(y; Ay); d(x;Ay); d(y; Ax)) � 0

for all x; y 2 X. Suppose that

(i) A is an �-admissible mapping;

(ii) there exists x0 2 X such that �(x0; Ax0) � 1;

(iii) A is continuous on (X; d).
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Then there exists u 2 X such that u = Au:

Proof. Due to conditions (i)�(iii), there exists u 2 X such that from Theorem

2.0.3, (29) becomes

Au = u

When replacing the continuity of T on (X; p) by the continuity of T on (X; ps),

the conditions (v) and (vi) of Theorem 2.0.3 are omitted and we naturally state the

following result.

Theorem 2.0.3 Let (X; p) be a complete partial metric space and A;B : X ! X be a

generalized �-implicit contractive pair of mappings. Suppose that

(i) (A;B) is a generalized �-admissible pair;

(ii) there exists x0 2 X such that �(x0; Ax0) � 1;

(iii) �(BAx;Ax) � 1 for all x 2 X;

(iv) A and B are continuous on (X; ps).

Then there exists u 2 X such that u is a common �xed point of A and B, that is,

u = Au = Bu.

Analogously, we can derive the following result by letting A = B in Theorem 2.0.4.

Corollary 2.0.4 Let (X; p) be a complete partial metric space and A : X ! X a given

mapping. Assume there exists F 2 � such that

F (�(x; y)p(Ax;Ay); p(x; y); p(x;Ax); p(y; Ay); p(x;Ay); p(y; Ax)) � 0

for all x; y 2 X. Suppose that

(i) A is a �-admissible mapping;

(ii) there exists x0 2 X such that �(x0; Ax0) � 1;

(iii) A is continuous on (X; ps).
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Then there exists u 2 X such that u is a �xed point of A, that is, u = Au.

Taking the operator F presented by Example 2.0.4 in Theorem 2.0.4, we have

Corollary 2.0.5 Let (X; p) be a complete partial metric space and A;B : X ! X satis-

fying

�(x; y)p(Ax;By) � kmaxfp(x; y); p(x;Ax); p(y;By); p(x;By); p(y; Ax)g (30)

where k 2 [0; 1
2
). Suppose that

(i) (A;B) is a generalized �-admissible pair;

(ii) there exists x0 2 X such that �(x0; Ax0) � 1;

(iii) �(BAx;Ax) � 1 for all x 2 X;

(iv) A and B are continuous on (X; ps).

Then there exists u 2 X such that u is a common �xed point of A and B, that is,

u = Au = Bu.

For A = B, we have the following result.

Corollary 2.0.6 Let (X; p) be a complete partial metric space and A : X ! X be a

mapping such that

�(x; y)p(Ax;Ay) � kmaxfp(x; y); p(x;Ax); p(y; Ay); p(x;Ay); p(y; Ax)g (31)

where k 2 [0; 1
2
). Suppose that

(i) A is a �-admissible mapping;

(ii) there exists x0 2 X such that �(x0; Ax0) � 1;

(iii) A is continuous on (X; ps).
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Then there exists u 2 X such that u is a �xed point of A and B, that is, u = Au.

Note that in Theorem 2.0.3, the continuity hypothesis of F is not required. But this

hypothesis is essential for Theorem 2.0.5. In the next result, we drop the continuity

hypothesis of A and B and we replace it by the following:

(H) if fxng is a sequence in X such that �(xn; xn+1) � 1 and �(xn+1; xn) � 1 for
all n and xn ! x 2 X as n!1, then there exists a subsequence fxn(k)g of fxng such
that �(xn(k); x) � 1 and

�(x; xn(k)) � 1 for all k.

Theorem 2.0.4 Let (X; p) be a complete partial metric space and A;B : X ! X be

generalized �-implicit contractive pair of mappings. Suppose that

(i) (A;B) is a generalized �-admissible pair;

(ii) there exists x0 2 X such that �(x0; Ax0) � 1;

(iii) �(BAx;Ax) � 1 for all x 2 X;

(iv) (H) is satis�ed.

Then there exists a u 2 X such that u = Au = Bu. We also have p(u; u) = 0.

Proof. Following the proof of Theorem 2.0.3, the sequence fxngde�ned by (8) is
Cauchy and converges to some u 2 X in (X; p). Remember that (9) and (10) hold, so

from condition (iv), there exists a subsequence fxn(k)g of fxng such that �(x2n(k); u) � 1
and �(u; x2n(k)�1) � 1 for all k. We shall show that u = Au = Bu.

Taking x = x2n(k) and y = u in (5)

F (�(x2n(k); u)p(Ax2n(k); Bu); p(x2n(k); u); p(x2n(k); Ax2n(k));

p(u;Bu); p(x2n(k); Bu); p(u;Ax2n(k))) � 0:

Having �(x2n(k); u) � 1, so by (F1) in the �rst variable, we have

F (p(x2n(k)+1; Bu); p(x2n(k); u); p(x2n(k); x2n(k)+1);

p(u;Bu); p(x2n(k); Bu); p(u; x2n(k)+1)) � 0:
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Letting k tend to in�nity and using continuity of F , we have

F (p(u;Bu); 0; 0; p(u;Bu); p(u;Bu); 0) � 0:

Using (F1) in the sixth variable, we can write

F (p(u;Bu); 0; 0; p(u;Bu); p(u;Bu); p(u;Bu)) � 0:

By (F2), it follows that p(u;Bu) � h1(0) = 0, which implies that u = Bu.

Similarly, by taking x = u and y = x2n(k)�1 in (5), we have

F (�(u; x2n(k)�1)p(Au;Bx2n(k)�1); p(u; x2n(k)�1); p(u;Au);

p(x2n(k)�1; Bx2n(k)�1); p(u;Bx2n(k)�1); p(x2n(k)�1; Au)) � 0:

By (F1) and having �(u; x2n(k)�1) � 1, we get

F (p(Au; x2n(k)); p(u; x2n(k)�1); p(u;Au); p(x2n(k)�1; x2n(k));

p(u; x2n(k)); p(x2n(k)�1; Au)) � 0:

Letting k !1 and using continuity of F , we have

F (p(Au; u); 0; p(u;Au); 0; 0; p(u;Au)) � 0:

Using (F1) in the �fth variable, we can write

F (p(Au; u); 0; p(u;Au); 0; p(u;Au); p(u;Au)) � 0:

By (F2), it follows that p(u;Au) � h1(0) = 0, which implies that u = Au.

Now, consider (H1) if fxng is a sequence in X such that �(xn; xn+1) � 1 for all n
and xn ! x 2 X as n!1, then there exists a subsequence fxn(k)g of fxng such that
�(xn(k); x) � 1 for all k:
We state the following corollaries.

Corollary 2.0.7 Let (X; p) be a complete partial metric space and A : X ! X a given

mapping. Assume there exists F 2 � such that

F (�(x; y)p(Ax;Ay); p(x; y); p(x;Ax); p(y; Ay); p(x;Ay); p(y; Ax)) � 0
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for all x; y 2 X. Suppose that

(i) A is an �-admissible mapping;

(ii) there exists x0 2 X such that �(x0; Ax0) � 1;

(iv) (H1) is satis�ed.

Then there exists a u 2 X such that u = Au. We also have p(u; u) = 0.

Proof. Taking B = A in Theorem 2.0.5, we get the result.

Corollary 2.0.8 Let (X; p) be a complete partial metric space and A;B : X ! X satis-

fying

�(x; y)p(Ax;By) � kmaxfp(x; y); p(x;Ax); p(y;By); p(x;By); p(y; Ax)g;

where k 2 [0; 1
2
). Suppose that

(i) (A,B) is a generalized �-admissible pair;

(ii) there exists x0 2 X such that �(x0; Ax0) � 1;

(iii) �(BAx;Ax) � 1 for all x 2 X;

(iv) (H) is satis�ed.

Then there exists a u 2 X such that u = Au = Bu:

Proof. It su¢ ces to consider in Theorem 2.0.5 the operator F given by Example

2.0.4.

Corollary 2.0.9 Let (X; p) be a complete partial metric space and A : X ! X be a

mapping such that

�(x; y)p(Ax;Ay) � kmaxfp(x; y); p(x;Ax); p(y; Ay); p(x;Ay); p(y; Ax)g;

for all x; y 2 X, where k 2 [0; 1
2
). Suppose that

(i) A is an �-admissible mapping;
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(ii) there exists x0 2 X such that �(x0; Ax0) � 1;

(iii) (H1) is satis�ed.

Then there exists a u 2 X such that u = Au.

Proof. It su¢ ces to consider in Corollary 2.0.7 the operator F given by Example

2.0.4

The following two corollaries are ´ Ciri´c [10] type results in the setting of partial

metric spaces.

Corollary 2.0.10 Let (X; p) be a complete partialmetric space and A;B : X ! X satis-

fying

p(Ax;By) � kmaxfp(x; y); p(x;Ax); p(y;By); p(x;By); p(y; Ax)g

where k 2 [0; 1
2
). Then there exists a u 2 X such that u = Au = Bu.

Proof. It su¢ ces to take �(x; y) = 1 in Corollary 2.0.8

Corollary 2.0.11 Let (X; p) be a complete partialmetric space and A : X ! X be a

mapping such that

p(Ax;Ay) � kmaxfp(x; y); p(x;Ax); p(y; Ay); p(x;Ay); p(y; Ax)g

where k 2 [0; 1
2
). Then there exists a u 2 X such that u = Au.

Proof. The proof follows easily when taking �(x; y) = 1 in Corollary 2.0.9

To prove uniqueness of the common �xed point given in Theorem 2.0.3 (resp. The-

orem 2.0.5),

we need to take the following additional hypotheses.

(U) For all x; y 2 CF (A;B); we have �(x; y) � 1, where CF (A;B) denotes the set
of common �xed points of A and B,

(F3) : For all t > 0; F (t; t; 0; 0; t; t) > 0.

Theorem 2.0.5 Adding conditions (U) and (F3) to the hypotheses of Theorem 2.0.3

(resp.Theorem 2.0.5), we obtain that u is the unique common �xed point of A and B:
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Proof. We argue by contradiction, that is, there exist u; v 2 X such that u = Au =

Bu and v = Av = Bv with u = v. Of course from Theorem 2.0.3 (resp. Theorem

2.0.5), such u and v satisfyp(u; u) = p(v; v) = 0. By (5), we get

F (�(u; v)p(Au;Av); p(u; v); p(u;Au); p(v;Bv); p(u;Bv); p(v; Au)) � 0;

i.e,

F (�(u; v)p(u; v); p(u; v); p(u; u); p(v; v); p(u; v); p(v; u)) � 0:

Due to the fact that �(u; v) � 1, so by (F1) in the �rst variable, we get

F (p(u; v); p(u; v); 0; 0; p(u; v); p(u; v)) � 0:

Since F satis�es property (F3), so it is a contradiction. Hence u = v.

Theorem 2.0.6 Adding conditions (U) and (F3) to the hypotheses of Corollary 2.0.1

(resp.Corollary 2.0.7), we obtain that u is the unique �xed point of A.

The following two examples illustrate Theorem 2.0.6 where A and B have a unique

common �xed point.

Example 2.0.9 Take X = [0; 4
3
] endowed with the complete standard partial metric

p(x; y) = maxfx; yg. Consider the mappings A;B : X ! X given by

Ax =

8<: x
3
if x 2 [0; 1]

2x� 53 if x 2 [1; 43]
; and Bx =

8<: x
3
if x 2 [0; 1]

x� 2
3
ifx 2

�
1; 2

4

� :

De�ne the mapping � : X � X ! [0;1) by

�(x; y) =

8<: 1 if x; y 2 [0; 1];
0otherwise:

First, let x; y 2 X such that �(x; y) � 1. By de�nition of �, this implies that

x; y 2 [0; 1].
Thus,

�(Ax;By) = �
�x
3
;
y

3

�
= 1;
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and

�(BAx;ABy) = �
�x
9
;
y

9

�
= 1:

Then, (A;B) is a generalized �-admissible pair. For all x 2 [0; 1], we have

�(BAx;Ax) = �
�x
9
;
x

3

�
= 1:

On the other hand, for all x 2 [1; 4
3
], we have (2x� 5

3
) 2 [1

3
; 1] � [0; 1], so

�(BAx;Ax) = �

�
B

�
2x� 5

3

�
; 2x� 5

3

�
= �

�
2x� 5

3

3
; 2x� 5

3

�
= 1:

From the two above identities, we get

�(BAx;Ax) = 1 for all x 2 X:

If x or y is not in [0; 1]; �(x; y) = 0, so (30) holds. Now, we restraint to the case

where x; y 2 [0; 1]. In this case, we have

�(x; y)p(Ax;By) = max
nx
3
;
y

3

o
=

1

3
maxfx; yg = kp(x; y)

� kmaxfp(x; y); p(x;Ax); p(y;By); p(x;By); p(y; Ax)g;

where k = 1
3
. Then, (30) is satis�ed. Moreover, the mappings A and B are

continuous on (X; ps) and there exists x0 = 0 such that �(x0; Ax0) = �(0; 0) = 1.

Thus, all hypotheses of Corollary 2.0.5 are veri�ed, so there exists a common �xed

point of A and B. But, since the hypothesis (U) is satis�ed, so applying Theorem

2.0.6, the above common �xed point is unique and it is u = 0.

Example 2.0.10 Take X = f0; 1; 2g and A = B : X ! X such that

A0 = B0 = 0; A1 = B1 = 0 and A2 = B2 = 1: (32)

Take � : X � X ! [0;1) de�ned by

�(0; 0) = �(0; 1) = �(0; 2) = �(1; 0) = �(2; 0) = 1;
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and 0 otherwise. Clearly, if �(x; y) � 1, so x or y is equal to 0, and then by (32),
in this case we have �(Ax;By) = �(Ax;Ay) = 1 and

�(BAx;ABy) = 1:

So (A;B) is a generalized �-admissible pair. Moreover,

�(BA0; A0) = �(BA1; A1) = �(BA2; A2) = 1:

We have �(0; A0) = 1. Now, we de�ne the partial metric p by

p(x; y) =
1

4
jx� yj+ 1

2
maxfx; yg:

Notice that p(1; 1) = 1
2
; so p is not a metric on X. Since ps(x; y) = jx�yj; so (X; p)

is a complete partial metric space.

Going back to Example 1.1, take

F (t1; :::; t6) = t1 � ct4;

where 0 � c < 1: Therefore the inequality (5) we want to prove becomes

�(x; y)p(Ax;By) � cp(y;By): (33)

Consider c = 3
5

If x and y are di¤erent to 0, we have �(x; y) = 0, so (33) holds. Now, we restraint

to the case where x or y is equal to 0. By symmetry of � and p, it su¢ ces to take the

cases

(x = 0; y = 1); (x = 0; y = 2) and (x = y = 0):

Case 1: (x = 0; y = 1). We have

�(0; 1)p(A0; B1) = p(0; 0) = 0 � cp(1; B1)

Case 2: (x = 0; y = 2). We have

�(0; 2)p(A0; B2) = p(0; 1) =
3

4
=
5

4
c = cp(2; B2):
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Case 3: (x = 0; y = 0). We have

�(0; 0)p(A0; B0) = p(0; 0) = 0 = cp(0; B0):

Then, (33) is satis�ed.

Finally, let fxng be a sequence in X such that �(xn; xn+1) � 1 and �(xn+1; xn) � 1
for all n and xn ! x 2 X as n ! 1. By de�nition of �, this implies that xn = 0 or
xn+1 = 0 for all n, so there exists a subsequence fxn(k)g such that

�(xn(k); x) = 1 and �(x; xn(k)) = 1;

that is, the hypothesis (H) is satis�ed. Thus, applying Theorem 2.0.5, the mappings

A and B have a common �xed point. Here, the hypothesis (U) also holds. So applying

Theorem 2.0.6,

0 is the unique common �xed point of A and B.
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Chapter 3

Application to dynamic

programming

Dynamic programming [6] is a collection of methods for solving sequential decision

problems. The methods are based on decomposing a multistage problem into a sequence

of interrelated one-stage problems. Fundamental to this decomposition is the principle

of optimality, which was developed by Richard Bellman in the 1950s. Its importance is

that an optimal solution for a multistage problem can be found by solving a functional

equation relating the optimal value for a (t + 1)-stage problem to the optimal value

for a t-stage problem.

3.0.6 Structure of dynamic programming problems

Dynamic programming (DP for short) [8] is the principal method for analysing a large

and diverse class of sequential decision problems. Examples include deterministic and

stochastic optimal control problems with continuous state space, Markov and semi-

Markov decision problems with discrete state space, minimax problems, and sequential

zero-sum games. While the nature of these problems may vary widely, their underlying

structures is very similar. In all cases, there is an underlying mapping that based

on a dynamic system associated with it and the corresponding cost for each stage.

This mapping, the DP operator, provides a compact �mathematical signature�of the

problem. It de�nes the cost function of policies and the optimal cost function, and it
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provides a convenient shorthand notation for algorithmic description and analysis.

3.0.7 A deterministic optimal control example

To clarify our viewpoint, let us consider the discrete time-speci�c optimum control

problem described by the system equation

xk+1 = f(xk; uk); k = 0; 1; :::: (1.1)

Here xk is the state of the system which takes the values in the set X (the state

space), and uk is the control element which takes the values in the set U (the control

space).In stage k, there is a cost

�kg(xk; uk)

incurred when uk is applied in the case xk , where � is a scalar in (0; 1] that has the

interpretation of the discount factor at � < 1. The controls are chosen as a function

of the current state, subject to a constraint that depends on that state. In particular,

at state x the control is constrained to take values in a given set U(x) � U . Thus we

are interested in optimizing the (nonstationary) set of policies

� = f�0; �1; :::gj�k 2M;k = 0; 1; :::

where M is the set of functions � : X ! U de�ned by

M = f�j�(x) 2 U(x);8x 2 X:g

The total cost of a policy � = f�0; �1; :::g over an in�nite number of stages (an
in�nite horizon) and starting at an initial state x0 is the limit superior of the N -step

costs

J�(x0) = lim sup
N!1

N�1X
k=0

�kg (xk; �k (xk)) ; (1.2)

where the state sequence fxkg is generated by the deterministic system (1.1) under
the policy � :

xk+1 = f (xk; �k(xk)) ; k = 0; 1; ::::
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(We use limit superior rather than limit to cover the case where the limit does not

exist.) The optimal cost function is

J�(x) = inf
�2J

�(x); x 2 X:

For any policy � = f�0; �1; :::g, consider the policy �1 = f�1; �2; :::g and write by
using Eq. (1.2),

J�(x) = g (x; �0(x) + �J�1) f(x; �0(x)):

We have for all x 2 X

J�(x) = inf
�=f�0;�1g2�

fg (x; �0(x)) + �J�1 (f(x; �0(x)))g

= inf
�02M

�
g (x; �0(x)) + � inf

�12�
J�1 (f(x; �0(x)))

�
= inf

�02M
fg (x; �0(x)) + �J� (f(x; �0(x))g :

The minimization over �0 2 M can be written as minimization over all u 2 U(x),
so we can write the preceding equation as

J�(x) = inf
u2U(x)

fg(x; u) + �J� (f(x; u))g ;8x 2 X: (1.3)

This equation is an example of Bellman�s equation, which plays a central role in

DP analysis and algorithms. If it can be solved for J�,then a perfect constant policy

f��; ��; :::g can be obtained usually by minimizing the right-hand side of each x, i.e.,

��(x) 2 arg min
u2U(x)

fg(x; u) + � (J�f(x; u))g ;8x 2 X: (1.4)

We now note that both Eqs. (1.3) and (1.4) can be stated in terms of the expression

H(x; u; J) = g(x; u) + �Jf(x; u); x 2 X; u 2 U(x):

De�ning

(T�J)(x) = Hx; �(x); J; x 2 X;

and

(TJ)(x) = inf
u2U(x)

H(x; u; J) = inf
�2M

(T�J)(x); x 2 X;
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we see that Bellman�s equation (1.3) can be written compactly as

J� = TJ�;

i.e., J� is the �xed point of T , viewed as a mapping from the set of functions

on X into itself. Moreover, it can be similarly seen that J�, the cost function of the

stationary policy f�; �; :::g, is a �xed point of T�. In addition, the optimality condition
(1.4) can be stated compactly as

T��J
� = TJ�:

We will see later that additional properties, as well as a variety of algorithms for

�nding J� can be stated and analyzed using the mappings T and T�.

The mappings T� can also be used in the context of DP problems with a limited

number of stages (a �nite horizon). In particular, for a given policy � = f�0; �1; :::g
and the �nal cost �N �J(xN) for the state xN at

the end of N stages, consider the N�stage cost function

J�;N (x0) = �N �J(xN) +
N�1X
k=0

�kg (xk; �k(xk)) : (1.5)

Then it can be veri�ed by induction that for all initial states x0, we have

J�;N (x0) = (T�0T�1� � � T�N�1J�)(x0): (1.6)

Here T�0T�1 : : : T�N�1 is the composition of the mappings T�0; T�1; :::T�N�1 ,i.e., for

all J ,

(T�0T�1J)(x) = T�0(T�1J)(x); x 2 X;

and more generally

(T�0T�1� � � T�N�1J)(x) = T�0(T�1(� � � (T�N�1J)))(x); x 2 X;

The �nite horizon cost functions J�;N of � can be de�ned in terms of the mappings

T�[cf. Eq. (1.6)], and so can the in�nite horizon cost function J� :

J�(x) = lim sup
N!1

(T�0T�1� � � T�N�1 �J)(x); x 2 X; (1.7)

where �J is the zero function, �J(x) = 0 for allx 2 X.
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3.0.8 Connection with Fixed Point Methodology

Bellman�s equation (1.3) and the optimality condition (1.4), mentioned in terms of

the mappings T� and T , highlight an important point, which is that DP theory is

closely related to the theory of abstract mappings and their �xed points. Analogs of the

Bellman equation, J� = TJ�, optimality conditions, results and other computational

methods are applicable to a large variety of DP models, and can be stated compactly as

described above in terms of the corresponding mappings T� and T . The gains of this

abstraction is greater generality and mathematical vision, as well as a more uni�ed,

economical, and streamlined analysis.

3.0.9 Abstract dynamic programming models

Problem Formulation

In this chapter,H.Aydi et all [3] present an application on dynamic programming.

The existence of solutions of functional equations and system of functional equations

has been studied in dynamic programming using various �xed point theorems. The

reader can refer to [4,5,6] for a more detailed explanation of the background above. In

this chapter, we present their demonstration of the existence of a common solution for

classes of functional equations using Corollary 2.0.10.

Throughout this chapter, we assume that U and V are Banach spaces,W � U is a

state space and D � V is a decision space. It is well known that the dynamic program-

ming provides useful tools for mathematical optimization and computer programming

as well.

In particular, we are interested in solving the following two functional equations

arising in dynamic programming:

r(x) = sup
y2D
fg(x; y) +G(x; y; r(�(x; y)))� b; x 2 W; (34)

q(x) = sup
y2D
fg(x; y) +Q(x; y; q(�(x; y)))� b; x 2 W; (35)

where b > 0; � : W �D ! W; g : W �D ! R and G;Q : W �D � R! R.
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Here,we study the existence of h� 2 B(W ) a common solution of the functional

equations (34) and (35).

Let B(W ) denote the set of all the bounded real-valued functions on W . It is well

known that B(W ) endowed with the partial metric

pb(h; k) = b+ sup
x2W

jh(x)� k(x)j; h; k 2 B(W ): (36)

is a complete partial metric space.

Now, take the mappings A;B : B(W )! B(W ) de�ned by

A(h)(x) = sup
y2D
fg(x; y) +G(x; y; h(�(x; y)))g � b; x 2 W; (37)

and

B(h)(x) = sup
y2D
fg(x; y) +Q(x; y; h(�(x; y)))g � b; x 2 W: (38)

Obviously, if the functions g, G and Q are bounded then A and B are well-de�ned.

We will prove the following result.

Theorem 3.0.7 Suppose that there exists k 2 [0; 1
2
) such that for every (x; y) 2 W �D

and h1; h2 2 B(W ); the inequality

jG(x; y; h1(�(x; y)))�Q(x; y; h2(�(x; y)))j � kpB(h1; h2)

,holds. Then, A and B have a common �xed point in B(W ):

Proof. Let � > 0 be an arbitrary positive real number,x 2 W and h1; h2 2 B(W ).
Then by (37) and (38), there exist y1; y2 2 D such that

A(h1)(x) < g(x; y1) +G(x; y1; h1(�(x; y1)))� b+ � (39)

B(h2)(x) < g(x; y2) +Q(x; y2; h2(�(x; y2)))� b+ � (40)

A(h1)(x) � g(x; y2) +G(x; y2; h1(�(x; y2))) (41)

and

B(h2)(x) � g(x; y1) +Q(x; y1; h2(�(x; y1))): (42)
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Then from (39) and (42), it follows easily that

A(h1)(x)�B(h2)(x) � G(x; y1; h1(�(x; y1)))� b+ ��Q(x; y1; h2(�(x; y1)))

� jG(x; y1; h1(�(x; y1)))�Q(x; y1; h2(�(x; y1)))j+ �� b

� kpb(h1; h2) + �� b:

Similarly, from (40) and (41), we get

B(h2)(x)� A(h1)(x) � kpb(h1; h2) + �� b:

We deduce from above inequalities that

jA(h1)(x)�B(h2)(x)j+ b � kpB(h1; h2) + �: (43)

Since the inequality (43) is true for anyx 2 W , then

pB(A(h1); B(h2)) � kpB(h1; h2) + �: (44)

Again � > 0 is arbitrary, so

pb(A(h1); B(h2)) � kpb(h1; h2) � kmaxfpb(h1; h2); pb(h1; Ah1); pb(h2; Bh2); pb(h1; Bh2); pb(h2; Ah1)g:
(45)

So Corollary 2.0.10 is applicable. Consequently, the mappings A and B have a common

�xed point, that is, the functional equations (34) and (35) has a common solution

h� 2 B(W ).
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