Afficher la notice abrégée

dc.contributor.author Bouthaina, Guenez
dc.contributor.author Khouloud, Redjeb
dc.date.accessioned 2021-12-13T07:55:46Z
dc.date.available 2021-12-13T07:55:46Z
dc.date.issued 2021
dc.identifier.uri http//localhost:8080/jspui/handle/123456789/901
dc.description.abstract The objective of this thesis is to study the dynamical behaviors of the Zeraoulia- Sprott mapping. In particular, this map is the first simple rational map whose fraction has no vanishing denominator and gives chaotic attractors .  In the first chapter, we mentioned some important and comprehensive concepts of dynamical system theory.  In the second chapter, we introduced a two-dimentional smooth discrete bounded map capable of generating multi-fold strange attractors .  In the third chapter we studied periodic 2-orbits of the Zeraoulia-Sprott mapping and we investigete also the bounded and unbounded orbits. Resumé en_US
dc.description.sponsorship Mr. Elhadj Zeraoulia en_US
dc.language.iso en en_US
dc.publisher Larbi Tébessi University Tébessa en_US
dc.subject dynamical behaviors/ Zeraoulia- Sprott mapping: rational map: multi-fold strange attractors: en_US
dc.title About the dynamics of Zeraoulia-Sprott mapping en_US
dc.type Thesis en_US


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée