Résumé:
Thisdissertationisdevotedtostudythewell-posednessandtheblow-upofsolutionsofsome
nonlinearhyperbolicproblemsinvolvingnon-classicalnonlinearities.Weprovedundersuitable
assumptionsontheexponentsofnonlinearitythelocal,globalexistenceandestablishtheresults
ofblow-upofsomewaveequations.
Itseemsthatthesourceterminhibitstheglobalexistence(intime)ofthesolutionofthe
problemistosaythattheenergyoftheproblem(orsolution)tendstoin nityforthenormof
spacewhenttendstoa nitetimeT.Obviously,thedampingtermstabilizesthesolutionofthe
problem,anditisclearthatintheabsenceofsourceterms,ifthesolutionexistslocally,wecan
alwaysexpanditintoaglobalsolution.Thisinteractionbetweensourceanddampingtermshas
beenatargetinmanystudiesandisstills-Itisimportantalsotoknowwhichtermisdominant
totheother-.
Wecansaythatourresearchisanexpansionofsomeresultsdonebypreviousresearchers.
Mainly,bymakingappropriatemodi cations,weextendedsomeknownresultsofsomenonlinear
waveequationswithconstantandvariable-exponentnonlinearitiesstudiedbyMessaoudi,and
exploitideasbyGeorgievandTodorova.