Dépôt DSpace/Université Larbi Tébessi-Tébessa

Limit Cycles Bifurcating From A Zero-Hopf Type Equilibrium For Certain Autonomous Differential Systems

Afficher la notice abrégée

dc.contributor.author GHANEM, Rabab
dc.date.accessioned 2024-10-01T08:58:27Z
dc.date.available 2024-10-01T08:58:27Z
dc.date.issued 2024-06
dc.identifier.uri http//localhost:8080/jspui/handle/123456789/12012
dc.description.abstract The objective of this work is to study the existence of bifurcations of zero-Hopf type at the so-called Chen–Wang differential system y x y            z z  , , y  x 2  xz  3 y 2  a . The main tool up to now for studying a zero-Hopf bifurcation is to pass the system to the normal form of a zero-Hopf bifurcation. Our analysis of the zero-Hopf bifurcation is different; we study them directly using the averaging theory. In the second part of this work, we study the existence of zero-Hopf bifurcations of a Lorenz-Haken system in 4 R the averaging theory. en_US
dc.language.iso en en_US
dc.publisher Echahid chikh Larbi Tébessi University-Tébessa en_US
dc.subject Zero-Hopf bifurcation, Periodic orbit, Differential system, Averaging theory. en_US
dc.title Limit Cycles Bifurcating From A Zero-Hopf Type Equilibrium For Certain Autonomous Differential Systems en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée