Afficher la notice abrégée
dc.contributor.author |
Bouthaina, Guenez |
|
dc.contributor.author |
Khouloud, Redjeb |
|
dc.date.accessioned |
2021-12-13T07:55:46Z |
|
dc.date.available |
2021-12-13T07:55:46Z |
|
dc.date.issued |
2021 |
|
dc.identifier.uri |
http//localhost:8080/jspui/handle/123456789/901 |
|
dc.description.abstract |
The objective of this thesis is to study the dynamical behaviors of the Zeraoulia- Sprott mapping. In particular, this map is the first simple rational map whose fraction has no vanishing denominator and gives chaotic attractors .
In the first chapter, we mentioned some important and comprehensive concepts of dynamical system theory.
In the second chapter, we introduced a two-dimentional smooth discrete bounded map capable of generating multi-fold strange attractors .
In the third chapter we studied periodic 2-orbits of the Zeraoulia-Sprott mapping and we investigete also the bounded and unbounded orbits.
Resumé |
en_US |
dc.description.sponsorship |
Mr. Elhadj Zeraoulia |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Larbi Tébessi University Tébessa |
en_US |
dc.subject |
dynamical behaviors/ Zeraoulia- Sprott mapping: rational map: multi-fold strange attractors: |
en_US |
dc.title |
About the dynamics of Zeraoulia-Sprott mapping |
en_US |
dc.type |
Thesis |
en_US |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée