Afficher la notice abrégée
dc.contributor.author |
GHANEM, Rabab |
|
dc.date.accessioned |
2024-10-01T08:58:27Z |
|
dc.date.available |
2024-10-01T08:58:27Z |
|
dc.date.issued |
2024-06 |
|
dc.identifier.uri |
http//localhost:8080/jspui/handle/123456789/12012 |
|
dc.description.abstract |
The objective of this work is to study the existence of bifurcations of
zero-Hopf type at the so-called Chen–Wang differential system
y
x
y
z
z
,
,
y
x
2
xz
3
y
2
a
.
The main tool up to now for studying a zero-Hopf bifurcation is to
pass the system to the normal form of a zero-Hopf bifurcation. Our
analysis of the zero-Hopf bifurcation is different; we study them
directly using the averaging theory.
In the second part of this work, we study the existence of zero-Hopf
bifurcations of a Lorenz-Haken system in 4
R
the averaging theory. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Echahid chikh Larbi Tébessi University-Tébessa |
en_US |
dc.subject |
Zero-Hopf bifurcation, Periodic orbit, Differential system, Averaging theory. |
en_US |
dc.title |
Limit Cycles Bifurcating From A Zero-Hopf Type Equilibrium For Certain Autonomous Differential Systems |
en_US |
dc.type |
Thesis |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée