Dépôt DSpace/Université Larbi Tébessi-Tébessa

The Volterra-Lyapunov for global stability analysis of a model of Reaction-Diffusion system

Afficher la notice abrégée

dc.contributor.author Chaima, Bouchiba
dc.contributor.author Amel, Hadji
dc.date.accessioned 2022-03-14T13:53:21Z
dc.date.available 2022-03-14T13:53:21Z
dc.date.issued 2020
dc.identifier.uri http//localhost:8080/jspui/handle/123456789/2055
dc.description.abstract The aime of this work is to study the problem of global asymptotic stability for equilibria of a spatially diffusive HIV/AIDS epidemic model with homogeneous Neumann boundary condition. By discretizing the model with respect to the space variable, we first then by incorporating the theory of stable matrix of VolterraLyapunov into the classical method of the Lyapunov functional ODEs model, and then broaden the construction method into the PDEs model in which either susceptible or infective populations are diffusive. In both cases, we obtain the standard threshold dynamical behaviors, that is, if 01, then the disease-free equilibrium is globally asymptotically stable and if 01, then the (strictly positive) endemic equilibrium is globally asymptotically stable en_US
dc.description.sponsorship Mr. Salem Abdelmalek en_US
dc.language.iso en en_US
dc.publisher Larbi Tbessi University – Tebessa en_US
dc.title The Volterra-Lyapunov for global stability analysis of a model of Reaction-Diffusion system en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée