Afficher la notice abrégée
dc.contributor.author |
Hichem, Laib |
|
dc.date.accessioned |
2022-03-14T13:13:57Z |
|
dc.date.available |
2022-03-14T13:13:57Z |
|
dc.date.issued |
2020 |
|
dc.identifier.uri |
http//localhost:8080/jspui/handle/123456789/2044 |
|
dc.description.abstract |
In this work, we first study the limit cycles which can bifurcate from the periodic orbits of
the quadratic isochronous centers
𝒙̇ = −𝒚 + 𝒙
𝟐
,
𝒚̇ = 𝒙 + 𝒙𝒚,
and
𝒙̇ = −𝒚 + 𝒙
𝟐 − 𝒚
𝟐
,
𝒚̇ = 𝒙 + 𝟐𝒙𝒚,
when they are perturbed inside the class of all discontinuous quadratic polynomial
differential systems with the straight line of discontinuity
y 0 .
In the second part of this work, we use the averaging method to study the maximum
number of limit cycles of the differential system
𝒙̇ = −𝒚 + 𝒙𝒚 + ∑𝜺
𝒌 ∑ 𝒂𝒊,𝒋
(𝒌)
𝒙
𝒊𝒚
𝒋
𝒊+𝒋=𝟐
𝟐
𝒌=𝟏
,
𝒚̇ = 𝒙 + 𝒚
𝟐 + ∑𝜺
𝒌 ∑ 𝒃𝒊,𝒋
(𝒌)
𝒙
𝒊𝒚
𝒋
𝒊+𝒋=𝟐
𝟐
𝒌=𝟏
,
where
is a sufficiently small parameter.
Keywords: Limit cycle, quadratic isochrone center, differential system, averaging method |
en_US |
dc.description.sponsorship |
Zouhair Diab |
en_US |
dc.language.iso |
fr |
en_US |
dc.publisher |
Universite laarbi tebessi tebessa |
en_US |
dc.subject |
Limit cycle, quadratic isochrone center, differential system, averaging method |
en_US |
dc.subject |
Cycle limite, centre isochrone quadratique, système différentiel, méthode de la moyennisation. |
en_US |
dc.title |
Le nombre de cycles limites des centres quadratiques perturbés |
en_US |
dc.type |
Thesis |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée